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1 Introduction

The statistical modeling of returns of financial assets has attracted a great deal of re-

search interest for more than a century. All the statistical models of asset returns that

have been advanced so far, aim at either describing or explaining the empirical regular-

ities exhibited by asset returns. The method by which a particular model is derived is

heavily affected by whether description or explanation is the aim of the model. How-

ever, before the statistician develops a statistical model to either describe or explain an

empirical regularity, she must first define clearly what this regularity is. This is not an

easy task, especially in view of the fact that defining a regularity contains a great deal of

subjective judgement. This judgement depends on the statistician’s theoretical percep-

tions, as they are formed by the probabilistic concepts available while the regularity is

being examined. In other words, an empirical regularity is not a purely objective prop-

erty of the data, but it is partly defined by the manner in which the observer interprets

the patterns in the data that she was able to discern. This subjectivity results in the

empirical regularities being contingent, that is, the same regularity or the same pattern

of behavior may be interpreted in radically different ways at different points in time.

The preceding discussion has identified two factors affecting the emergence of statis-

tical models of asset returns: whether the model aspires to be explanatory or descriptive

and how the empirical regularities that motivate the model have been identified and

interpreted. The effects of these two factors on the statistical modeling of asset returns

over time are the central theme of the present paper. Specifically, this paper aims at

answering the following questions: Which factors motivated the birth of the various

statistical models of asset returns over time? Or more simply, where have these models

come from? What do these models do? Do they explain or simply describe the identified

empirical regularities of asset returns at each particular historical period? If explanation

provides ‘something’, over and above description, then how can this be defined?
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The analysis of the origins and the nature of statistical models of stock returns can be

conveniently organized around two basic hypotheses, namely the Independence hypoth-

esis (IN) and the Normality hypothesis (N). In a nutshell, the Independence/Normality

hypothesis states that the returns of any asset across time can be thought of as realiza-

tions of time-independent/normal random variables. It is no exaggeration to say that

the question of whether or not asset returns exhibit Independence and/or Normality

has motivated the production of almost the totality of asset returns models that have

been suggested in the literature since the middle of the twentieth century. The questions

revolving around the Independence and Normality hypotheses, that will be dealt with

in the sequel, include the following: To begin with, why IN and N were deemed to be

interesting hypotheses to test? Was IN consistent with the view that prices are deter-

mined by means of economic laws? Related to this, what kind of economic theory was

consistent with IN? Did the acceptance of IN result in a radical change in the theoretical

paradigm? How was IN thought to be related to the so-called Efficient Market Hypothe-

sis (EMH)? Were IN and N related in some way? More specifically, did IN imply to some

extent N? What was the role of the central limit theorem (CLT) for the emergence of

N as a property deducible from IN? In view of the empirical evidence against N, and in

favor of leptokurtic distributions that has been accumulating since the early 1960s, what

were the potential explanations for leptokurtosis? Related to this, what kind of limit

theorems predicted non-normal limiting distributions? What were the implications of

the alternative explanations for leptokurtosis for the theoretical paradigm existed at the

time, and especially for the definition and measurement of financial risk? Put differently,

was leptokurtosis interpreted as evidence of excess (compared to normal) instability of

the economic system itself or was it simply viewed as a manifestation of our inability

to conduct controlled experiments, namely to keep the experimental condition constant

in repeated trials? Within the time span under study, can we identify a specific period

in which the search for explanatory models was succeeded by that for descriptive ones,
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whose sole task was to capture the empirical properties of stock returns as perceived and

interpreted at that time? Did the weaning of EMH from IN contribute to the switch

from explanatory to descriptive statistical modeling?

This paper is organized as follows: Sections 2 and 3 analyze the origins and implica-

tions of IN and N, respectively. Section 3 also surveys the empirical evidence against the

normality hypothesis that started to accumulate in the early 1960s. Then, it compares

the two main competing “explanations” for the presence of non-normal leptokurtic re-

turn distributions, namely the “infinite-variance” and “finite-variance” ones that were

put forward in the early 1960s and early 1970s, respectively. Section 4 discusses the

theoretical and empirical motivation that gave birth to a different class of models than

those discussed in the previous sections, the so-called factor models. These models are

multivariate in nature, aiming at explaining the behaviour of stock returns in terms of

the behaviour of a set of risk factors. Section 5 focuses on a new class of models, put

forward in the beginning ot the 1980s, which are referred to as GARCH models. These

models interpret the empirical regularities of stock returns in a fundamentally different

way, namely in terms of second-order temporal dependence or dynamic conditional het-

eorskedasticity. The main argument of this section is that the explanatory power of the

GARCH models is substantially lower than that of the aforementioned models of the

previous decades due to their inability to connect the observed regularities to the chance

mechanism at work. Section 6 concludes the paper.

2 Independence

In this section, we examine the origins and implications of the assumption of Indepen-

dence for the returns process. As will be discussed below, the introduction of IN to

financial economics was made by a non economist and initially caused embarassement

and confusion to the profession. Soon afterwards, however, IN was interpreted in a rad-
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ically different way and eventually became the flagship of the new theoretical paradigm

in financial economics.

2.1 Empirical Motivation and Theoretical Justification

The period during which stock returns data was mainly interpreted as realizations from

an Independent and Identically Distributed (IID) process covered approximately the

period 1953-1982. This interpretation stemmed from the following two main sources.

First, the publication of the first systematic study on the statistical properties of stock

returns data by the eminent statistician Maurice Kendall, in 1953. The second source

was of theoretical nature and had to do with the increasing awareness of the economic

profession on the anticipatory nature of asset prices and the proper definition of economic

rationality associated with it. Let us analyze the above in some detail.

Kendall (1953) analyzed a set of 22 asset price series, observed at a weekly frequency,

which included both commodity and stock prices. One of his major objectives was to

determine whether these prices exhibited systematic versus random behavior over time.

It must be noted that in Kendall’s era, the concept of probabilistic independence was

implicitly equated to that of serial non-correlation. By failing to produce evidence

against non-zero serial correlation coefficients, Kendall concludes that “the price series

was much less systematic than is generally believed”. In fact he went so far as to declare

that “The series looks like a “wandering” one, almost as if once a week the Demon of

Chance drew a random number from a symmetrical population of fixed dispersion and

added it to the current price to determine next week’s price” (1953, p. 13).

Kendall’s results appeared to be rather surprising at the time. The independence of

successive commodity price changes was rather difficult to be meaningfully interpreted

within the existing theoretical paradigm, since it seemed to defy fundamental economic

“laws”. Samuelson (1973) describes the situation as follows: “...there are the “funda-

mentalists” and economists who think that the future algebraic rise in the price of wheat
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will have something to do with possibly discernible patterns of what is going to happen

to the weather in the plains states, the price of nitrogen fertilizer, the plantings of corn,

and the fad for reducing diets.” (1973, p. 5). And also: “The economists who served

as discussants for Kendall’s 1953 paper were outraged, as he expected them to be, at

the notion that there is no economic law governing the wanderings of price, but rather

only blind chance. Such nihilism seemed to strike at the very heart of economic science.”

(1973, p. 18). Kendall’s results seemed to echo in the field of economic theory Bertrand’s

(1889) famous question “is not chance the antithesis of all laws?”

However, soon after the publication of Kendall’s paper, the attitude of the economics

profession towards the concept of independence of successive price changes changed dra-

matically. This was mainly due to the theoretical developments that took place in

economic theory. In particular, the economic science experienced a radical switch from

a state in which “independence” was inconsistent with the existing background theory,

to a new state in which “independence” was dictated by the new theory. Samuelson

(1965) offered a formal proof of the statement that “properly anticipated prices fluctu-

ate randomly”. These new theoretical developments, under the guidance and influence

of economists such as Samuelson and Fama, were eventually developed to a brand new

theoretical paradigm which became known under the rubric of Efficient Market Hypoth-

esis (EMH). At the heart of EMH was the “anticipatory” nature of speculative prices and

the assumption that investors process available information, Φt, rapidly and accurately.

Under EMH, investors’ subjective expectations E(Pt+1 | Φt) are rational, in the Muthian

sense, that is, they coincide with the true objective expectation E(Pt+1 | Φt) (see Muth

1961). The instantaneous and accurate processing of Φt at t implies that the totality of

available information at t is reflected on the current price Pt. In other words, there is no

subset of Φt that will affect the (logarithmic) price change pt+1−pt. In a similar fashion,

Pt+1 will be determined entirely by Φt+1, and so on, while the successive (logarithmic)

price changes pt+1− pt, pt+1− pt, ... will be independent. The initial argument in favour
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of rationality had the structure of a “reductio ad absurdum” argument. Specifically, it

shows that non-rationality cannot last for long since this would imply unexploited profit

opportunities. Roberts (1959, p. 7) justifies rationality through the independence of

price changes as follows: “If the stock market behaved like a mechanically imperfect

roulette wheel, people would notice the imperfections and, by acting on them, remove

them”. The assumption of rationality is crucial for the independence property of stock

returns. In fact it is easy to show that non-rationality is sufficient for non-independence.

The radical change of the theoretical attitude towards IN, analyzed above, was ac-

companied by a similar change to the frequency and clarity of observational statements

concerning the detection of independence in empirical data. Indeed, under the guid-

ance of the new theory of efficient markets, economists started a battery of statistical

tests for independence which were not limited to estimating serial correlation coefficients

(see, for example, Alexander 1961, Moore 1962). Other studies tested the independence

hypothesis by equating the concept of independence with that of unpredictability, and

examining the extent to which professional fund managers suceed in generating system-

atically abnormal returns (see Jensen 1968). Relatively soon a solid body of evidence in

favor of the independence hypothesis was accumulated. Fama (1965b) went so far as to

declare “I know of no study in which standard statistical tools have produced evidence

of important dependence in series of successive price changes” (1965b, p. 57). This

statement, however, seems to exaggerate on the level of aggreement that was achieved

in the empirical literature with respect to the empirical validity of the independence

hypothesis, since there were quite a few studies in which the evidence for independence

was at best mixed (see, for example, Houthakker 1961, Cootner 1962, and Steiger 1964).

In concluding this section, it is of some historical interest to note that some studies

suggesting that the independence hypothesis was consistent with rationality, existed in

the literature even before 1953. Had the theoretical economists paid more attention to

the studies by Working (1934), Taussig (1921), and especially Bachelier (1900), they
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would have been protected from the embarassement caused by Kendall’s results. To this

end, an important study on the anticipatory nature of asset prices, published in 1958

by Working, seems to have paved up the way for the emergence of the efficient market

hypothesis.

3 Normality

In this section, we examine the origins and implications of the assumption of Normality

for the returns generating process.

3.1 Empirical Motivation and Theoretical Justification

Once the independence of asset returns was recognized to be a consequence of economic

rationality, the property of Gaussianity of the distribution of returns immediately fol-

lowed. This in turn was due to the probabilistic background theory available at that

period, which was dominated by the Central Limit Theorem (CLT). More specifically, a

consequence of the idea that an asset price is continuously bombarded by independent

news is that (logarithmic) price change within a given interval, say a day, is the sum

of the elementary returns from transaction to transaction occured within this interval.

To this end Osborne (1959) argues as follows: “This nearly normal distribution in the

changes of logarithm of price changes suggests that it may be a consequence of many

independent random variables contributing to the changes in values. The normal dis-

tribution arises in many stochastic processes involving large numbers of independent

variables, and certainly the market place should fulfill this condition, at least” (Osborne

1959, p. 151). Formally, the random variable Rt, denoting the returns of day t, may be

thought of as the sum of the elementary rates of return ξtj in that day, Rt =
∑n

j=1 ξtj ,

where n denotes the number of transactions in day t. The assumption of independence

of the random variables ξtj together with some additional moment conditions, such as
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those in Feller (1935), allowed the application of the Central Limit Theorem (CLT),

according to which the limiting distribution of Rt is the normal. Fama (1963) states this

reasoning as follows: “If the price changes from transaction to transaction are indepen-

dent, identically distributed random variables with finite variance and if transactions

are fairly uniformly spaced through time, the central-limit theorem leads us to believe

that price changes across differencing intervals such as a day, a week, or a month will

be normally distributed since they are simple sums of the changes from transaction to

transaction” (1963, p. 420). Normality was formally proved (in continuous time) by

Osborne (1959) and Bachellier (1900).

Studies supporting the normality (or approximate normality) hypothesis for stock re-

turns include Osborne (1959) and Larson (1960). Kendall’s (1953) results were also sup-

portive for the normality hypothesis in the price, rather than logarithmic price, changes.

However, all these authors expressed with one way or another some reservations con-

cerning the extent to which the normal distribution does in fact adequately fit the data.

Osborne refers to the empirical distributions as “nearly normal” (1959, p. 129). Larson

expressed more serious doubts by arguing: “The distribution ...has mean near zero, and

is symmetrical and very nearly normally distributed for the central 80 per cent of the

data, but there is an excessive number of extreme values. Also, some of these are quite

extreme, being 8 or 9 standard deviations from the mean” (1960, p. 318). Although

Kendall himself stated clearly that distributions look “very much like a normal form”

(1953, p. 23), he nevertheless identified cases in which “The distributions are accordingly

rather leptokurtic” (1953, p. 13).

3.2 Empirical Puzzles, Evidence of Non-Normality and the Role of

Central Limit Theorem

Apart from the aforementioned comments on the approximate character of the normal

distribution as a model for asset returns, there were studies whose results were sub-
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stantially more negative for the normality hypothesis. For example, in commenting on

Osborne’s (1959) results, Alexander (1961) argues as follows: “But Osborne did not

rigorously test the normality of the distribution. A rigorous test, for example the appli-

cation of the chi-square test to some of the data used by Osborne, would lead us strongly

to dismiss the hypothesis of normality” (1961, p. 16). This type of non-favorable results

for the “‘normality hypothesis” caused some confusion to the newly established efficient

market paradigm.

The preceding discussion suggests that if the much desired reconcilation of indepen-

dence with non-normality of asset returns were to be achieved, the reasons that caused

failure of CLT (in the presence of independence) had to be identified. This identification

depended on the following two questions: (i) Did the state of the art in probability the-

ory at the beginning of the 1960s provide results showing the conditions under which a

sum of independent random variables converges to a non-normal distribution? (ii) Were

the econometricians at the time aware of such results? As will be shown below, the an-

swer to the first question is affirmative whereas that of the second question is negative.

In fact, probability theory had already identified at least two cases in which the limit-

ing distribution of a sum of independent random variables is a non-normal distribution.

The first of these cases is the one developed by Lévy (1925) and is the main reason why

Bachelier’s early derivation of Brownian motion was incomplete. This case was adopted

in 1963 by Benoit Mandelbrot. However, the reconcilation between independence and

non-normality, put forward by Mandelbrot, did not come without a price for the existing

theoretical paradigm.

3.3 Leptokurtosis I: Infinite Variance

In 1963, Benoit Mandelbrot expressed forcefully and without any reservations the argu-

ment that the distribution of stock returns was not Gaussian. Moreover, Mandelbrot

offered an elegant explanation of the observed leptokurtosis of Rt, which - importantly-
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was consistent with the theoretically desirable independence hypothesis. However, as

will be discussed below, Mandelbrot’s interpretation did not come without any cost for

the existing theoretical paradigm. Specifically, Mandelbrot argued that the only as-

sumption that had to be made in order to obtain leptokurtosis is that (the independent)

ξtjs have infinite variance. Why did he make such an assumption? We may identify the

following two reasons that motivated Mandelbrot’s choice: (i) Mandelbrot was aware of

the probability theory results of Lévy (1925) according to which the family of limiting

distributions for sequences of sums of independent and identically distributed random

variables is the so-called Stable family, L, with the Gaussian distribution being just a

member (though the most important one) of this family. Quite importantly, the normal

is the only distribution in this family with a finite variance (see also Khintchine, 1933).

The extent to which a particular sequence converges to the Gaussian or some other

member of L depends on whether the random variables of this sequence possess finite

second moments. Consequently, in order for Mandelbrot to derive the desired result

(convergence to a non-Gaussian leptokurtic Stable distribution) he had to abandon the

assumption that the ξtjs have finite variances. (ii) Mandelbrot was willing to accept

the empirical implications of the infinite-variance assumptions, namely that elementary

stock returns can be arbitrarily large. Equivalently - in a continuous time framework -

Mandelbrot was at peace with the assumption that stock price paths are discontinuous.

The preceding discussion implies that the probability theory available at the time

had already produced the necessary theoretical results for a potential explanation of

the observed leptokurtosis. More importantly, this explanation did not have to sacrifice

the independence hypothesis. The only change in the set of the existing assumptions

that had to be made is to replace the finite variance assumption of the elementary stock

returns with the infinite-variance one. To this end, Cootner (1964) speaks apologetically

on behalf of the financial economists of the time about “... our guilt at our failure to

appreciate the possibility of non-Gaussian central limit theorems ...” (p. 413).
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How inoccuous was the adoption of the infinite-variance hypothesis for the theo-

retical paradigm existed at the time? To answer this question, we must analyze the

implications of this assumption for the concept and existing measures of financial risk?

These implications will be dealt with in detail in subsequent sections. For the moment,

suffices to say that economists did not rush to embrace Mandelbrot’s interpretation, de-

spite the fact that this interpetation left the independence assumption intact. Cootner

(1964) summarizes the discomfort that the infinite-variance assumption caused to the

academic community as follows: “Mandelbrot, like Prime Minister Churchill before him,

promises us not utopia but blood, sweat, toil and tears. If he is right, almost all of our

statistical tools are obsolete - least squares, spectral analysis, workable maximum likeli-

hood solutions, all our established sample theory, closed distribution functions. Almost

without exceptions, past econometric work is meaningless” (Cootner, 1964, p. 337).

Although Mandelbrot had succeeded in producing an empirically adequate model for

stock returns, his model was not fully compatible with the emerging paradigm of “ef-

ficient markets with controllable risk” and its adoption would have meant the collapse

of a substantial part of the paradigm itself. This was a rather unwelcome outcome as

“surely, before consigning centuries of work to the ash pile, we should like to have some

assurance that all our work is truly useless. If we have permitted ourselves to be fooled

as long as this into believing that the Gaussian assumption is a workable one, is it not

possible that the Paretian revolution is similarly illusory?” (Cootner 1964, p. 337).

It is worth noting that apart from leptokurtosis Mandelbrot was the first to detect,

another empirical regularity of asset returns, namely that “large changes tend to be

followed by large changes, of either sign, and small changes tend to be followed by

small changes.” (Mandelbrot, 1963, p. 418). This regularity, usually referred to as

“volatility clustering” went largely unnoticed for almost two decades, that is, between

the early 1960s and early 1980s. This effect was usually referred to as “curious behavior of

volatility” and was thought of as another manifestation of the “infinite variance” effect
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or, alternatively, as a symptom of the non-uniformity of transactions over time (see

below). As will be discussed in the last section of the paper, a re-interpretation of this

regularity formed the basis for the emergence of a new statistical paradigm for describing

asset returns, at the heart of which was the concept of “conditional heteroskedasticity”.

3.3.1 The “Silent” Decade: 1963-1973

Despite Cootner’s objections mentioned above, Mandelbrot’s clear statement on the

presence of leptokurtosis in the empirical distributions of stock returns, along with his

interpretation of this leptokurtosis delivered a severe blow against the “approximate

normality” view, which prevailed in the literature up to 1963. His analysis forced the

econometricians to look the naked truth about leptokurtosis and recognize it as a clear

and distinct empirical regularity of stock returns. In his comment on Mandelbrot’s

paper, Cootner (1964) describes the situation as follows: “Dr Mandelbrot’s series of

papers on the application of Paretian distributions to economic phenomena has forced

us to face up in a substantive way to those uncomfortable empirical observations that

there is little doubt most of us have had to sweep under the carpet up to now.” (1964,

p. 333). As a result, econometricians chose to remain silent on this issue until they were

able to come up with an explanation of this leptokurtosis that does not have to abolish

the finite-variance hypothesis. In fact, between 1963 and 1973, the only published papers

on the type of stock returns distribution were by Fama (1965c), Fama and Blume (1966),

Teichmoeller (1971) and Officer (1972), all of which advancing further either theoretically

or empirically the Stable Paretian hypothesis.

3.4 A “Finite-Variance” Explanation of Leptokurtosis

The long awaited “finite-variance” explanation of leptokurtosis finally came in the be-

ginning of 1970s with the works of Praetz (1972) and Clark (1973) although the roots of

the basic idea can be traced in Press (1968). These authors followed a line of reasoning
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similar to that of Mandelbrot. In particular, they also recognized the fact that since Rt

is the sum of independent random variables ξtj , the non-normality of the distribution of

Rt implies failure of CLT. But instead of assuming that the CLT failure was due to the

non-finiteness of the variance of ξtj , they put forward the hypothesis that CLT failure

was due to the randomness of the number of summands, n. Let us analyze Clark’s ideas

in slightly more detail: As Mandelbrot employed non-standard limit theorem results

to interpret the observed leptokurtosis, so did Clark. However, instead of employing

Paretian limit theorems, Clark employed limit theorems for random sums of random

variables, that had appeared in the probability literature since 1948. More specifically,

for each t, let {ξt,j}j≥1 be an iid sequence of random variables with finite E(ξt,j) = µξ

and V ar(ξt,j) = σ2ξ > 0. Moreover, let {Nn}n≥1 be a sequence of non-negative, integer-

valued random variables. The random sum process is defined as

Rt,Nn =

Nn∑
j=1

ξt,j . (1)

The question that was raised in the relevant probability theory was the following:

Under what conditions does the properly normed and centered random sum, Rt,Nn ,

converge in law to some random variable, Z, and, further, under what additional condi-

tions is Z distributed as N(0, 1). Robbins (1948) obtained sufficient conditions for the

convergence in law of the properly centered and normed sequence, Rt,Nn , to the normal

distribution, under the assumption that Nn is independent of the summands, ξt,1, ξt,2, ....

Renyi (1960) and Blum, Hanson and Rosenblatt (1963) derived sufficient conditions that

are similar to those of Robbins (1948) without the assumption of independence between

Nn and the summands. Whether the properly centered and normed sequence, Rt,Nn

converges to the N(0, 1) or not depends on the variability of Nn around n as n increases.

Specifically, if Nn exhibits a “substantial rate of variation” around n, in the sense that
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the condition

p lim
n−→∞

Nn

n
= 1 (2)

is violated, then the limiting distribution of the properly centered and normed sequence,

Rt,Nn is not the standard normal and depends on the distribution of Nn. Clark assumes

that Nn = [Zn] where Z is a random variable with mean 1 and variance Γ > 0 and []

denoting “the largest integer less than”. It is easy to show that under the aforementioned

assumptions on the random variables ξt,j , and for any given realization of Z, we have

that

1

σξ
√
n
Rt,Nn =

√
[nZ]

n

1

σξ
√

[nZ]

[nZ]∑
j=1

ξt,j
L→ N(0, Z).

We observe that the variance of the limit distribution is the random variable Z, hence the

unconditional limiting distribution is a mixture of normals. Such a distribution may well

be leptokurtic. Clark (1973) justified the appeal to random limit theory on the grounds

that transactions are not spread uniformly across time but instead display substantial

variation.

The concept of “substantial variation” is central in delivering non-normal limiting

distributions. Put differently, randomness of Nn per se does not ensure convergence

to a non-normal distribution. As mentioned above, if (2) is satisfied then the limiting

distribution of the properly centered and normed sequence Rt,Nn is N(0, 1). The impor-

tance of (2) calls for a further ellaboration of the concept of substantial variation. More

specifically, condition (2) imposes restrictions on the variability of Nn around n, as n

increases. This property, referred to as “theoretical variation” refers to the relationship,

g(n), between the variance of Nn and n, that is V ar(Nn) = g(n). It is the functional form

of g(n) that affects the convergence properties of the random sum sequence. Koundouri

and Kourogenis (2011) assume that Nn is defined by

Nn = nrU + n, for some 0 ≤ r ≤ 1

2
(3)
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where U is a random variable with E(U) = 0 and V ar(U) = c > 0. This assumption

implies the following function g():

g(n) = V ar(Nn) = cn2r . (4)

It can be shown that for 0 ≤ r < 1
2 , that is, when theoretical variation is moderate, the

properly centered and normed sequence RNn converges to N(0, 1). On the other hand,

for r = 1
2 , that is, when theoretical variation is substantial, the limiting distribution is

a mixture of normals.

Once a “finite-variance” explanation of leptokurtosis was available in terms of sub-

stantial variation in the number of elementary transactions across days, the empirical

literature on the type of stock returns distribution took off. Blattberg and Gonedes

(1974) assume that Z−1 follows a gamma-2 distribution which implies that the resulting

limiting distribution of 1
σξ
√
n
Rt,Nn is the student. Kon (1984) offers evidence in favor of

the assumption that the stock returns distribution is a discrete mixture of normals.

4 Factor Models

Apart from the univariate statistical models of stock returns analyzed in the previous

sections, a class of multivariate models, usually referred to as “factor models” , was

introduced in the begining of the 1970’s. The multiple factor model (MFM) is defined

as follows:

Ri,t = ai + β1,iM1,t + β2,iM2,t + ...+ βk,iMk,t + ui,t, i = 1, 2, ..., n, (5)

where Ml,t, l = 1, 2, ..., k is the unanticipated change from time t − 1 to time t of the

risk factor, Xl,t, that is Ml,t = Xl,t − E(Xl,t | Φt−1) and E(Xl,t | Φt−1) are the agents’

subjective expectations formed at time t-1. Concerning, the non-systematic term, ui,t,
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a minimal assumption is that it is a martingale-difference with respect to the publicly

available information set Φt−1. MFMs can be thought of as multi-period extentions of

the one-period factor model originated in the context of the Arbitrage Pricing Theory

(APT) developed by Ross (1976). In fact, APT is built on the hypothesis that returns

for all assets i, i = 1, 2, ...,m, are linearly related to a common set of k risk factors along

with the hypothesis that there are no arbitrage opportunities in the market. The main

result of APT is that expected returns are linearly related to β1,i, β2,i, ..., βk,i. To keep

the analysis as simple as possible, for the rest of this section we assume the presence of

a single risk factor, that is l = 1.

It is important to note that MFM was born out of empirical rather than theoretical

considerations. Roll and Ross (1980) state explicitly that MFM is motivated by “the

single most widely-acknowledged empirical regularity of asset returns, their common

variability” (1980, p. 1073). However, this statement does not do justice to the theoret-

ical origins of MFM. Even if all that motivated MFM was to account for the common

variability of returns, the specific way by which MFM does so is causal. Specifically,

MFM accounts for the common variabilty of stock returns by adopting the “common

cause principle”, (CCP). This principle states that if two random variables, say R1t and

R2t are found to be correlated then either R1t causes R2t or R2t causes R1t or there is a

third variable say M1,t which causes both R1t and R2t. In the third case, M1,t “screens-

off”the correlation between R1t and R2t. This means that conditioning on the common

cause renders R1t and R2t independent.

It is important to emphasize that the CCP interpretation of MFM assumes that

M1,t is the only common cause of Ri,t, i = 1, 2, ..., n. This in turn implies that the

observed correlations among the Ri,t’s stem solely from their common causal relationship

to M1,t. This causal interpretation of MFM imposes a restriction on the error terms

ui,t, i = 1, 2, ..., n (which is sometimes ignored in the literature), namely that their

correlation matrix, Σu, is diagonal. The diagonality of Σu may be thought of as a
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“theoretical” restriction reflecting the view that the common risk factor M1,t “screens

off” the correlations among the Ri,t’s.

Concerning the issue of how the agents’ subjective expectations are formed, MFM

assumes rational expectations (REH). REH asserts that investors’ subjective expec-

tations, E(Xt | Φt−1), coincide with the objective mathematical expectations, that is

E(Xt | Φt−1) = E(Xt | Φt−1). MFM in conjuction with REH implies that {Ri,t} (or

more accurately {Ri,t − ai}) is a martingale difference sequence (MD). This can be easily

seen by operating on both sides of (5) with the objective operator E(· | Φt−1). On the

contrary, if E(Xt | Φt−1) 6= E(Xt | Φt−1), then it can be shown that

E(Ri,t | Φt−1) = ai + β1,iE(X1,t | Φt−1).

In such a case, {Ri,t − ai} is not MD with respect to Φt−1. It is important to note

that in the context of MFM, the MD property of asset returns (which is a weak form of

independence) is “derived”, rather than imposed. Indeed, MD is the result of REH with

the latter being directly related to EMH.

One important caveat of MFM that has serious implications for its causal inter-

pretation concerns the identity of the risk factors. Roll and Ross themselves raise the

question “What are the common or systematic factors?” (1980, p. 1077). The finance

literature has approached the problem of the specification of risk factors in mainly three

alternative ways:

(i) The first approach does not aim at identifying the true set of risk factors, or even

a subset of it, but rather to “approximate” them with another set of approximating

variables. In the context of this approach one can distinguish solutions of purely sta-

tistical nature such as principal component analysis (see Chamberlain and Rothschild

1983, Connor and Korajczyk 1985, 1986). Another popular solution within the first

approach amounts to approximating the risk factors by the so-called “mimicking portfo-
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lios.” A well-known example in this direction is the approach of Fama and French (1993)

in which characteristics such as the firm size or the book-to-market ratio are supposed

to capture the effects of some unobservable risk factors (see also, Rosenberg, Reid and

Lanstein 1984, Chan, Hamao and Lakonishok 1991). An immediate implication of such

an approach is that the mimicking portfolios are by definition symptomatic factors in

the sense that if the true causal factors had been included, the mimicking portfolios

would become causally irrelevant. In other words, the true factors would screen off the

mimicking portfolios. This in turn raises questions on the explanatory power, in terms

of causal relevance, of the factor models that employ mimicking portfolios as factors.

(ii) The second approach assumes that the set X of the true causal factors is a subset

of the set D of all possible observable macroeconomic variables. Potential identification

of X takes place in two steps. First, linear time series regressions are run in which the

dependent variable is Ri,t and the independent variables are those in D. In this step

the set Ds of statistically relevant variables is determined. The second step aims at

identifying the subset Dc of Ds which includes only the variables that account for the

cross sectional variation of stock returns, that is the set of variables that are actually

priced by the market. The final set Dc of the surviving variables in both steps of the

screening-off type procedure outlined above are assumed to be the causally relevant fac-

tors. Chen, Roll and Ross (1986), follow this approach and identify the following risk

factors for stock returns: unanticipated changes in inflation, unanticipated changes in

GDP, unanticipated changes in the default premium of corporate bonds, and unantic-

ipated shifts in the yield curve. A rather surprising result emerging from the study of

Chen, Roll and Ross (1986) is that “well established ” factors such as the value-weighted

New York Stock Exchange Index turn out to be symptomatic since they are screened off

in the second step by apparently, more relevant macroeconomic factors.

(iii) The third approach aims at identifying X by means of theoretical considerations.

More specifically, in the context of this approach the set X is derived from a relevant
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theory. A prominent example of such an approach is the celebrated capital asset pricing

model (CAPM) in which there is a unique risk factor, namely the returns of the market

portfolio.

5 The New Era: Conditional Heteroskedasticity and Non-

Linear Dependence

The 1980s witnessed the generation of a new class of statistical models for asset returns

which aim at capturing the non-linear dependence observed in asset return series. More

specifically, the major breakthrough of this decade was a probabilistic re-interpretation

of the volatility clustering effect, first observed by Mandelbrot as far back as 1963.

In this decade, the “curious behavior of volatility” observed by previous authors was

re-interpreted in a fundamentally different way. Instead of seeing it as a manifesta-

tion of “infinite-variance” or “non uniformity of transactions over time”, the new view

interpreted the “volatility clustering” effect as temporal non-linear dependence aris-

ing from the conditional variance. In other words, the observed data could have been

produced by a strictly (or even second-order) stationary process which exhibits con-

ditional heteroskedasticity. The ARCH model of Engle (1982) and its extentions (see

the GARCH(p,q) model of Bollerslev 1986, etc.) offered a convenient way for describing

such processes. More specifically, the well-known GARCH(1,1) model takes the following

form:

Rt = c+ εt, εt = htνt, h
2
t = a0 + a1h

2
t−1 + a2ε

2
t−1 , (6)

where a0 > 0, a1 ≥ 0, a2 ≥ 0, and νt ∼ IID(0, σ2ν).

The process {Rt − c} where {Rt} described by (6) is martingale difference. Early

attempts to investigate the probabilistic properties of the process defined by (6) focused

mainly on (i) showing that a GARCH process is leptokurtic and (ii) establishing the

conditions under which this process is covariance stationary. The first results showed
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that {Rt} is second-order stationary if a1 + a2 < 1, in which case the unconditional

variance of Rt exists and is equal to a0/(a1 + a2). However, the estimates of these

parameters were found to be in the viscinity of the unit root area, that is they point

towards that a1 + a2 ' 1. These estimates gave rise to the so-called Integrated GARCH

process (IGARCH), that is, a process described by (6) with a1 + a2 = 1. This process

is clearly not covariance stationary since the unconditional variance is infinite although

it is still strictly stationary and ergodic (see Nelson 1990). The near to unit root es-

timates of the conditional variance revived the debate on the “infinite-variance” issue.

In fact, the “infinite-variance” problem, which came out of the front door with Clark’s

explanation re-emerged in the context of the IGARCH model from the rear window.

Was Mandelbrot right? Should the presence of a unit root in the conditional variance

be interpreted as supporting evidence - obtained from a brand new statistical method

- for the Mandelbrotian infinite variance hypothesis. The answer to this question is a

definitive “no”. Kourogenis and Pittis (2008) showed that the unconditional variance of

an IGARCH process is “barely infinite”, meaning that all the moments with order less

than two exist! In the context of (6) with a1 + a2 = 1 the barely infinite variance hy-

pothesis is stated as E |Rt|δ <∞ for every 0 ≤ δ < 2. The difference between the barely

infinite variance IGARCH process defined by (6) with a1 + a2 = 1 and the independent

Stable Paretian process proposed by Mandelbrot is huge as far as their asymptotic prop-

erties are concerned. More specifically, in spite of having (barely) infinite variance, an

IGARCH process is in the domain of the attraction of the normal law.

It is worth noticing that the “objective” regularities exhibited by stock returns do

not seem to have changed in any fundamental way from the beginning of the twentieth

century until today. In other words, the fundamental empirical regularities, namely,

leptokurtosis of empirical distributions (histograms), very low or zero sample autocor-

relation coefficients, and volatility clustering seem to characterize high-frequency asset

returns data for any (sufficiently long) sub-sample of this period. What changed dras-
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tically was the probabilistic interpretation of these regularities. From the Paretian IID

interpetation of Mandelbrot or the Mixed-Normal IID interpretation of Clark the liter-

ature took a sharp turn in adopting the GARCH interpretation of Engle and Bollerslev.

The implications of this change for the ability of GARCH to explain the observed regu-

larities are analyzed below.

5.1 The Explanatory Status of the Statistical Models of Stock Returns

The main question addressed in this section is the following: how does a statistical model

explains an empirical regularity or in what sense a statistical model can be explanatory?

More specifically, what is the set of criteria that a statistical model should satisfy in

order to be characterized as “explanatory”? Furthermore, is this set unique, or are there

many sets of alternative criteria with each one defining a different model of explanation?

In their widely known model of Deductive-Statistical (DS) explanation, Hempel and

Oppenheim (1948) argue that an explanation of a statistical regularity is achieved by

showing that it can be deduced (or follows with necessity) from a broader regularity or, in

other words from one or more statistical laws (and initial conditions in some cases). This

means that an explanation of an empirical regularity is an argument to the effect that the

regularity to be explained (the explanandum) was to be expected by reason of certain

explanatory facts (the explanans) which include at least one more general statistical

regularity. Put it slightly differently, the explanation of the regularity of interest amounts

to sub-suming it under a broader empirical law (or laws), which is usually referred to

as the covering law(s). In the context of the DS model, the characteristic feature of

explanation is that the explanadum is deducible from the explanans.

It must be noted that all the statistical models of stock returns summarized in the

previous sections - including GARCH - satisfy the explanatory criteria of the D-S model

of explanation. Indeed, all these models explain leptokurtosis by showing that this

regularity is deduced from one or more broader statistical regularities. More specifically,
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both Mandelbrot’s and Clark’s models (Type-I models) explain leptokurtosis of Rt by

deducing it from the properties of elementary returns ξtj , whereas GARCH models

(Type-II models) explain leptokurtosis by deducing it from the second-order temporal

dependence properties of {Rt} itself.

However, the two classes of models mentioned above differ in one important respect.

Type-I models investigate the properties of the “chance mechanism at work” by intro-

ducing assumptions in terms of “unobservable” entities, namely, the elementary returns

ξtj . On the contrary, Type-II models focus solely on the “outer behavior” of the chance

mechanism without exploring its “inner structure”. Railton (1978, 1981) argues that the

principle aim of explanation is to enhance our understanding of “how the world works.”

He puts forward the so-called Deductive Nomological Probabilistic (DNP) model of ex-

planation, according to which the mere subsumption of a narrow regularity, say L1,

under the broader regularity, L2, does not constitute an explanation of L1 unless L2 is

backed up with “an account of the mechanism(s) at work.” Specifically, L1 is explained

by placing it within a web of “inter-connected series of law-based accounts of all the

nodes and links in the causal network culminating in the explanandum, complete with a

fully detailed description of the causal mechanisms involved in the theoretical derivations

of all covering laws involved” (1981, p. 174). This means that in the case under study,

GARCH in itself cannot form the sole basis for a satisfactory explanation of leptokurtosis

unless GARCH is derivable from a theory on the causal mechanism at work.

To sum up: the main explanatory virtue of both Mandelbrot and Clark’s models

stems from the fact that the empirical regularities of observed asset returns, Rt, were

deduced from fundamental laws (assumptions) governing the behavior of the elementary

returns ξtj . In other words, the covering law dictating the behavior of Rt did not emerge

inductively, that is, it was not inferred from the observed properties of Rt, but rather

deductively from “first principles” concerning the properties of the constituent parts of

the chance mechanism at work. On the contrary, GARCH emerged from the probabilistic
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interpretation of the regularities exhibited by the Rts themselves, without any attempt

to account for the chance mechanism at work. In other words, the birth of GARCH

conforms to the “narrowly inductivist view” according to which hypotheses should be

inductively inferred from the available evidence (see, Hempel, 1965 for a critique of this

view).

The preceding analysis implies that GARCH does not explain leptokurtosis in the

stricter D-N-P sense. As already mentioned, D-N-P requires the broader regularity,

namely, conditional heteroskedasticity in terms of which the explanation of leptokurtosis

is achieved, to be deduced from a theoretical account of the chance mechanism at work.

The theoretical origins of GARCH are poor if non-existent. This model was born out

of purely empirical considerations of the behavior of stock returns. The success of this

model does not stem from its theoretical underpinnings, but rather from its ability to

generate forecasts for the volatility of stock returns. It is noteworhty that, despite the

widespread adoption of the GARCH models in the empirical finance literature, these

models originated in the context of empirical macroeconomics. Engle (2003) describes

the genesis of this model as an attempt to “...get variances into macroeconomic models,

because some people thought it was actually not the expected value of economic variables

but rather their variability that was relevant for business cycle analysis” (2003, p. 1176).

Indeed, the first application of this model was made to the UK inflation rate (see Engle

1982). Moreover, the GARCH models were not developed as a direct attempt to capture

the volatility patterns that were observed in macroeconomic time series but instead with

the aim of obtaining a powerful test for detecting bilinearity. As Engle remarks “...I

discover the model from the test, rather than the other way round” (2003, p. 1177).
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6 Conclusions

One of the most interesting problems in the philosophy of science is that of finding

criteria that define adequate statistical explanations (either of single events or empiri-

cal regularities). In particular, the statistical models of stock returns that aspire to be

explanatory seem to be motivated by the aim of explanation of empirical regularities

rather than that of single events. A critical analysis of the extensive literature on stock

returns since the middle of the twentieth century leads to the distinction between ex-

planatory and descriptive stock returns models, and in particular, to the identification

of the models that satisfy the criteria of explanatory adequacy, set forth by alternative

theories of scientific explanation.

The statistical modeling of asset returns was revolving around three interconnected

axes. First, an empirical regularity, R, was detected. Second, R was given a probabilistic

intepretation in terms of a set, P, of properties of a sequence {Rt}t≥1 of random variables.

Note that during the aforementioned period, the same empirical regularity was given

alternative probabilistic interpretations. Third, a statistical model, M, that accounts

for P was suggested. Whether or not M explains R depends on the way by which

M is produced. Specifically, if M is derived from a theoretical account of the chance

mechanism at work, then M satisfies the conditions for explanatory adequacy imposed

by the Deductive-Nomological-Probabilistic model of explanation. In such a case, M

is deemed to be explanatory. On the other hand, if M is inductively inferred from

the available data, without having any theoretical underpinnings, M is deemed to be

descriptive.

Our critical examination of the origins of the statistical models put forward in

the period 1950-1980, showed that these models, with their leading examples being

Osborne’s NIID (1959), Mandelbrot’s Stable-Paretian (1963) and Clark’s mixture-of-

normals (1973), enjoy a sufficiently high D-N-P explanatory status. In addition, the
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explanatory value of these models is further enhanced by their ability to answer coun-

terfactual questions, that is, questions about the conditions under which the empirical

regularities (explananda) generated by these models would have been different.

A common characteristic of all the aforementioned authors - on which the explana-

tory feature of their models was based - was their insistence on deriving their models

for observable returns from alternative sets of primitive assumptions concerning the be-

haviour of elementary returns ξtj . In other words, each of these authors derived his

corresponding model from his own theoretical account of the returns generating mecha-

nism. The main differences among the aforementioned theoretical accounts center around

the properties of elementary transactions ξtj . Osborne assumed that ξtj cannot be arbi-

trarily large and that the number of transactions across time is constant. Mandelbrot

retained the constancy of transactions over time but he took the radical view that ele-

mentary transactions can be arbitrarily large, a direct implication of which is that the

variance of stock returns is infinite. Finally, Clark in his attempt to salvage the finite-

variance hypothesis, he elevated the hypothesis of “the substantial temporal variation

of the number of transactions” as the most fundamental one concerning the generation

of stock returns. Osborne’s explanation - being in the spirit of the original explanation

of Bachelier - aimed at explaining the empirical regularities of asset returns identified at

the time, namely “independence” and “normality.” On the other hand, both Mandelbrot

and Clark focused on explaining the “new” empirical regularity identified by the begin-

ning of the 1960s, namely, leptokurtosis of the asset return distributions. The deductive

power in all the aforementioned explanations stemmed from limit theorems. Osborne

employed the classic central limit theorem, Mandelbrot used the limit theorems for se-

quences of random variables with infinite variance and Clark utilized limit theorems for

random sums of random variables.

The realism of the aforementioned assumptions was the subject of heated debate

between the few economists who supported Mandelbrot’s explanation and those (the
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majority) who supported Clark’s. The reason is that Mandelbrot’s interpretation had

unpleasant implications for almost all the major theoretical concepts and models of the

finance theory that existed at that time. On the other hand, Clark’s interpretation

identified the origins of leptokurtosis with the inability of the experimenter to conduct

controlled experiments, that is, to keep the number of transactions approximately con-

stant over time.

The arrival of the 1980s witnessed new developments in the statistical modeling of

asset returns. The recognition that the Efficient Market Hypothesis requires returns to

be just a martingale difference process, led to removal of the need for independence in

returns. In the early 1980’s, the assumption of martingale difference combined with the

empirical evidence of non-constant volatility, gave rise to the conditionally heteroskedas-

tic models (GARCH) by Engle and Bollerslev. These models were motivated mostly by

an attempt to describe the stylized facts of assets returns, rather than an attempt to

explain their generating mechanism. The rise of GARCH models marks the prevalence

of the statistical-inductive approach over the explanatory-deductive one.

Of course, the evolution of the modeling of stock returns does not end; the hunt for

a model which comes closer to Railton’s ideal explanatory text is indeed unended! Our

detailed analysis of the history of this evolution seems to uncover at least one source of

inspiration for the development of new models for stock returns: the need for the joint

exploitation of both substantive and statistical information in the specification of these

models. As Wold (1969) had insightfully remarked forty years ago, “the construction

process (of models) alternates several times between the empirical and theoretical sides,

building up the model by layer after layer of empirical and theoretical knowledge” (1969,

p. 437).
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