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1 Introduction

Tax evasion and tax avoidance, as well as ways to remedy such issues, are real, timely

and universal facts and have always been the subject of research and investigation of

tax authorities in the majority of countries. After all, by a¤ecting a key sector of public

�nance, i.e. the �scal policy, tax noncompliance renders any action to restrict the devel-

opment and emergence of such phenomena worth it in terms of budget poise. However,

the design and enforcement of such institutions is a rather awkward and costly task for

any regulator, since monitoring costs and the existence of loopholes in the law system

hinder desirable e¤ectiveness. This issue has not been addressed successfully by the tax

authorities, since one can easily observe not only tax evasion itself but also the immense

economic literature concerning tax evasion and tax avoidance and the various ways by

which it has been modeled throughout.

In the majority of modern literature taxpayers are treated as rational agents, i.e.

making tax evasion decisions based on net expected gains and losses of utility, having

perfect knowledge over other agents or even the problem faced by the government sector.

The intrinsic problem with this approach is that it tends to disregard other aspects of

human behavior, such as imitation processes, personal in�uence or tastes as well as many

other realistic human characteristics. The omission of these particularities is often for

the sake of result tractability, since their inclusion renders mathematical models highly

non-linear. The ways modern literature models the interaction between tax authorities

and taxpayers is reviewed by Andreoni et al. (1998), who categorize them in either

principal-agent approaches (e.g. Reinganum & Wilde (1985), Slemrod (1985), Vasin &

Vasina (2002), Chen & Chu (2005), etc.) and game theoretic approaches (e.g. Greenberg

(1984), Reinganum & Wilde (1986), Bardsley (1997), Wane (2000), etc.). Adding to

these approaches the most well-known models of tax evasion, i.e. the seminal paper of

Allingham & Sandmo (1972), the contribution of Yitzhaki (1974), as well as Slemrod

& Yitzhaki (2002), they all treat the agents as rational criminals, as proposed in the

seminal paper of Becker (1968) without any interaction with each other, maximizing

their expected payo¤s of cheating.
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More recent models try to capture these characteristics, namely the behavioral aspects

of agents, using Game Theory or even Evolutionary Game Theory. The latter o¤ers a

su¢ ciently more realistic background treating the strategies of agents in the population

as evolving over time, a process that allows for imitation and the emergence of a di¤er-

ent concept of equilibrium. An approach towards the relaxation of the assumption that

there is no social interaction among taxpayers is o¤ered by Lipatov (2008). The agents

are considered imitators in terms of learning each others strategy through the stages of

a repeated game in which the probability of audit is held either �xed or is allowed to

change. Our work starts from the same basis in the sense that we allow for imitation, but

it di¤ers as far as the steps of the analysis and regulation is concerned. We use the notion

of the replicator dynamics equation as proposed by Schlag (1998) and we also allow for

optimization with respect to that behavior. Nevertheless, we view both this work and

the work of Lipatov (2008), as ways to expand the research on tax evasion by improv-

ing on assumptions and moving towards Evolutionary Game Theory. In contemporary

literature, social imitation is considered among the fundamental motives in psychology

regarding social norms and cultural evolution (e.g. Brosnan et al. (2009)), consequently

contemporary research needs to allow for imitation rules and social interaction among

agents.

Thus, our work incorporates the concepts of both classical and contemporary ap-

proaches in an attempt to unify regulation and enforcement mechanisms with evolution-

ary concepts of agent behavior. In particular, we consider a general model with a large

population of agents and a public sector represented by a regulator whose main concern

is to keep a balanced budget. Note that there is no tax avoidance in our model, since we

are only interested in the illegal manifestations of this phenomenon. The players are the

taxpayers and interact with each other by playing an evolutionary stage game in which

each period, a random pair of players is formed and each player compares own payo¤with

the payo¤of the other member of the pair. The mathematical equation explicitly showing

the aforementioned procedure is the replicator dynamics equation, which is induced by

imitation dynamics and describes the evolution of the di¤erent strategies of agents in the
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population through time.1:

_xi = xi (�i (x)� �� (x)) ,

where xi is the share of strategy i in the population of strategies, � (�) is the payo¤function

and �� (�) is the average payo¤ in the population. The equation states that as long as the

payo¤ of strategy i is greater than the average payo¤ in the population, strategy i will

spread (thrive) in the population, as it is relatively �tter than its competitors. This is

a result that is derived by imitation dynamics in the sense that there is a nonnegative

probability that the agent following strategy j will switch to strategy i if the latter exhibits

higher payo¤. Indeed, if we consider a su¢ ciently large population and we restrict to two

available strategies in the population, let these be i and j, then the replicator dynamics

equation becomes:

_xi = xi (1� xi) (�i (x)� �j (x)) .

This ongoing process determines which strategies (suppose i =tax evasion or j =compliance

with the tax system) have a higher �tness relative to the other, rendering themmore abun-

dant in the population as the game is played for a long time. Thus, the agents in this

doctrine are considered boundedly rational and not fully rational, having only subjective

beliefs about the way the population of strategies work.

On the other hand, the regulator has the task to keep an intertemporal balanced

budget path and enforce the tax regime by taking into account that the agents have

evolving strategies governed by imitation dynamics. However, tax enforcement is a costly

procedure by itself and thus the regulator needs to account for these costs as well, i.e.

the cost of audit and the cost of the policy instruments she uses. The cost of audit

incorporates the sum of operating costs of the �scal sector as a whole, whereas the cost

of policy instruments relates to the inelastic ability of the government to overact with the

tax and penalty levels. Policy instrument costs have an inseparable relation to welfare

and social stability and they should be normalized or even restricted to viable levels.

The novelty of this work relies primarily to the fact that the optimal control problem

1For details see Weibull (1997) and Schlag (1998).
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faced by the regulator is constrained by the boundedly rational behavior of the taxpay-

ers. Consequently, the regulator aims to determine the optimal paths of the available

costly policy instruments, i.e. monitoring e¤ort, tax rate and penalty rate by taking

into account the non-best-response imitating behavior of the tax base. Having found the

optimal paths of the instruments, one can then evaluate �scal policy in terms of equilib-

ria, comparative statics and dynamical behavior. Thus our approach is distinct from the

standard �rational tax-evader approach�, which constraints the regulator�s problem by the

optimality conditions of the rational tax-evader, since in our approach the regulator is

constrained by the imitation dynamics of the boundedly rational tax evaders.

There is a discussion whether this kind of models can capture stylized facts about the

realized level of evasion, the underestimation of the subjective probability of audit etc.

In our opinion, all these models including ours, can only deal with petty crimes, namely

tax evasion performed by individuals or by small homogeneous �rms, where decisions on

whether to tax evade or not are taken by individuals as well, i.e. �rm owners. In this

context, �getting away with murder�is easier and less costly in most cases and of course

imitation plays a big role in all this decision-making. On the other hand, when we are

dealing with large multinational corporations or conglomerates, the decision on whether

to tax evade or not cannot be regarded as a result of imitation. It is a strictly rational

choice and most of the times it dwells between tax evasion and tax avoidance, since these

�rms hire professionals tax experts in order to take advantage of loopholes present in the

tax law. This is considered legal and is obviously a rather rational choice. Consequently,

all these models can be said to act as an Occam�s razor in terms of modeling reality and

providing explanation to stylized facts.

2 The Model

We consider an economy with a su¢ ciently2 large population of agents, for which our pri-

mary objective is to investigate the evolution of compliance and tax evasion under certain

assumptions. The model revolves, almost exclusively, around the interaction of agents

2Su¢ ciently in the sense that the evolutionary stage game can e¤ectively take place.
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with each other and the implications that such an interaction has on tax enforcement pol-

icy and regulation. Restricting attention to tax evasion by excluding tax avoidance and

other similar practices, we assume that agents have two available strategies, i.e. either

to tax evade, by reporting a taxable income below its true value, or not, by legitimately

reporting their whole taxable income. The decision of each agent on whether to tax evade

or not depends on her inclination to imitate the behavior of the agent she comes across in

the game that agents play, which is a standard 2x2 symmetric evolutionary stage game

according to which, each period, random pairs of agents are formed. Within each pair,

each agent has a non-zero probability to switch to the opposing strategy, if her own payo¤

is lower than the perceived payo¤ of her match.

On the other side, we consider a regulator, whose role is to optimally control for the

aforementioned agents�behavior by setting the level of the di¤erent policy instruments

at her disposal accordingly, in order to attain a certain goal. We assume this goal to

be a primary de�cit/surplus level towards which she optimizes a corresponding social

objective function. The regulator has perfect information over the agents�behavior and

beliefs and is only limited by intrinsic characteristics of each policy instrument, e.g. the

tax rate or penalty rate cannot surpass viable levels.

2.1 Agents Side

We assume that we have a su¢ ciently large population of agents who are subject to

income taxation, with tax rate t. Each agent receives a �xed income Y , and decides

whether to report it as a whole or a part of it. We consider the case where each agent has

two available strategies, i.e. to tax evade or not. When the agent chooses to tax evade,

her reported income, YR, is strictly below Y , i.e.

YR < Y ,

where Y � YR is the evaded income.

Thus, we limit to two types of agents in the population, the complying and the non-
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complying with the tax rule. At the end of each period, tax authorities conduct random

audits in a part of the population and any tax understatement detected is subject to a

proportional penalty �, applied over and above the evaded tax, as proposed by Yitzhaki

(1974). The agents, therefore, face an audit probability, which is detrimental in the form

of a penalty/�ne, only to the non-complying type. Hence, the non-compliers�expected

utility, EUNC , incorporates a subjective probability of audit p, in order to properly weigh

the two contingent outcomes, i.e. being caught or not, following Becker�s (Becker (1968))

concept:

EUNC = (1� p)UNU + pUNA (1)

where UNU , depicts the utility of the non-complier that remains unaudited and UNA, the

utility of the non-complier that is audited and thus gets caught3. It follows from the

standard von Neumann-Morgenstern utility function U (�) properties that UNU > UNA.

The expected utility of the complying agent, EUC , is simply UC , since she faces no threat

as far as a penalty is concerned, i.e.:

EUC � UC (2)

We will come to the issue on how we de�ne p, later on. For the time being, we consider it

being �xed and exogenous, satisfying all the desirable properties of a probability measure.

To be more rigorous in notation, each agent is considered risk-averse and has a

utility-based payo¤ depending on the strategy she follows and on the likelihood of be-

ing audited. Following the non-compliers �rst, each agent reports YR, and faces two

contingencies; to be caught cheating or not. In the �rst case, the evader reported

YR < Y , and has been taxed with tYR. Since she has been caught, she will have to

pay her full tax responsibilities, i.e. the remaining t (Y � YR) plus the penalty on evaded

tax, �t (Y � YR), where � is the penalty imposed. Her payo¤, UNA, is thus de�ned as

U (Y � tYR � t (Y � YR)� �t (Y � YR)), which simpli�es to U (�� t� (Y � YR)), where

� is the after-tax income Y (1� t). In the latter case, the respective payo¤of the "lucky"
3We assume that there is no corruption in the tax collection mechanism, namely when a non-complying

agents is audited she will certainly be penalized.

7



non-complying agent who does not get audited, i.e. UNU , turns out to be just U (Y � tYR),

which in terms of after-tax income equals to U (� + t (Y � YR)). Substituting into (1),

we obtain the following expression for the expected utility of the non-complying agent:

EUNC = (1� p)U (� + t (Y � YR)) + pU (�� t� (Y � YR)) . (3)

On the other hand, the complying agent, i.e. the one who reports her whole income Y ,

gets a payo¤, UC , equal to U (Y � tY ), which simpli�es to just U (�), since she fully paid

her tax liabilities. Following, once again, the notion of the von Neumann-Morgenstern

properties for utility ranking, it is always true that UNU > UC > UNA. This is an intuitive

and necessary condition, so that the individual rationality constraint, for the complying

agents, is satis�ed. Notice again in (2), that the expected utility of the complying agent

is UC itself, i.e. EUC � UC , since she faces no uncertainty.

2.2 Tax Evasion and Replicator Dynamics

Let x(t) = (xNC (t) ; xC (t)) be the state vector denoting the share of the non-complying

and complying agents in the population, respectively, at time t. As shown above, if an

agent follows the complying strategy, she will have a payo¤ of UC . On the other hand,

the non-complying agent will have a payo¤ as shown in (1), i.e. (1� p)UNU + pUNA.

Thus, using the fact that xNC (t) + xC (t) = 1, for each t, the average expected payo¤ in

terms of utility EU , of the population will be as follows:

EU = xNC (t)EUNC + xC (t)EUC = (4)

= xNC (t) [(1� p)UNU + pUNA] + (1� xNC (t))UC =

= xNC (t) [(1� p)U (� + t (Y � YR)) + pU (�� t� (Y � YR))] + (1� xNC (t))U (�) .

Consider now, the evolutionary game that the agents play, where each one follows one of

two pure strategies si for i = NC;C, for "not comply" and "comply" respectively. The

game is repeated in periods t = 1; 2; :::. Since xti is the fraction of players in the population

playing si in period t, and the payo¤ to si is EU ti = EUi (x
t), where xt = (xtNC ; x

t
C), we
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look at a given time t, and we rank the strategies so that, e.g. EU tNC � EU tC . Suppose

that in every time period dt, each agent following a certain strategy NC or C, learns the

payo¤ and consequently the strategy, of another randomly chosen agent, i.e. her pair in

the game, and with a probability �dt > 0 changes her strategy to her pair�s strategy if

she perceives that the other strategy�s payo¤ is higher. The larger the di¤erence in the

expected payo¤s, the higher the probability the agent will perceive it and change to the

more pro�table strategy. In this context we will regard strategy choices to be a result

of imitation, in the sense that a speci�c strategy that leads to a payo¤ higher than the

alternative will be imitated with a probability proportional to the payo¤ di¤erence; see

Schlag (1998, 1999). Thus, the probability ptNC;C that an agent playing strategy NC will

shift to the strategy C is given by:

ptNC;C =

8><>: � (EU tC � EU tNC) for EU tC > EU
t
NC

0 for EU tC � EU tNC

where � is su¢ ciently small that ptNC;C � 1. Then, the expected fraction of the population

following the non-complying strategy NC, in period t+ dt is de�ned as:

Ext+dtNC = xtNC + �dtx
t
NC

X
s=NC;C

xts�
�
EU tNC � EU ts

�
=

(5)

= xtNC + �dtx
t
NC

�
xtC�

�
EU tNC � EU tC

��
,

where the second term in (5) re�ects the expected proportion of the population that

switches to the non-complying strategy. Using the de�nition of the average payo¤ as

given in (4) and the fact that xtC = 1� xtNC , we obtain that:

Ext+dtNC = xtNC + �dtx
t
NC�

�
EU tNC � EU

t
�
. (6)

For a su¢ ciently large population, one can replace Ext+dtNC with xt+dNC . Furthermore, sub-

tracting xtNC from both sides of (6), dividing by dt, taking the limit as dt ! 0, and
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setting without loss of generality �� = 1, we get the replicator dynamics equation:4

_xtNC = x
t
NC

�
EU tNC � EU

t
�
. (7)

The replicator dynamics equation describes the evolution of the share of the non-

complying agents, and therefore the frequency of the evading strategy NC, in the pop-

ulation. More speci�cally, it states that its frequency increases exactly when the non-

complying strategy has above average payo¤ and vice versa. Using the payo¤ de�nitions

in (4), dropping t and renaming xtNC into just x for the sake of notation simplicity, we

can rewrite the replicator dynamics equation as:

_x = x (1� x)

24(1� p)UNU + pUNA| {z }
non-compliers�payo¤

� UC|{z}
compliers�payo¤

35 . (8)

In (8) we clearly notice that the ratio of non-compliers increases as long as the non-

compliers�payo¤ is greater than the compliers�payo¤ in the population. Nonetheless, it

is important to note that the replicator dynamics equation does not describe a best-reply

dynamic; that is, the agents do not adopt a best reply to the overall frequency distribution

of strategies in the previous period. On the contrary, agents have a localized and limited

knowledge regarding the system as a whole and are thus considered to be "boundedly

rational" as far as the distribution of information is concerned.

Until now, we have treated the subjective probability of audit p, formed by the non-

complying agents, as �xed and exogenous. This means that the level of monitoring e¤ort

is taken as given, i.e. as if the regulator publicly announced the number of inspections

to be exercised per period. We want to go beyond the case of a precommitment to a

certain auditing probability and we will, therefore, endogenize p in a way that it makes

our analysis more realistic inasmuch as tractability of results is attained, since there is a

well known trade-o¤ between these two. We assume that each agent elicits information

in order to form the probability with which she thinks she will be audited, through two

channels. The �rst channel consists of all publicly available information on the stringency

4For this derivation see Schlag (1998) or Gintis (2000). For details on replicator dynamics see also,
for example, Weibull (1997), Samuelson (1998) and Hofbauer & Sigmund (2003).
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of the tax authorities, whereas the second channel incorporates all the knowledge that

the agent can acquire through her interaction with the other agents, especially via the

evolutionary game. Television, radio or printed news, political announcements, economic

crises or booms directly a¤ecting the real economy etc., perform as suitable examples for

the �rst channel. People tend to shape their beliefs regarding the stringency of audits

according to the aforementioned sources. As far as the second channel is concerned, hu-

man communication and interpersonal relationships provide plausible examples through

which agents produce beliefs and most importantly imitate one another; and we have

seen that the replicator dynamics is all about imitation. Thus, we assume that the sub-

jective probability of audit is jointly de�ned �rstly by the overall perceived e¤ort put into

auditing by the tax authorities and secondly by the perceived magnitude of tax evasion

in the population.

As far as the former is concerned, let " denote the e¤ort put into auditing by the

tax authorities. We can think of " being the ratio of the spending channeled to audits

over the total government spending towards tax authorities, i.e. the net expenditure ratio

�nancing the audit mechanism. Thus, it holds that 0 � " � 1, since it constitutes a ratio,

where the lower bound, 0, and the upper bound,1, can never be truly achieved in reality,

since they imply two extreme cases of either no audit spending or full audit spending,

respectively, that can never be applied in reality. Although the two boundary values

are limiting cases without further quali�cation, they serve so that e¤ort has desirable

probability-like characteristics and in the formation of the control variable constraints in

the optimization problem below.

As far as the latter is concerned, the ratio of non-compliers in the population, i.e.

x 2 [0; 1], represents the relative magnitude of tax evasion in the population and can

easily be inferred by each agent through public relations and social interaction in general.

Notice that the taxpayer has no knowledge of the true values of " and x, instead she

infers a value for each one of them; let these subjective values be denoted by (~"; ~x).

These values are then entered as parameters in the class of probability distributions of

audit, identifying the true function of subjective belief of being audited. In other words,
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~" and ~x must satisfy that:

~" = " (�; x) + v1 (!)

~x = x (�; ") + v2 (!)

The perceived values of " and x, i.e. ~" and ~x, are a function of the true values of " and

x plus random shocks v1 (!) and v2 (!) on the sample space, respectively. Note that,

the true values of " and x depend on certain factors as well as on each other, but this

has no impact on the form of the subjective probability of audit whatsoever, since it

incorporates only the parametric values ~" and ~x in order to measure the audit chance.

Both random shocks v1 (!) and v2 (!) are considered to be zero-mean stationary random

variables. We can now de�ne the endogenized subjective probability of audit to be a

distribution function measuring the probability:

p ("I get audited"; ~"; ~x)

which will be denoted for simplicity by p ("; x), satisfying the property that:

0 � p ("; x) � 1

Thus, we get a parameterized, by ~" and ~x, speci�c probability distribution attributing

values from 0 to 1 to the event that the agent is audited. Substituting the endogenized

probability back to (8), we obtain the replicator dynamics equation with endogenized

subjective probability, i.e.:

_x = x (1� x) [(1� p ("; x))UNU + p ("; x)UNA � UC ] . (9)

Notice that with the endogenized probability we may obtain a feasible interior steady

state solution for the replicator dynamics equation. In its original form, as depicted in

(8), the only candidate solutions for a steady state (x; _x = 0) were the corner solutions,
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i.e. x = 0 and x = 1, being interpreted as full compliance or full evasion in the population,

respectively. This was due to the fact that all the terms in the bracketed section were

independent of x.

2.2.1 Monomorphic vs. Polymorphic Behavior

The replicator dynamics equation as a di¤erential equation, implies some dynamical

behavior for x, i.e. the fraction of non-compliers in the population. Taking equation

(8) as a benchmark, where probability is still considered exogenous, we can see that the

bracketed section is independent of x. Thus, we can rewrite it as:

_x = x (1� x)K (10)

where K = [(1� p)UNU + pUNA � UC ], and can be viewed as a scaling constant, as far

as the di¤erential equation is concerned. It is clear that _x is a parabola, the convexity

(curvature) of which depends on the sign ofK. The critical points of (10), i.e. the ones for

which it holds that _x = 0, are x�1 = 0, x
�
2 = 1, or K = 0, which is trivial. Di¤erentiating

_x with respect to x we obtain that:

@ _x

@x
= K (1� 2x) . (11)

Computing (11) in each steady state, i.e. x�1 = 0 and x
�
2 = 1, we derive the dynamical

behavior of the steady states of (10), which is summarized in Table 1:

@ _x
@x

��
x�1=0

= K, for x�1 = 0 to be stable, K < 0

@ _x
@x

��
x�2=1

= �K, for x�2 = 1 to be stable, K > 0

@ _x
@x

��
K=0

= 0, all levels of x satisfy stability (not desirable)
-Table 1-

Notice that in the benchmark case with exogenous probability of audit we only get two

corner solutions, i.e. x�1 = 0 and x�2 = 1, and one trivial solution that consists of all

interior x�s. Hence it describes a monomorphic behavior and lead to monomorphic phase
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diagrams, in the sense that there are no transitional dynamics, but only a jump to

the stable point. It is obvious that any tax authority would want to achieve a stable

x�1 = 0 state, which means that all agents become complying and fully pay their tax

responsibilities. In the benchmark environment this implies that K must be negative,

which in turn means that UC > (1� p)UNU + pUNA at all times; a condition that makes

sense, since switching to the "good" strategy means that it must score higher in terms of

payo¤ than the "bad" strategy.

On the other hand, by endogenizing the subjective probability of audit we manage to

transform K into a function of x through p, i.e. K : K (p ("; x)). Thus, for the replicator

dynamics equation (9), steady states, as before, are de�ned by _x = 0 as x�1 = 0, x
�
2 = 1,

and, assuming that an interior xy exists, that satis�es the following relationship:

xy :
�
1� p

�
"; xy

��
UNU + p

�
"; xy

�
UNA � UC = 0. (12)

To pinpoint the interior xy satisfying (12), one must assume a speci�c form for the joint

cumulative distribution function p ("; x). Assuming that this interior x� exists, we get a

polymorphic behavior depending on the sign of the derivatives of _x calculated at each

steady state x�i = x�1; x
�
2; x

y, i.e. @ _x
@x

��
x=x�i

7 0. All the possible variations for both

monomorphic and polymorphic (with one interior x�) phase diagrams are summarized in
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Figure 1 below:

Monomorphic Polymorphic
(Mon. a)

0.5 1
x

x

x�2=1 is stable

(Pol. a)

x0.5 1
x

x

x�1=0 and x
�
2=1 are stable and x

y is unstable

(Mon. b)

0.5 1
x

x

x�1=0 is stable

(Pol. b)

x

0.5 1
x

x

x�1=0 and x
�
2=1 are unstable and x

y is stable

-Figure 1-

Notice that for the monomorphic case we can attain a stable full compliance level at once,

if the dynamics permit it, whereas for the polymorphic case of one interior steady state,

full compliance and full non-compliance are both present in the same contingency. In

(Pol. a) a small perturbation from the unstable interior steady state xy leads to either

total conformity or total non-compliance. The desirable polymorphic case is, therefore,

the one that is characterized by unstable corner solutions and a steady interior xy, i.e.

the one depicted in (Pol. b). This is also the most realistic of all four contingencies, not

mentioning cases with multiple interior steady states that outperform all of the above.
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2.3 Primary De�cit and Tax Evasion

We assume that the economy has a single regulating agent in lieu of the government,

in the sense that she has no other responsibility than the planning, enforcement and

optimization with respect to resource and policy instrument constraints, towards a certain

goal. The regulator is aware of the behavior of the agents and has full knowledge over the

whole system that describes it. The objective function towards which policy is set can

vary depending on the ultimate goals of the regulator. These goals could regard spending,

welfare, the monetary or �scal sector, trade etc.; they could even concern idiosyncratic

objectives, e.g. reelection. In our setup, the regulator will be a �scal policy regulator, who

sets the target for the primary de�cit of the economy. The primary de�cit consideration

o¤ers two major advantages.

Firstly, it incorporates, as we shall see below, the two channels that the agents use to

form their subjective probability of audit, i.e. perceived e¤ort of audit, ", and the ratio

of evaders in the population, x. That is mainly because the primary de�cit is a publicly

available information enabling agents to make a forecast about the stringency of the

government, since any change in the primary de�cit is mainly attributed to �uctuations

in the tax revenues, which can be interpreted as a corresponding change in x. Secondly, it

can be considered as a more straightforward approach than a generic social welfare target,

since it is a measure that is also used in practice in order to assess the e¤ectiveness of

�scal policy and determine necessary changes in policy instruments.

Let D (t) = G (t) � T e (t) denote the primary de�cit at time t, where G is the gov-

ernment spending and T e are the expected tax revenues. Government spending can be

regarded as constant over time, i.e. _G = 0, so that the rate of change of the primary

de�cit is fully attributed to the change of the tax revenues.

Notice that, T e implies total net expected tax revenues of the government, since the

e¤ort put into audit is costly for the government. Let c (") be the cost function of e¤ort,

faced by the tax authorities, with properties

c0 > 0 and c00 > 0.
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We also de�ne a function � ("), denoting the ratio of the population to be randomly

drawn and audited per period. Notice that � (") is deterministic as it is the regulator�s

choice, but it resembles to a probability measure, since it constitutes a ratio, and will be

treated as such, with

� (") > 0, �0 (") > 0

� (0) = 0, � ("max) = 1, where "max = 1

�0 (0) > 0 and �0 ("max) ' 0.

For notation simplicity, let � � � (") and �Y � Y � YR.

In order to compute T e, it is wiser to split agents, once again, into evaders and

compliers. Both groups face a probability to be audited equal to �, thus, a ratio � of

the population is indeed audited and the remaining (1� �) remains unaudited. For both

audited and unaudited agents, x of them evade and (1� x) of them comply. The table

below, summarizes the payo¤s for each contingency:

Audited, � Unaudited, (1� �)

Evaders, x tYR + t�Y + �t�Y tYR

Compliers, (1� x) tY tY

Thus, the audited population pays a total of

TA = � [x (tYR + t�Y + �t�Y ) + (1� x) tY ] ,

whereas the unaudited population has a tax collection of

TU = (1� �) [xtYR + (1� x) tY ] .

Therefore, total net expected tax revenues T e, is the sum of audited plus unaudited tax
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collections, net of auditing costs:

T e = TA + TU � c (") =

= � [x (tYR + t�Y + �t�Y ) + (1� x) tY ] + (1� �) [xtYR + (1� x) tY ]� c (") =

= (1� x) tY| {z }
A

+ x

0BB@ tYR|{z}
b1

+ � (1 + �) t�Y| {z }
b2| {z }

1CCA
B

� c (") . (13)

The intuition behind this result is that the government earns a part of the tax revenues

from the complying agents, i.e. the (1� x) share of the population, who fully pay their

tax responsibilities tY , as indicated by part A of (13), and the rest comes from the non-

complying agents, namely, the x share of the population, as in part B of (13). Notice

that all evading agents pay part b1 of B, that is to say, the tax on understated income

tYR, while the remaining b2 part of B is the � share of them that gets caught and is �ned

by the amount (1 + �) t�Y , which consists of the evaded tax t�Y and the penalty on

evaded tax �t�Y . Subtracting the cost of e¤ort c (") from the summation gives the total

net expected tax revenues. Notice that the magnitude of the tax revenues T e can only be

known to the regulator and not the agents, since she is the only one to know the realized

ratio of agents to be audited in the population, �.

3 Regulating Tax Evasion

In a standard optimization setup, the regulator would aim to control for tax evasion

towards a certain goal, with respect to the behavior of agents as described by equation

(9). Lets suppose, at �rst, and setting it as a benchmark case, that the regulator can

perform an unconditional regulation, being able to tamper with the replicator dynamics

equation without having to worry about costs or speci�c goals.
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3.1 A Benchmark Case: Controlling Replicator Dynamics

Imagine that the regulator sees only equation (9), i.e. the replicator dynamics equation,

and is indi¤erent towards other kinds of goals and/or restrictions:

_x = x (1� x) [(1� p ("; x))UNU + p ("; x)UNA � UC ] .

Remember also, that:

UNU = U (� + t�Y ) ,

UNA = U (�� �t�Y ) and

UC = U (�) ,

where � = Y � tY is the true after tax income and �Y = Y � YR is the evaded income.

The regulator�s goal immediately becomes to make the fraction of non-compliers, x,

in the population reach zero and make this point, i.e. x = 0, a stable steady state. With

this being a �rst-best outcome in terms of e¢ ciency of tax regulation, the second-best

outcome would be to somehow drive the system to the lowest nonzero x possible, since

x = 0 is unattainable, and make that one a stable critical point. Notice that in the

benchmark case, e¤ort is costless, hence the regulator can put into as much as is required

in order to attain the desirable result.

The channels through which the regulator can a¤ect the replicator dynamics equation

are the three policy instruments at her disposal, namely the e¤ort ", the tax rate t and

the penalty rate �. We will see what can be achieved in terms of compliance when the

regulator uses each policy instrument, unconditionally and to their full extent, implying

that she uses one instrument at a time while the others remain �xed to a certain value

(ceteris paribus). In order to be able to proceed, we must impose speci�c functional

forms for the von Neumann�Morgenstern utility function describing the preferences of

agents towards risk U (�), as well as the distribution function describing the subjective

probability of audit, p ("; x). Since agents are treated as risk-averse, we choose one of
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the most widely used utility functions exhibiting constant relative risk aversion, i.e. the

isoelastic utility function:

U (w) =
w1�� � 1
1� � ,

with � > 0 measuring the degree of risk aversion. Notice that, when � = 1, using

l�Hôpital�s rule, we obtain that lim
�!1

w1���1
1�� = log (w), as a special case. For all � 6= 1, the

constant term "�1" in the numerator will be omitted, since optimal decisions are not

a¤ected by additive constant terms.

As far as the subjective probability of audit, p ("; x) is concerned, since both " and x

take values in [0; 1], we can use any relationship that satis�es that p ("; x) will also range

between [0; 1]. Examples may include, among others:

1) p ("; x) = "x,

2) p ("; x) = " (1� x) ,

3) p ("; x) = z"+ (1� z)x, with 0 � z � 1,

4) z"+ (1� z) (1� x) , with 0 � z � 1,

In all cases it is realistic to assume a positive relationship between p ("; x) and ", since

higher perceived stringency causes a risk averse taxpayer to believe that the odds of being

audited increase. This statement, though, is not always true as far as the relation between

p ("; x) and x is concerned. Observe that in cases 1) and 3) above, there is a positive

relation between p ("; x) and x which implies that a rise in the perceived ratio of evaders

causes the agent to strengthen her belief that she might get audited, which in turn can

be attributed to the fact that higher x is indeed the case and the tax authorities will

increase e¤ort to compensate for that rise in evasion. On the other hand, in cases 2) and

4) we have the exact opposite logic, implying that a perceived rise in x by the agent leads

her to the conclusion that the tax authorities cannot deal with tax evasion e¢ ciently and

will not be able to do so in the near future as well, which in turn makes her infer that the

probability of audit falls in the sense that it has become overwhelmingly costly for the

government to increase audits. We will be using cases 1) and 2) and see the implications

below. Incorporating the above in the replicator dynamics equation we end up with:
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Case 1):

_x1 = x (1� x)
"
(1� "x) (� + t�Y )

1��

1� � + "x
(�� �t�Y )

1��

1� � � (�)
1��

1� �

#
(14)

Case 2):

_x2 = x (1� x)
"
(1� " (1� x)) (� + t�Y )

1��

1� � + " (1� x) (�� �t�Y )
1��

1� � � (�)
1��

1� �

#
(15)

Note that the dynamical behavior of the special case where U (w) = log (w), i.e. � = 1

is almost identical5 to the general case and that all results hold for both types of utility

functions.

The steady states of the replicator dynamics equations (14) and (15) are the solutions

to _x1 = 0 and _x2 = 0 and include the corner solutions x�1 = 0 and x
�
2 = 1 as well as the

interior xy which satis�es that the bracketed section of each equation is zero. For the �rst

case, i.e. when p ("; x) = "x, and after making substitutions in order to avoid complex

notation while providing a formula that applies to all cases, the interior xy1 is given by:

xy1 =
UNU � UC

" (UNU � UNA)

By analogy, the interior steady state, xy2, for the second case, i.e. when p ("; x) = " (1� x),

is given by:

xy2 = 1�
UNU � UC

" (UNU � UNA)
= 1� xy1

While the fact that xy2 = 1 � xy1 implies a completely inverse trajectory of x
y
2 in

comparison to xy1 they both share something in common. While e¤ort level " and penalty

level � have a seemingly reverse e¤ect on xy1 and x
y
2, because they only appear positively

in the denominator, the tax rate, t, has an ambiguous e¤ect making the interior steady

5The only thing that changes in the case where U (w) = log (w) is that for the second case where
p ("; x) = " (1� x), the interior solution xy2 could be a complex number for some parametric values of
the tax rate t.
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states xy1 and x
y
2 behave very quirky for overly high levels of t. This is mainly attributed

to the fact that as t reaches unsustainable levels (t ! 1), the compliers� utility goes

to zero, since the true after tax income reaches zero (� ! 0) and the evaders gain a

complete advantage, rendering a strategy switch towards evasion perfectly pro�table and

spreading it in the population.

In order to characterize the steady states in terms of stability we need to compute the

derivative with respect to x in each steady state xi, i.e.:

@ _x

@x

����
x=xi

For the �rst case, where p ("; x) = "x, we have that:

@ _x1
@x

��
x=0

= UNU � UC > 0

@ _x1
@x

��
x=1

= UC � UNA � (1� ")UNU 7 0, > 0 as " and/or � rise
@ _x1
@x

��
x=xy1

= (UNU�UC)("UNA�UC+(1�")UNU )
"(UNU�UNA) 7 0, < 0 as " and/or � rise

This shows that as long as e¤ort (or penalty) remains low and close to zero we have a

phase diagram as depicted in Figure 1 (Mon. a), which implies full evasion, and as e¤ort

(or penalty) rises we get a smooth transition to a state as described by Figure 1 (Pol.

b), with a stable interior xy1 which steadily decreases towards zero. Notice that we say

nothing about the behavior of the phase diagram with respect to the tax rate because we

get ambiguous results when it exceeds a speci�c level, which is by no means sustainable

in an economy whatsoever (t > 0:7). Up to that level, the transition is exactly the same

as in " and �, but when it passes beyond this threshold we get an inverse smooth yet

rapid transition back to the initial monomorphic full evasion situation. This is attributed

to the fact mentioned above, i.e. the evasion strategy gains in terms of payo¤s.

Below, Figure 2 depicts frames [1-4] of this smooth transition of the phase diagram as

" (or �) go from 0! 1, ceteris paribus. For the case of the tax rate, as t grows, imagine

moving from frame 1 through 4 as before, but after t reaches the critical threshold the
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transition reverses following the path from frame 4 back to 1 in a more hasty pace.
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For the second case, where p ("; x) = " (1� x), we have that:

@ _x2
@x

��
x=0

= "UNA � UC + (1� ")UNU 7 0, < 0 as " and/or � rise
@ _x2
@x

��
x=1

= UC � UNU < 0

@ _x2
@x

��
x=xy2

= (UNU�UC)(UC�"UNA�(1�")UNU )
"(UNU�UNA) 7 0, > 0 as " and/or � rise

This in turn, shows that as long as e¤ort (or penalty) remains low and close to zero we

have a phase diagram as depicted in Figure 1 (Mon. a), which implies full evasion, and

as e¤ort (or penalty) rises we get a smooth transition to a state as described by Figure

1 (Pol. a), described by an unstable interior xy2 which steadily increases towards one.

Here we get exactly the opposite behavior than in the �rst case. Notice that this result

is counter-intuituve since a rise in " and � leads to higher levels of evasion. This, of

course, is due to the fact that we have assumed that the taxpayers perceive large levels

of evasion, i.e. large x, as a signal that audit chance lowers due to ine¤ective e¤ort, and

thus the system eventually makes evasion grow. Nevertheless, remember that in the (Pol.

a) case of Figure 1, we have an unstable interior steady state xy2, which means that x
y
2

will only hold in the short-run, as a small perturbation of this fragile (unstable) steady

state will lead the economy to either full compliance (x�1 = 0) or full evasion (x�2 = 1).

The regulator would surely want to be able to take advantage of this and lead the system

to full compliance, which, after all, is the �rst-best outcome, but this is as likely as the

full evasion scenario. The response of this case to changes in the policy instruments is

depicted below, in Figure 3, following the same notion as in Figure 2. Moreover, the

phase diagram�s behavior to changes in the tax rate, t, follow the same pattern as in

the �rst case, i.e. increasing tax rate until a certain level causes evasion to grow, as do
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changes in " and � [Frames 1 ! 4, Figure 3], but after that level is surpassed evasion

falls back to zero [Frames 4! 1, Figure 3]; nevertheless this still means full evasion since

Frame 1 describes a stable x�2 = 1 steady state.
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One can easily conclude that the regulator would prefer to have a population of agents

that form a subjective belief of audit similar to the �rst case, i.e. where p ("; x) = "x,

so that accruements in the levels of policy instruments may have a reductional e¤ect

on evasion, rendering every interior xy stable and thus feasible. This means that the

regulator expects that agents view a rise in evasion around them, not as an opportunity

for them to evade as well, but rather as a sign of impending rise in the e¤ort for audit

by the tax authorities. Same results also hold for parameterization with weighted cases

of behavior of agents, e.g. p ("; x) = z"x + (1� z) " (1� x), with 0 � z � 1, depending

on which behavior gets the biggest weight.

3.2 Optimal Regulation of Tax Evasion

We now suppose that the regulator wants to optimally control for the policy instruments

with respect to the behavior of agents as described by the replicator dynamics equation.

We consider only one policy instrument and more speci�cally e¤ort, ", as it generates

tractable results. Recall that the regulator wants to set a goal for the primary de�cit

equation, i.e.

D (x; "; t) = G (t)� T e (x; "; t) .

More speci�cally, we will assume that her objective will be to minimize the square devia-

tions from a target primary de�cit, �D, plus any costs this minimization incurs. Moreover,
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we consider this to be an in�nite horizon problem6, so that it can be rendered autonomous

and the time dimension enters only through the discount term, r.

Consider, where t here denotes time:

min
"

1Z
0

e�rt
�
1

2

�
D (x; ")� �D

�2
+ c (")

�
dt, (16)

subject to the replicator dynamics equation

_x = x (1� x) [(1� p ("; x))UNU + p ("; x)UNA � UC ] . (17)

The current value Hamiltonian for problem (16)-(17) is:

H (x; "; �) = f (x; ") + �g (x; ") . (18)

where

f (x; ") =
1

2

�
D (x; ")� �D

�2
+ c (") ,

g (x; ") = _x = H�,

� is the costate variable.

At this point it is worth noting that we also need to bound both the control variable

as well as the state variable7, i.e. we need:

0 � " � 1 and

0 � x � 1.
(19)

which constitutes another constraint. Thus, the problem becomes to minimize (18),

6See Kamien & Schwartz (1991) and Hirsch et al. (1974)
7Notice that as far as the state variable x is concerned, the boundary values, i.e. x = 0 and x = 1 are

always attained as steady states, for some coresponding levels of �, due to the nature of the replicator
dynamics equation, which involves the term x (1� x).
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subject to (19), i.e.:

min
"
H (x; "; �) = f (x; ") + �g (x; ") ,

subject to 0 � " � 1 and 0 � x � 1. (20)

By appending the constraints for the control and state variables to the objectives with

multipliers w1; w2; �1 and �2, we form the Lagrangian for (20):

L (x; "; �) = f (x; ") + �g (x; ") + w1 (1� ") + w2"+ �1 (1� x) + �2x. (21)

The necessary conditions for a constrained minimum with respect to " satisfy:

L" = f" + �g" � w1 + w2 = 0, (22)

w1 � 0, w1 (1� ") = 0, (23)

w2 � 0, w2" = 0, (24)

_� = r��Hx = r�� (fx + �gx � �1 + �2) , (25)

�1 � 0, �1 (1� x) = 0, (26)

�2 � 0, �2x = 0. (27)

with conditions such as:

1) if "� = 0, then 1� "� > 0, so (23) requires w1 = 0, thus:

from (22), f" + �g" � 0 and f" + �g" + w2 = 0.

2) if "� = 1, then "� > 0, so (24) requires w2 = 0, thus:

from (22),f" + �g" � 0 and f" + �g" � w1 = 0.

3) if 0 � "� � 1, the system reduces to the one in equation (18).
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The logic for the state control conditions is analogue to that of the control variable, i.e.:

1) if x� = 0, then 1� x� > 0, so (26) requires �1 = 0, thus:

from (25), _� = r�� (fx + �gx + �2) .

2) if x� = 1, then x� > 0, so (27) requires �2 = 0, thus:

from (25), _� = r�� (fx + �gx � �1) .

3) if 0 � x� � 1, the system reduces to the one in equation (18).

Since " minimizes (18), we have the �rst and second order necessary conditions:

H" = f" (x; ") + �g" (x; ") = 0, (28)

H"" � 0. (29)

Furthermore,

_� = r��Hx = r�� fx � �gx. (30)

Through (28) we can get the optimal "� 2 (0; 1) for 0 � x � 1, as a function of the state

and costate variables and the other two policy instruments, i.e. the tax rate t and the

penalty rate �, entering as parameters:

"� = E (x; �; t; �) . (31)

For the properties of the control, ", by totally di¤erentiating (28) and (31) we get

that:

dH" = H""d"+H"xdx+ g"d� = 0. (32)

From (32) we have:

d" = �H"x
H""

dx� g"
H""

d�, (33)

while from (31): d" = Exdx+ E�d�, hence from (33):

Ex = �
H"x
H""

, E� = �
g"
H""

. (34)
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Substituting from (31) into (17) and (30), we get the Hamiltonian system:

_x = g (x; "�) ,

_� = r��Hx (x; "�; �) . (35)

A steady state (xs; �s), if it exists, satis�es:

g (x; "�) = 0, (36)

r��Hx (x; "�; �) = 0. (37)

In order to describe the dynamical behavior of the steady states of the form (xs; �s), for

which "� = E (xs; �s; t; �) is the solution of (35), we study the linear di¤erential equation

system that approximates (36) and (37) at xs, �s.

In our setup, we use the following simplifying assumptions in order to obtain analytical

results:

� p ("; x) = "x, since this type of reaction, as shown above, exhibits satisfying dynam-

ical behavior. Note that the case where p ("; x) = z" + (1� z)x, with 0 � z � 1,

also provides tractable results.

� U (w) = log (w), as a special case. This is only done for tractability. The general

case of the isoelastic function also provides tractable but more complex results.

� c (") = c", a linear cost function. The case where c (") = 1
2
c"2 is indisputably a

better choice, but analytical solutions could not be attained.

� � (") = ", which means that the ratio of the population to be audited is proportional

to the e¤ort put into audit. This can be scaled by any constant, including the cost

constant c, or take other plausible forms without a¤ecting the general behavior

of the system. The best � (") formulation would be a sigmoid type as in � (") =

1� exp (�"), but this renders the model unsolvable due to high non-linearity.

28



� �D = 0 without any loss of generality, i.e. setting a balanced budget goal from which

to minimize deviations.

The solution to (18) for the optimal "� is given by:

"� =
(A)(B)� c+ (D)

(A)2
, (38)

where

A = xt (1 + �)�Y � c,

B = G� (1� x) tY � xtYR,

D = �x2 (1� x) (UNU � UNA) .

The intuition behind "� is not so easy to describe, that is why we split it in parts to

which an economic interpretation can be given:

� A, for which it must hold that A 6= 0, denotes the net e¤ective e¤ort revenues, i.e.

bene�t of e¤ort minus cost of e¤ort. Notice that in A, the xt (1 + �)�Y are the

tax revenues from the audited evaders, whereas c is the cost for that audit.

� B is the certain primary de�cit. Certain in the sense that without any auditing at

all, i.e. � (") = 0, the tax revenues would only come from the compliers, namely

(1� x) tY and from the underreporting evaders, i.e. xtYR. Subtracting these two

tax revenues from the social spending G gives us the certain primary de�cit where

no audits occurred.

� D is a little bit more complicated. It can be said to describe the shadow price of

remaining unaudited, measured in terms of a replicator dynamics equation inside

evaders�strategy subpopulation.

Substituting "� from (38) into the Hamiltonian system (35) we can investigate for the

dynamical behavior of the occurring steady states. To do so we must solve for the system
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linearized around the steady state. The linearization matrix around any emerging steady

state (xs; �s), i.e. the Jacobian of the Hamiltonian system, will be of the form:

J(xs;�s) =

8>>>>><>>>>>:

@ _x(x;"�)
@x

���
(xs;�s)

@ _x(x;"�)
@�

���
(xs;�s)

@ _�(x;"�;�)
@x

���
(xs;�s)

@ _�(x;"�;�)
@�

���
(xs;�s)

9>>>>>=>>>>>;
The dynamical behavior of each steady state depends on the properties of the character-

istic roots (eigenvalues) of J(xs;�s), denoted by r1 and r2, for which it holds that:

tr (J) = r1 + r2 and

jAj = r1r2.

3.2.1 Numerical Approximation

Both the Hamiltonian system in (35), and its linearization matrix becomes very compli-

cated to present and practically unintuituve. We give plausible values to all parameters

in order to get an idea on how the system works.

The values used for parameterization attempt to simulate real relative magnitudes of

data, some of which, for calculations facilitation are normalized to unity. This follows

by the logic that the whole problem including the replicator dynamics equation, the

net expected tax revenues equation and the objective function do not take into account

the number of agents in the population, rather than a representative agent or, more

rigorously, her mixed strategy of either to evade or not. Correspondingly, the level of

public spending, G, will have a per-capita sense. Thus, global parameters will include:

Y = 1

YR = 0:9

D = 0

r = 0:02
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Remember that r is the rate of time preference, whereas � is the rate of risk aversion,

if the isoelastic function is used. However, we will use the logarithmic utility case for

� = 18. Tax evasion, if exhibited, is considered to be around 10% of total income in

order to conform with data in petty crimes. Finally, we assume the regulator aims for a

balanced budget, setting D = 0. Before proceeding, it is worth noting that the results

were very sensitive to the values of the cost of e¤ort, c, which acts as a free parameter.

However, it plays a crucial role in the numerical approximation, since it has to be set in a

level that will make the regulation and the e¤ort put in audits worth it, in the sense that

the bene�ts of audits, i.e. the tax revenues, should always surpass the costs it implies.

Since the cost of e¤ort is linear, c (") = c", the constant c can be regarded as a measure

of constant marginal (and average) cost of e¤ort.

1: Benchmark case: G = 0:35, t = 0:1, � = 1, c = 0:014

We set a plausible value G = 0:35, meaning that per-capita public spending is 35% the

individual income, Y = 1. The per-capita public spending rate follows data concerning

most OECD countries. Tax rate is 10% of income, following data on direct taxes as a

percentage of GDP (Commission et al. (2009)), i.e. personal income taxes9. The penalty

is set to 100% which is a typical penalty rate conditional on a 10% income evasion,

without any loss of generality.

Optimization yields:

Steady State Optimal E¤ort Verdict

x�1 = 0 "� = �89:258 constraint active: "� = 0

x�2 = 1 "� = �345:556 constraint active: "� = 0

xy = 0:698 "� = 0:711 accepted

8The reason we stick to the logarithmic utility is that it permits us to make a direct comparison of
the results between the evolutionary and rational case, as shown in the next section. This is due to the
fact that the general form of the isoelastic utility does not produce a closed form solution for YR, which
is an indispensable element in the rational case. However, the logarithmic case does provide a closed
form solution for the rational case and almost identical (both qualitatively and quantitatevely) results
for the evolutionary case.

9In general, GDP per capita is di¤erent than income per capita and should not be used as a proxy.
However, data show that the ratio of income over GDP is very close to unity for the majority of OECD
countries. The mean tax rate as a percentage of GDP is around 9% and since income/GDP is around
0.9 we settled with a corrected tax rate of 10%.
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The interior steady state of xy = 0:698, i.e. 69:8% evasion is attained with an optimal

level of e¤ort of "� = 0:711, showing that a 71:1% of spending towards tax authorities

will be channeled towards audits. Both corner solutions x�1 = 0 and x
�
2 = 1 activate the

constraint on e¤ort level setting it equal to zero, namely no e¤ort will be put in audits

at all when the system settles at the corner states. Remember that the planner�s goal is

to minimize the square deviations from a balanced budget, thus the e¤ort exhibited in

every point is optimal as far as spending is concerned. The intuition is that for both full

evasion and full compliance the regulator understands that the best response is to stop

funding the audit mechanism, since any e¤ort will have no e¤ect on tax revenues nor the

level of evasion, at least local to the critical point attained by the economy.

Stability analysis implies that the steady state in x�1 = 0 behaves locally as an unstable

node and both the steady state in x�2 = 1 and the interior steady state x
y = 0:698 behave

as a saddle path10.

2: G = 0:35, t = 0:11, � = 1, c = 0:014

We change the tax rate to 11% in order to investigate a sensitivity on an increase in

t. The new optimization yields:

Steady State Optimal E¤ort Verdict

x�1 = 0 "� = �88:571 constraint active: "� = 0

x�2 = 1 "� = �187:375 constraint active: "� = 0

xy = 0:635 "� = 0:781 accepted

A slight increase in the tax rate will lead to a fall in the level of evasion, as expected, and

a slight increase in the e¤ort put in audits, which can be attributed to the fact that an

increased tax rate not only induces cost, through the increase of the evaded tax when the

agent is a non-complier, but it also increases the penalty earned by the tax authorities if

the agent is caught. This means that the increased tax rate has an ambiguous e¤ect on

optimal e¤ort through two con�icting channels. The results here imply that the revenues

10As far as the corner solutions are concerned, their dynamical behavior remains the same in similar
parameter sets, i.e. the x�1 = 0 always behaves as an unstable node and the x

�
2 = 1 always behaves as

a saddle point. The interior steady state behaves as a saddle point as well, with some excpeptions, in
which it behaves as an unstable focus. See Appendix A for details.
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from the increased tax rate make the rise in e¤ort worth it in terms of revenues.

The stability properties of the steady states are the same as before.

3: G = 0:35, t = 0:1, � = 1:1, c = 0:014

We have reverted the tax rate back to 10% as in the benchmark case 1: and increased

the penalty from 100% to 110% in order to test for the sensitivity on �.

The results are:

Steady State Optimal E¤ort Verdict

x�1 = 0 "� = �88:571 constraint active: "� = 0

x�2 = 1 "� = �1010 constraint active: "� = 0

xy = 0:665 "� = 0:710 accepted

An increase in the penalty rate leads to a fall in the level of evasion and in the level

of e¤ort put in audits as compared to the benchmark case. Both e¤ects are expected

and intuitively appealing, i.e. an increase in the penalty has no ambiguous e¤ects on

the preferences of the agent. It increases her cost of being or becoming a non-complier,

thus leading to a fall in the level of evasion, and it also allows for a costless readjustment

for the tax authorities, having managed to reduce evasion without changing the level of

e¤ort. This result is attributed by construction to the fact that the penalty rate a¤ects

only the evaders�utility and the revenue is earned only if the agent is an evader and gets

caught.

The stability properties of the steady states still remain the same as in all of the above

cases.

In all three cases, the corner solutions activated the control variable constraints. In

the full compliance case, where x�1 = 0, the optimal e¤ort �uctuated around "
� = �88,

triggering the constraint which set it back to "� = 0. This means that when the system

�nds itself in no evasion environment, the tax authorities need not administer any funds

in order to control for tax evasion, since it is not present at all. The same holds for the

case of full non-compliance, x�2 = 1, triggering again the constraint for "
� = 0. This in

turn means that in a full evasion scenario the tax authorities see that since the whole
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population evades, the optimal policy is to earn the minimum tax revenues since any level

of e¤ort will not be cost e¤ective11. Both an increase in the tax rate and the penalty rate

lowered the ratio of evaders in the population, whereas only the tax rate seems to have

an ambiguous e¤ect on the change of the optimal e¤ort level needed for the attainment of

the interior steady state. Note that, respective reductions in the tax rate and penalty rate

produce the expected converse results, which can be found in more detail in Appendix

A.

4 Rational Case and Comparison

In this section we want to somehow be able to compare the results obtained in our model

with a directly analogous model of the rational case, i.e. where the taxpayer acts as a

rational optimizer. Following this approach imposes some changes in the model making

it follow the methodology of the original articles of Allingham & Sandmo (1972) and

Yitzhaki (1974). In these papers, there is a representative taxpayer who chooses the level

of reported income, YR, that maximizes her expected utility:

EU = (1� p)U (� + t (Y � YR)) + pU (�� t� (Y � YR)) . (39)

Notice that this is exactly the same as in (3), without any need to distinguish the tax-

payers between compliers and non-compliers, since the outcome of the maximization

process itself will characterize the taxpayer. The theoretical properties of this optimiza-

tion process are fully described in the aforementioned articles, thus we shall not go through

them again. However, since in our case we also have a second step, i.e. the optimal reg-

ulation, we hereby provide the alterations that have to be imposed in order to produce

an analogous setting before we proceed with the comparison.

First, it is straightforward that we no longer need an evolutionary context for the

11It is interesting to mention that in if we set a larger parameter value for public spending G, then
for the steady state x�2 = 1, the optimal e¤ort is larger than unity, activating the constraint for "

� = 1 .
This is because, the increased G increases the spread of the primary de�cit, allowing for a more broad
�scal policy through taxation, thus leading the social planner to seek tax revenues even when evasion is
at it�s peak.
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behavior of agents, since we have a rational representative agent, rather than an imitating

one. This implies that we have to withdraw the concept of the ratio of compliers and non-

compliers, i.e. x and (1� x). In turn, this changes the way the expected tax revenues

are formed and by extension the way the optimal regulation works. More speci�cally,

remember that the expected tax revenues in the original model was described by equation

(13):

T e = (1� x) tY + x (tYR + � (1 + �) t�Y )� c (") . (40)

In the rational case, the regulator knows that all agents will have the same reported

income, YR, and thus it all comes down to how much she is able to audit. The level of

audit performed is described by � ("), whereas its cost by c ("). To derive the expected

tax revenues for the rational case we construct a new table, accounting for the fact that

the reported income resulting from the maximization of (39) determines whether the

taxpayer is an evader (YR < Y ) or a complier (YR = Y ):

Audited, � Unaudited, (1� �)

Evader, YR < Y tYR + t�Y + �t�Y tYR

Complier, YR = Y tY tY

Note that, �Y = (Y � YR), � � � (") and p � p ("), with exactly the same properties as

before. The tax revenues are derived by adding the elements of each row:

T e =

8>>>><>>>>:
� (tYR + t�Y + �t�Y ) + (1� �) tYR � c (") for evader

�tY + (1� �) tY � c (") for complier

The tax revenues for the complier case simplify to just T e = tY � c ("), rendering the

case of compliance almost trivial, because the cost of e¤ort c ("), is not a necessary

expenditure for the regulator to make, since everyone fully pays their tax responsibilities.

On the other hand, the tax revenues for any level of reported income below Y , simplify

to T e = tYR + � (t�Y + �t�Y )� c ("), which is the general formula for the tax revenues
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for the rational case.

Second, we need to �nd the optimal level of reported income YR. In order to produce a

closed form solution, we impose the logarithmic utility function, U (w) = log (w), without

any loss of generality. The �rst order condition for a maximum will produce a Y �R such

that:

Y �R = argmax
YR

(EU) .

The closed form solution for Y �R turns out to be:

Y �R (") =
Y [t+ t� � 1 + p (") (1 + t) (1 + �)]

t�
.

It is obvious that Y �R can also be negative for certain parameter values. The conditions

for a positive interior solution are thoroughly described in Allingham & Sandmo (1972),

and will not be covered here.

After having set the framework for the rational case, we can now proceed to the

part of the regulation. The regulator takes Y �R as given and acts as a Stackelberg leader

choosing the optimal level of e¤ort ", that will minimize the square deviation from a

target primary de�cit, as seen before. The major di¤erence relies on the fact that in the

evolutionary case, i.e. when the agents were imitators, the level of reported income YR

was a given and the regulator controlled for the compliance in the population through

the e¤ort put on audits. In the rational case, we have a variable reported income that

changes with e¤ort perceived making all taxpayers acting as one. Therefore, the problem

becomes static and for each level of the �xed instruments, i.e. the tax rate t, and the

penalty rate �, the regulator �nds the optimal e¤ort that will drive the system to a level

of controlled evasion, that is a speci�c level of Y �R.

The objective function for the regulator remains the same as far as the target is

concerned. The only di¤erence is that the problem has become static due to the nature

of the constraints. Note that D (") = G � T e is the primary de�cit, incorporating the
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newly formulated tax revenues as in (40):

"� = argmin
"

�
1

2

�
D (")� �D

�2
+ c (")

�
, subject to Y �R = argmax

YR
(EU) .

The problem is solved by simple substitution of the constraint inside the objective func-

tion. Analytical solution is not attainable, because the e¤ort level appears in c ("). Only

numerical solutions can be obtained given appropriate parameter sets.

In order to be able to make the comparison as direct as possible we impose the same

global parameter values with the benchmark case of the original model:

Y = 1

D = 0

r = 0:02

Notice that now we do not parameterize YR, as it�s value will be a result of optimization

of the taxpayer.

1: Benchmark case: G = 0:35, t = 0:1, � = 1, c = 0:014

In the benchmark case, using the same values as in the benchmark for the evolutionary

case, we get a reported income Y �R = �8 + 18p ("), which of course is a function of the

e¤ort level, ". Solving for the optimal ", we get "� = 0:490 as the real root and two other

complex roots. The level of e¤ort is accepted in terms of intuition since it lies within

[0; 1]. Substituting "� back at Y �R, we get Y
�
R = 0:828, i.e. ceteris paribus, the taxpayers

will report 82:8% of their income and the authorities will channel 49% of the available

resources of the Ministry of Finance towards audits.

2: G = 0:35, t = 0:11, � = 1, c = 0:014

Following the same practice as before, we raise the tax rate by 1 percentage point.

The optimal reported income by the taxpayers, after noticing and adapting to this change

becomes Y �R = �7:09 + 16:181p ("). The real root for optimal ", in turn, becomes "� =

0:490, almost staying at the same level. Substituting it back in the reported income

equation, we get Y �R = 0:839, which is in turn slightly greater than Y
�
R in the benchmark
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case. This means that a rise in the tax rate causes a rise in reported income and a trivial

fall in the e¤ort put in by the tax authorities. In the evolutionary case, this change led

to a higher e¤ort level of the authorities and a smaller ratio of evaders. One can say

that the agents that are allowed to imitate, rather than behave as rational criminals,

show more propensity to comply with the new regime, whereas the regulator is highly

penalized when facing imitators, as shown by the increase in e¤ort in the evolutionary

case counter to the decrease in the rational case.

3: G = 0:35, t = 0:1, � = 1:1, c = 0:014

We set the tax rate back to the benchmark level and inrease the penalty from 100% to

110%. The optimal reported income becomes Y �R = �7:181 + 17:181p ("). The real root

for optimal " becomes "� = 0:466, exhibiting a notable fall. Substituting it back in the

reported income equation, we get Y �R = 0:836, which is greater than the reported income

in the benchmark case. In the evolutionary case, an increase in the penalty caused both

a fall in e¤ort and evasion, con�rming the monotonic e¤ect of a change in the penalty

rate in contrast to the ambiguity of a change in the tax rate.

5 Conclusion and Further Research

In this paper we wanted to merge both classical and contemporary approaches into an

evolutionary game theoretical setting that is characterized by simultaneously incorpo-

rating imitation within agents, an endogenized probability of audit and regulation with

either non-optimizing (myopic) behavior of the regulator, or an optimizing behavior with

respect to the boundedly rational maximizing behavior of imitating agents. The resulting

model was characterized by a highly non-linear structure, which is by de�nition unable

to provide analytical results. Nevertheless, the main results prove to be particularly de-

scriptive as far as the behavior of the agents is concerned. We have seen that if the agents

are imitators and their choices over the two available strategies (evade or comply with

the tax rule) are governed by the replicator dynamics equation, leads to di¤erent types

of dynamics depending on the way the regulator acts. These dynamics lead to either
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monomorphic or polymorphic evasion or compliance in the population of taxpayers, a

fact which the regulator wishes to manipulate by means of the policy instruments at her

disposal, i.e. the tax rate, the penalty rate and the e¤ort put in auditing. We have

seen two ways that the regulator wishes to intervene. The �rst was a direct interference

with the replicator dynamics equation, the results of which were highly dependent on

the form of the subjective probability of audit and led to polymorphic steady states,

whereas the second involved an optimal control of e¤ort put into audit subject to the

constraint that agents are imitators. The optimal control problem led to a more complex

result which if approached numerically behaved in a way that was intuitively appealing,

meaning that the system led us to multiple equilibria, of which the interior steady state,

where a fraction of the population evades was a saddle point. The dynamics of the sys-

tem have shown very intense �ows over the manifolds of each steady state. Nevertheless,

saddle path stability is achieved for both the interior steady state and the state of full

non-compliance.

It is interesting to note when comparing the case of imitating agents with optimizing

agents, that when agents are imitators a proportion of them complies, around 30% in

our benchmark numerical example, while 70% evades. On the other hand when agents

are fully rational in choosing reported income, everybody evades in the corresponding

numerical example. Thus imitating behavior seems to support the idea of polymorphic

behavior regarding compliance and evasion.

Further research and re�nement of the model is necessary, in order to somehow be

able to overcome the high nonlinearity problems. We have yet to cover the part of

the optimal control problem concerning the optimal choice of the tax rate and penalty

level, which exhibited more complex behavior and did not provide analytical solutions.

Further research could also address the case where imitating agents evade by considering

more than one levels of reported income. This will increase the dimensionality of the

replicator dynamics system, but could provide some more insights into a case where we

want to distinguish between large and small tax evasion. Finally another possible area

of extending the model is to study localized interaction regarding the decision to evade
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or not. That is agents imitating their neighbors, where the concept of neighborhood can

be de�ned in terms of geographical or socioeconomic characteristics.
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Appendix A

We present tables for the numerical examples provided in the text along with some

more extreme examples which have interesting implications. Note that the optimal e¤ort

presented in the tables is the e¤ort resulting after the implementation of the constraint

in the control variable.

1: Benchmark case: G = 0:35, t = 0:1, � = 1, c = 0:014

Steady State Optimal E¤ort Eigenvalues Type

x�1 = 0 "� = 0 (0:011; 0:008) Unstable Node

x�2 = 1 "� = 0 (7:710;�7:690) Saddle Path

xy = 0:698 "� = 0:711 (23:122;�23:102) Saddle Path

2a: Tax rate increase: G = 0:35, t = 0:11, � = 1, c = 0:014

Steady State Optimal E¤ort Eigenvalues Type

x�1 = 0 "� = 0 (0:012; 0:007) Unstable Node

x�2 = 1 "� = 0 (4:664;�4:644) Saddle Path

xy = 0:635 "� = 0:781 (138:989;�138:969) Saddle Path

2b: Tax rate decrease: G = 0:35, t = 0:09, � = 1, c = 0:014

Steady State Optimal E¤ort Eigenvalues Type

x�1 = 0 "� = 0 (0:010; 0:009) Unstable Node

x�2 = 1 "� = 0 (16:007;�15:987) Saddle Path

xy = 0:776 "� = 0:641 (0:01 + 31:035i; 0:01� 31:035i) Unstable Focus
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3a: Penalty rate increase: G = 0:35, t = 0:1, � = 1:1, c = 0:014

Steady State Optimal E¤ort Eigenvalues Type

x�1 = 0 "� = 0 (0:011; 0:008) Unstable Node

x�2 = 1 "� = 0 (5:834;�5:814) Saddle Path

xy = 0:665 "� = 0:710 (64:829;�64:809) Saddle Path

3b: Penalty rate decrease: G = 0:35, t = 0:1, � = 0:9, c = 0:014

Steady State Optimal E¤ort Eigenvalues Type

x�1 = 0 "� = 0 (0:011; 0:008) Unstable Node

x�2 = 1 "� = 0 (10:749;�10:729) Saddle Path

xy = 0:735 "� = 0:711 (0:01 + 18:736i; 0:01� 18:736i) Unstable Focus

Extreme cases

We study some cases using extreme changes in parameter values. We �rst present the

benchmark case for the sake of comparison.

1: Benchmark case: G = 0:35, t = 0:1, � = 1, c = 0:014

Steady State Optimal E¤ort Eigenvalues Type

x�1 = 0 "� = 0 (0:011; 0:008) Unstable Node

x�2 = 1 "� = 0 (7:710;�7:690) Saddle Path

xy = 0:698 "� = 0:711 (23:122;�23:102) Saddle Path
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2a: Extreme tax rate increase: G = 0:35, t = 0:3, � = 1, c = 0:014

Steady State Optimal E¤ort Eigenvalues Type

x�1 = 0 "� = 0 (0:041;�0:021) Saddle Path

x�2 = 1 "� = 0 (0:480;�0:460) Saddle Path

xy = 0:233 "� = 1 (1082:57;�1082:55) Saddle Path

A very interesting result since, �rst of all, the optimal e¤ort level of the interior steady

state xy = 0:233 is "� = 2:097, activating the constraint, which renders it equal to unity.

Moreover, the type of all three steady states has changed to saddle paths, which means

that with the social planner can drive the economy to full compliance if speci�c initial

conditions are met.

2b: Extreme tax rate decrease: G = 0:35, t = 0:03, � = 1, c = 0:014

Steady State Optimal E¤ort Eigenvalues Type

x�1 = 0 "� = 0 (0:016; 0:003) Unstable Node

x�2 = 1 "� = 0 (1:625;�1:605) Saddle Path

xy = 0:999 "� = 0:499 (0:01 + 0:178i; 0:01� 0:178i) Unstable Focus

3a: Extreme penalty rate increase: G = 0:35, t = 0:1, � = 3, c = 0:014

Steady State Optimal E¤ort Eigenvalues Type

x�1 = 0 "� = 0 (0:011; 0:008) Unstable

x�2 = 1 "� = 0 (0:512;�0:492) Saddle Path

xy = 0:349 "� = 0:702 (489:602;�489:582) Saddle Path

An extreme increase in the penalty rate causes a serious drop in the evasion level similar

to the one cause by an extreme increase to the tax rate. However, notice that the increase

in the penalty rate keeps the optimal e¤ort level within viable levels, lower than the one

in the benchmark case. Moreover, it renders the interior steady state a saddle point.
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3b: Extreme penalty rate decrease: G = 0:35, t = 0:1, � = 0:05, c = 0:014

Steady State Optimal E¤ort Eigenvalues Type

x�1 = 0 "� = 0 (0:011; 0:008) Unstable Node

x�2 = 1 "� = 0 (14:156;�14:136) Saddle Path

xy = 0:999 "� = 0:952 (0:01 + 0:531i; 0:01� 0:531i) Unstable Focus
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