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Abstract

We study the evolution of compliance of �rms in a setup of taxable emissions.

Firms can either choose to comply with the emissions rule or violate it. Violation is

considered either as a single option or is let to vary between low and high emissions,

inducing a di¤erent level of �ne if the �rm gets caught. The �rms can switch

between strategies according to an evolutionary proportional rule and the conditions

for stability are investigated accounting for two distinct types of probability of

inspection.
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1 Introduction

This work focuses on setting the problem of environmental policy on emissions on an

evolutionary perspective. No matter its form, environmental policy imposes extra costs

on any regulated sector. The �rms of the sector will thus have an incentive to deviate

from the rules set by the regulator and �nd ways to exploit legislation and regulation

mechanisms. Admittedly, the two main instruments used for environmental policy is

taxation on emissions and emissions trading. In the present, we focus on emission taxation

alone, without disregarding the fact that emissions trading should be analyzed as well in

future research. We investigate the behavior of emitting �rms that adapt to the stringency

of inspections and choose the strategy that has above average payo¤according to imitative

dynamics.

Original research on the �eld of environmental policy on emissions has produced many

well known results but has based itself on the fact that there was full compliance, or at

least that full compliance is achieved through certain conditions, e.g. that the cost of com-

pliance is smaller or equal to the marginal expected penalty. A very interesting synopsis

for this can be found in Lappi (2013) where the main �ndings of the relative literature are

exposed. In Lappi (2015), a comparison is drawn between the welfare e¤ects of emissions

trading and emission taxes in the presence of market imperfections. The main �nding is

that given the same enforcement level, emission taxes are superior in terms of social wel-

fare than emissions trading in the presence of non-compliance. Air pollution from mobile

sources and violation issues will draw much attention with the Volkswagen emissions scan-

dal. However, the emissions taxes or permits used for stationary sources of pollution such

as industrial plants, are not considered feasible for mobile sources of pollution. Indica-

tively, in Fullerton &West (2002) it is shown that vehicle-speci�c or mileage-speci�c taxes

prove to be more e¢ cient than �at rates when heterogeneous consumers are introduced.

A great review of monitoring and enforcement e¤ectiveness with empirical evidence can

be found in Gray & Shimshack (2011). Facts show that environmental monitoring can

successfully deter future violations of both targeted and non-targeted �rms, as well as

lead to a reduction in emissions.
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Our work focuses on the choice of the �rm if we assume that �rms adapt over time

choosing strategies that are �ttest in the sense that they have above average expected

pro�t. This can be perceived as a way of imitation, and follows the idea of Schlag (1998)

using the replicator dynamics equation as a proportional rule describing the evolution

of the strategy switch in the whole population of strategies. Firms are allowed to either

choose between two available strategies, i.e. either to comply or not with the emission

standard or between three strategies, by choosing either to comply or to produce low or

high emissions. As far as pollution is concerned, we provide an accumulation equation

that will serve as a competing dynamic for our model. The simultaneous analysis of the

behavior of �rms and pollution accumulation will provide insight about how the system

evolves through time. The evolutionary rest points attained by the system signify the

equilibrium levels of pollution level and emission choice, in which the system can be ex-

pected to arrive at, given the policy instrument set by the regulator and parameter values.

The nature of the steady states may be monomorphic, implying either full compliance

or full non-compliance states, or polymorphic, where compliance and non-compliance

can coexist in equilibrium. The latter case describes a partial compliance steady state

where further regulation adjustments can be made to drive the system to more desirable

compliance levels. This work does not involve optimal control solutions but provides a

simple model for the evolution of emission choice and pollution levels in an evolutionary

framework.

In the �rst section, we propose the model and distinguish between the two cases, i.e.

the two strategy case and the three strategy case. In the second section we brie�y provide

some speci�cations about how the emission rule is set and about the di¤erent formulations

of the subjective probability of audition that are used. The last section provides analytical

solutions and conditions for the polymorphic steady states, their stability properties as

well as policy implications.
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2 The Model

Consider there are N homogeneous risk neutral �rms indexed by i = 1; :::; n, which

produce a homogeneous product q and a negative externality e as emissions, e.g. air

pollution. Without loss of generality, we can assume that one unit of output produces

one unit of emissions. Individual �rm unconstrained pro�ts will be given by

�i = pqi � c (qi; ei) (2.1)

where c (qi; ei) is the cost of the �rm with properties cq > 0, ce < 0, so that each �rm

can reduce own costs by producing less, for the same level of emissions, or by increasing

emissions for the same level of output. The market price p is taken as given by all �rms

in the economic sector.

The bene�t function from emissions for each �rm can be computed by maximizing

individual unconstrained pro�ts in (2.1) with respect to qi (ei) and express them in terms

of emissions, i.e. �i (ei). The bene�t function has the properties �0i (ei) > 0 and �
00
i (ei) <

0.

The emission level is a choice variable for the �rms which determine its type. The

complying type of �rm chooses the emission level ec which is the emission rule imposed

by the government and is regarded both legitimate and environmentally sustainable. The

non-complying �rm, depending on the scenario that we analyze in the following sections,

will always make an emission choice enc that is over and above the compliance level,

rendering the �rm a violator. The characteristics and properties of the complying and

the non-complying emission levels will be analyzed in the next section.

In our context, regulation for ensuring that �rms comply with emission standards is

achieved through an emissions tax and random audits to �rms that induce a proportional

tax-based �ne if a violation is encountered. The expected payo¤ of �rm i in the presence

of an emissions tax and an audit probability will be given by

�i = �i (ei)� �ec � �F� (ei � ec) (2.2)
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where � is the tax rate, F is the �ne rate and � is the subjective probability of audition,

i.e. the likelihood of being audited as perceived by the �rm. Notice that the tax is

imposed on the complying level of emissions denoted by ec since every �rm will choose

to report ec regardless of its type. Firms that do not choose to comply with the rule

will emit more and, as long as they do not get caught, will be more pro�table. In this

non-cooperative equilibrium, the highest non-complying emissions rate at each point in

time will be determined as

eh = argmax
ei
�i, subject to ei � �e

Notice that �e is the upper bound in each �rm�s emissions, due to technology and in-

frastructure limitations.

The individual expected payo¤ function under compliant emissions is determined as

�c = �i (ec)� �ec

= �c � �ec

and the respective expected payo¤ function for the non-complying �rm will be give by

�nc = �i (enc)� �ec � �F� (enc � ec)

= �nc � �ec � �F� (enc � ec)

The accumulation of pollution by the total emissions of �rms is described by the

pollution dynamics equation

_P =
nX
i=1

ei � �P (2.3)

where P is the pollution, _P is the time derivative and � is the pollution depreciation

factor, e.g. due to atmosphere�s self cleansing capabilities.

In this work, we consider two distinct scenarios regarding the available rules for emis-

sions. In the �rst scenario, we restrict �rms to be able to choose only between two possible
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emission strategies fec; ehg, i.e. the �rm can either comply with the emission standard

or violate it, producing the non-cooperative level of emissions. In the second scenario,

the rules available will become three fec; el; ehg, allowing for two levels of violation, i.e.

low emissions violation el, and high emissions violation eh. It is essential that in both

scenarios the following holds as a strict inequality: ec < el < eh.

2.1 First Scenario - 2 Strategies

In the �rst scenario, individual �rms can either choose to comply with the emission

standard by emitting ec and have a payo¤ of �c or choose not to comply with regulation,

emit eh and have a payo¤of �h = �h��ec��F� (eh � ec). In the case of a non-complying

�rm, if audited, the �rm is liable to a �ne, which amounts to a �ne on the evaded tax,

F� (eh � ec). Let the ratio of non-complying �rms in the total population of �rms is

denoted by xnc � x; consequently the rest (1� x) will be the ratio of compliers. The

average payo¤ �ow for the population will then be given by

�� = x�h + (1� x)�c = x (�h � �ec � �F� (eh � ec)) + (1� x) (�c � �ec) (2.4)

We want to investigate the evolution of the two strategies in the population, given that the

�rms are allowed to change between available strategies according to the proportional rule,

as described by the replicator dynamics equation. This means that in every period, each

�rm learns the pro�t and consequently the emissions strategy of another randomly chosen

�rm. There is a probability that the �rm will change its strategy to the strategy of the

opponent �rm, if the rival strategy is more pro�table in terms of payo¤. The greater the

di¤erence between payo¤s, the greater the tendency to make a strategy switch; for more

information see e.g. Hofbauer & Sigmund (1998). The limiting equation that describes

this evolutionary game is called replicator dynamics equation and it is a proportional rule

that can describe imitating processes. Given a large population of �rms the replicator

dynamics equation is given by

_x = x (�h � ��) (2.5)
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The replicator dynamics in (2.5) indicates that the ratio of �rms of the non-complying

type increases in the population of �rms as long as it has above average payo¤ and vice

versa. The greater the di¤erence, the faster the switch, i.e. the non-complying type will

spread faster in the population of strategies. Substituting the average pro�t from (2.4)

into (2.5) the replicator dynamics can be written as

_x = x (1� x) (�h � �F� (eh � ec)� �c) (2.6)

The replicator dynamics in (2.6) is the equivalent equation when there are only two

competing strategies in the population. It describes the evolution of the non-complying

strategy of �rms as a result of a payo¤comparison with its adversary which is the comply-

ing strategy. As long as the expected payo¤of the non-complying strategy is greater than

the payo¤ of the complying strategy, i.e. �h��F� (eh � ec)��c > 0, the non-complying

strategy�s ratio increases in the population and vice versa. Notice that the term �ec has

cancelled out in the process. The pollution dynamics equation is also a¤ected by the

�rm�s choice of emissions in the following way

_P = n [xeh + (1� x) ec]� �P (2.7)

The dynamical system (2.6), (2.7) can be used to analyze the coevolution of emission

choice and pollution stock towards an equilibrium determining the ratio of complying

and non-complying types of �rms and the respective accumulated pollution.

2.2 Second Scenario - 3 Strategies

In the second scenario we consider the case in which each �rm can choose either to comply

with the emission rule ec, or violate by choosing between high or low emissions, i.e. eh or

el respectively. The choice between high and low emissions can be thought as a step to

make the �rm�s strategy vector more realistic. In a real-life scenario, one could think of an

in�nite dimension strategy vector in which each �rm of the sector could choose either to

comply or deviate from the rule following its own emission strategy and therefore output
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control. For result tractability we need to reduce the strategy vector to either binary

choice as in the �rst scenario, or go one step further and increase dimensions by one, as

in the second scenario.

Consider again that each strategy fec; el; ehg has a respective ratio in the population

of strategies fxc; xl; xhg for which it holds that xc + xl + xh = 1. The average pro�t �ow

will now be determined as

�� = xh�h + xl�l + xc�c (2.8)

where �l = �i (el)� �ec � �F� (el � ec) = �l � �ec � �F� (el � ec). The payo¤ functions

of �h and �c remain the same as in the �rst scenario.

The replicator dynamics equations will be of the form

_xh = xh (�h � ��) (2.9)

_xl = xl (�l � ��) (2.10)

_xc = 1� _xh � _xl, since xc = 1� xh � xl (2.11)

After some simple algebraic substitutions the replicator dynamics equations that de-

scribe the evolution of the ratio of high and low emitting �rms are described by

_xh = xh [(1� xh) (�h � �F� (eh � ec)� �c)� xl (�l � �F� (el � ec)� �c)](2.12)

and

_xl = xl [(1� xl) (�l � �F� (el � ec)� �c)� xh (�h � �F� (eh � ec)� �c)] (2.13)

The replicator dynamics equation describing _xc is redundant since it is a linear combina-

tion of (2.12) and (2.13) as shown in equation (2.11).

The existence of three available strategies also a¤ects the pollution dynamics equation,

which in this scenario will be determined as

_P = n [xheh + xlel + xcec]� �P

= n [xheh + xlel + (1� xh � xl)ec]� �P (2.14)
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The dynamical system described by the di¤erential equations (2.12), (2.13) and (2.14)

will be used to describe the coevolution of emission choice and pollution accumulation in

the three strategy scenario.

3 Model Properties

In this section we describe characteristics and properties of the model as far as timing,

and speci�c variables and functional forms are concerned. In this work the regulator has

no authority or direct control over the behavior of �rms besides setting the emission rule,

and thus does not proceed to any kind of regulation after the rule has been announced.

Consequently, the regulator moves �rst setting the rules of the game, namely the emissions

rule ec directly, or indirectly through the tax rate � , and the level of the �ne F .

More speci�cally, the complying emissions rule ec, acts as a standard that has been

set in an exogenous step by the regulator, prior to anything described in the stage game

that follows. The emissions rule can be thought of as a response to the non-cooperative

emission levels eh and el, depending on the scenario. The direct way of enforcement could

be through an in�nite horizon optimal control problem de�ned by a general pollution

control function of the form E�t = Q (Pt). The socially optimum total emission level E
�
t is

computed and under symmetry of �rms, the socially optimal quota for each �rm will be

ec =
E�t
n
. As an alternative, considered the indirect way of enforcement, we can think of

a respective optimal setup in which the regulator chooses an optimal tax � � that will act

as a Pigouvian tax for individual complying �rm in a decentralized setup, as described

ec = argmax
ei

[�i (ei)� � �ei] , for � � = argmax
�
W (Pt)

This means that the complying �rm indirectly chooses ec as a response to optimal taxation

policy, where W (Pt) is again some welfare function for pollution control. The direct and

the indirect levels of compliance need not necessarily be identical, but serve the role of

an emission rule that is publicly announced and known to all �rms.

Both the complying rule ec, and the non-cooperative rules enc = fehg or enc = feh; elg,
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depending on the scenario, are strategies that are being adopted by �rms prior to the

stage game described by the replicator dynamics. It can be thought of as a situation in

which each �rm is hard-wired to follow an emission strategy, with a propensity to change

to another strategy only if the �rm they are randomly matched with in every period of

the stage game has su¢ ciently greater pro�ts.

The subjective probability of audition, �, is the perceived level of regulatory stringency

from the point of view of the �rm. A general form can be de�ned by � (k), where k is a

vector of parameters. If the regulator were to announce a �xed number of inspections per

period, then we have the simplest case of �xed audit probability � (k) = ��, describing a

�xed monitoring e¤ort. On the other hand, in the case of variable monitoring e¤ort, the

vector of parameters k can vary depending on the model. We will consider two distinct

cases of the subjective probability of audition.

In the �rst case, we assume that �rms connect the level of total atmospheric pollution

P , with the likelihood of being audited, i.e. � (k) � � (P ). This could be rationalized

through environmental sustainability goals and pollution control objectives of the author-

ities as expressed by the regulator�s policy measures. Firms could be made aware of total

pollution through public announcements after emission measurements performed by the

respective competent authority and perceive that if say the total environmental pollution

has increased, more e¤ort will be exercised towards inspections, i.e. �0 (P ) > 0.

In the second case, we consider the case in which �rms connect monitoring e¤ort

with the share of violators, i.e. � (k) � � (xnc). The level of violation can be computed

through various techniques such as di¤erence in expected and actual tax revenues or tax

loss, through the loss in sector pro�ts, etc. It can also be approximated by the regulator

using the share of violators detected in the previous period of inspections. A rising share

of violators will lead the regulator and consequently �rms to increase their subjective

belief that they might get inspected in the next period, i.e. �0 (xnc) > 0, where xnc = fxg

or xnc = fxh; xlg, depending on the scenario.

In both cases described above, the subjective probability of audition can be directly

linked with the monitoring e¤ort of the regulator. Assume that the regulator is announc-
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ing measurements of either pollution level, or corruption level respectively, and her goals

and objectives are made clear through public announcements and the social media. In

that sense, one can assume that the subjective probability of audition fully re�ects the

monitoring e¤ort scheme of the regulator. It is obvious that variable monitoring e¤ort

using mixed parameters, such as � (P; x), or other considerations including more state

variables of the model, can also be considered increasing the dimensions of the problem.

The choice made in this work is to present some of the most intuitive yet simple forms

and provide tractable results in later sections.

The following section provides the solution of the model, in which we only make an

assumption about the functional form of the subjective probability of audition. In the

case of � (P ), due to the fact that atmospheric pollution, if measured in some multiple

of tons, can theoretically take any positive value, i.e. P 2 [0;+1), we use � (P ) = P
P+1

,

in order for it to serve as a proper probability function. For the case of � (x), we use

the simple form � (x) = x, since by its construction as a ratio it holds that x 2 [0; 1].

For the second scenario, where xnc = fxh; xlg, we use � (xnc) = xh + xl, which meets the

requirements for a probability function, since xh; xl; xc 2 [0; 1] and xh+ xl = 1� xc � 1 .

4 Model Solution

In this section we solve the model and �nd the steady states for fx; Pg as they evolve

together, starting by the simple case where each �rm has two strategies available, i.e.

e = fec; ehg. We proceed with both the endogenized subjective probability functions

of � (P ) and � (x) to compare results. Next, we solve the model when the �rm has a

three strategy option, i.e. e = fec; el; ehg. The same procedure concerning the subjective

probability is followed, and comparisons are drawn.
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4.1 First Scenario - 2 Strategies

4.1.1 Pollution based inspection probability

The dynamical system describing the model of two available strategies is described by

equations (2.6) and (2.7), rewritten using � (k) � � (P ).

_x = x (1� x) (�h � � (P )F� (eh � ec)� �c) (4.1)

_P = n [xeh + (1� x) ec]� �P (4.2)

The replicator dynamics equation in (4.1) has steady states de�ned by _x = 0 for x�1 = 0,

x�2 = 1, and assuming its existence, a P
� satisfying

P � : �h � � (P �)F� (eh � ec)� �c = 0 (4.3)

For � (P ) = P
P+1

, the pollution level of the isocline _x = 0 is given by

P � =
�c � �h

�h � F� (eh � ec)� �c
(4.4)

For P � to be well-de�ned, it should hold that �h 6= F� (eh � ec)� �c and P � > 0. Since

�c � �h < 0, for the non-negativity property, we need

�c > �h � F� (eh � ec) (4.5)

Notice that P � is also non-zero, since �h > �c: The condition for the non-negativity of

P � is a critical and plausible assumption that resembles to a participation constraint,

suggesting that the expected pro�t of the complying �rm �c, should be greater than

expected pro�t of the non-complying �rm �h � F� (eh � ec), when the probability of

audition is equal to one. In other words, when there is an absolute certainty of inspection,

there should be a clear incentive for the non-complying �rm to switch to the complying

strategy, as the latter o¤ers an unambiguous pro�t advantage.

From the pollution accumulation equation in (4.1), we derive the steady state rela-
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tionship between pollution and the ratio of non-complying �rms, by solving in terms of

P in _P = 0, yielding

P (x) =
n [xeh + (1� x) ec]

�
(4.6)

For x�1 = 0, i.e. in the case of full sector compliance, the total steady state pollution

becomes

P �1 = P (0) =
nec
�

(4.7)

For x�2 = 1, i.e. in the case where all �rm violate, the total steady state pollution becomes

P �2 = P (1) =
neh
�

(4.8)

Notice that pollution in full non-compliance is greater than the pollution level when all

comply, i.e. P (1) > P (0), following eh > ec; a desirable and intuitively necessary result.

The pollution level P � corresponds to an interior level of compliance x�3, that can be

identi�ed by equating (4.4) with (4.6), i.e. P � = P (x), and solving for x � x�3, yielding

x�3 =
1

n

0BBB@� + necec � eh| {z }
(�)

� �F�

�h � F� (eh � ec)� �c| {z }
(�)

1CCCA (4.9)

We need 0 < x�3 < 1, in order for the third level of compliance to be an "interior" and

well-de�ned steady state. More speci�cally, we need the following to hold:

0 < x�3 < 1 (4.10)

0 <
1

n

�
� + nec
ec � eh

� �F�

�h � F� (eh � ec)� �c

�
< 1 (4.11)

0 <

�
� + nec
ec � eh

� �F�

�h � F� (eh � ec)� �c

�
< n (4.12)

For the non-negativity condition, notice that the �rst term in the parenthesis is neg-

ative, since ec � eh < 0, whereas � + nec > 0. This implies that the second part must
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be negative as well, so that their di¤erence can have a chance of yielding positive result.

The second term, however has a positive nominator, �F� > 0 and the denominator is the

participation constraint as in equation (4.5), which is negative.

Moreover, we also need x�3 < 1, and that is achieved when the term in parenthesis is

less than the total number of �rms n, since it constitutes a ratio of the total population.

Solving the double inequality in (4.12), we end up with the following necessary conditions

which ensure that 0 < x�3 < 1, namely

�c > �h � F� (eh � ec) (4.13)

and

� (�h � �c)
eh (��h + F� (eh � ec) + �c)

< n <
� (��h + �c)

ec (�h � F� (eh � ec)� �c)
(4.14)

Notice that the �rst condition (4.13) is again the participation constraint as in (4.5). The

second condition (4.14) is the range of the population of �rms, between which x�3 behaves

as a proper ratio, i.e. 0 < x�3 < 1. Both sides of inequality (4.14) are non-negative if and

only if the �rst condition (4.13) holds.

As we have seen, the level of pollution that corresponds a level of violation of x�3, is

the one given in equation (4.4), rewritten here as P �3 , for notation compatibility:

P �3 = P
� =

�c � �h
�h � F� (eh � ec)� �c

To sum up, the three steady states of the form fx�; P �g are the following

fx�1; P �1 g =
n
0;
nec
�

o
(4.15)

fx�2; P �2 g =
n
1;
neh
�

o
(4.16)

fx�3; P �3 g =

8<:
�
�+nec
ec�eh �

�F�
�h�F�(eh�ec)��c

�
n

;
�c � �h

�h � F� (eh � ec)� �c

9=; (4.17)
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4.1.2 Stability Properties

The stability properties of the steady states described above, will be given by the analysis

of the Jacobian matrix of the system in (4.1) and (4.2). The Jacobian matrix of the system

is given by

J =

264 @ _x
@x

@ _x
@P

@ _P
@x

@ _P
@P

375 =
264 (2x�1)[F�(eh�ec)P�(1+P )(�h��c)]

1+P
� (eh�ec)F�(1�x)x

(1+P )2

n (eh � ec) ��

375
The sign of each element of the Jacobian of the system is as follows

sign (J) =

264 ? � 0

> 0 < 0

375
Notice that the only ambiguity concerns the partial derivative @ _x=@x, whether it is pos-

itive, negative, or zero. All other elements have a �xed sign, or are non-zero under the

assumptions of the model.

Below we compute the Jacobian for each steady state, in order to characterize the

dynamical behavior of each point.

� For the steady state in fx�1; P �1 g, the Jacobian will be

J jfx�1;P �1 g =

264 �h � �c � necF�(eh�ec)
�+nec

0

n (eh � ec) ��

375
with eigenvalues

f�1; �2g =
�
��; � (�h � �c) + nec (�h � F� (eh � ec)� �c)

� + nec

�

The �rst eigenvalue, �1 is always negative. The second eigenvalue, �2 has an am-
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biguous sign. The conditions for its sign are given below

�2 > 0, i¤ n <
� (��h + �c)

ec (�h � F� (eh � ec)� �c)
or �c � �h � F� (eh � ec)

�2 < 0, i¤ n >
� (��h + �c)

ec (�h � F� (eh � ec)� �c)
and �c > �h � F� (eh � ec)

The �rst condition for �2 > 0, is only admissible for n < �(��h+�c)
ec(�h�F�(eh�ec)��c) , ren-

dering the full compliance steady state fx�1; P �1 g a saddle point. The condition for

�2 < 0, is always admissible and renders the full compliance steady state fx�1; P �1 g is

stable. Notice that n > �(��h+�c)
ec(�h�F�(eh�ec)��c) > 0, when the participation constraint in

(4.5) holds, therefore we cannot rule out the case where �2 < 0. It can be easily ver-

i�ed that the discriminant, i.e. tr2
�
J jfx�1;P �1 g

�
�4Det

�
J jfx�1;P �1 g

�
is non-negative,

implying that fx�1; P �1 g is either a saddle path or a stable node, depending on the

sign of �2.

� For the steady state in fx�2; P �2 g, the Jacobian will be

J jfx�2;P �2 g =

264 ��h + �c � nehF�(eh�ec)
�+neh

0

n (eh � ec) ��

375
with eigenvalues

f�1; �2g =
�
��;�� (�h � �c) + neh (�h � F� (eh � ec)� �c)

� + neh

�

While �1 < 0, the second eigenvalue, �2 has an ambiguous sign and the conditions

for its sign are given below

�2 > 0, i¤ n >
� (�h � �c)

eh (��h + F� (eh � ec) + �c)
and �c > �h � F� (eh � ec)

�2 < 0, i¤ n <
� (�h � �c)

eh (��h + F� (eh � ec) + �c)
or �c � �h � F� (eh � ec)
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The �rst condition for �2 > 0 is always admissible and renders the full non-

compliance steady state fx�2; P �2 g a saddle point, whereas the condition for �2 < 0,

which renders the steady state stable, is only admissible for n < �(�h��c)
eh(��h+F�(eh�ec)+�c) .

The latter cannot be ruled out since 0 < n < �(�h��c)
eh(��h+F�(eh�ec)+�c) as long as the

participation constraint in (4.5) holds. It can be easily veri�ed that the discrimi-

nant, i.e. tr2
�
J jfx�2;P �2 g

�
� 4Det

�
J jfx�2;P �2 g

�
is non-negative. Thus, depending on

the sign of �2, fx�2; P �2 g is either a saddle point or a stable node.

� For the possible interior steady state fx�3; P �3 g, the Jacobian will be

J jfx�3;P �3 g =

264 0 [�(�h��c)+nec(�h�F�(eh�ec)��c)][�(�h��c)+neh(�h�F�(eh�ec)��c)]
n2F�(eh�ec)3

n (eh � ec) ��

375
The conditions for the sign of the determinant of J jfx�3;P �3 g are

Det
�
J jfx�3;P �3 g

�
> 0, i¤ �c > �h � F� (eh � ec) ,

and
� (�h � �c)

eh (��h + F� (eh � ec) + �c)
< n <

� (��h + �c)
el (�h � F� (eh � ec)� �c)

.

Det
�
J jfx�3;P �3 g

�
< 0, i¤ �c < �h � F� (eh � ec) ,

or n <
� (�h � �c)

eh (��h + F� (eh � ec) + �c)
,

or n >
� (��h + �c)

el (�h � F� (eh � ec)� �c)
.

The only admissible sign for the determinant of the Jacobian of steady state fx�3; P �3 g

is being positive. For the trace it holds that tr
�
J jfx�3;P �3 g

�
< 0, implying that

there are two real negative eigenvalues and the steady state in fx�3; P �3 g will be

stable. The negative determinant is ruled out because of the fact that the con-

ditions for the number of �rms n would imply that x�3 =2 (0; 1) as described in

(4.14), which is contradictory with the nature of x�3 itself. The sign the discrim-

inant tr2
�
J jfx�3;P �3 g

�
� 4Det

�
J jfx�3;P �3 g

�
is ambiguous, implying that the stable

steady state can either be a node or a focus.
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4.1.3 Violation based inspection probability

We now proceed with the same formulation, as far as strategies are concerned, but using a

probability of audition that is a function of the ratio of non-complying �rms, i.e. � (k) �

� (x). The system of di¤erential equations becomes

_x = x (1� x) (�h � � (x)F� (eh � ec)� �c) (4.18)

_P = n [xeh + (1� x) ec]� �P (4.19)

The steady states of the replicator dynamics equation in (4.18) are the solutions to _x = 0,

namely x�1 = 0, x
�
2 = 1, and a x

�
3 satisfying

x�3 : (�h � � (x�3)F� (eh � ec)� �c) = 0 (4.20)

Using the simplest functional form � (x) = x, we can identify x�3, which will be given

by

x�3 =
�h � �c

F� (eh � ec)
(4.21)

For x�3 in (4.21) to be a proper interior steady state we need 0 < x
�
3 < 1. The necessary

conditions for the double inequality constraint to hold, are

�h > �c,

eh > ec, and

�c > �h � F� (eh � ec) .

The �rst two conditions hold according to the model�s initial assumptions and the third

condition is the participation constraint.

Notice that in this formulation where the subjective probability is not anymore a

function of pollution, the only interdependence of the two di¤erential equations is only

through the existence of x in _P . The pollution steady states are the solutions to _P = 0,
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de�ned by

P � (x) =
n [xeh + (1� x) ec]

�
(4.22)

For x�1 = 0, i.e. in the case of full sector compliance, the steady state pollution becomes

P �1 = P (0) =
nec
�

(4.23)

For x�2 = 1, i.e. in the case where all �rm violate, the steady state pollution becomes

P �2 = P (1) =
neh
�

(4.24)

For x�3 =
�h��c

F�(eh�ec) , i.e. in the case of a polymorphic compliance level, the steady state

pollution is

P �3 =
n (�h + F�ec � �c)

�F�
(4.25)

which is always positive.

Thus, the three steady states are pairs of the form fx�; P �g as follows

fx�1; P �1 g =
n
0;
nec
�

o
(4.26)

fx�2; P �2 g =
n
1;
neh
�

o
(4.27)

fx�3; P �3 g =

�
�h � �c

F� (eh � ec)
;
n (�h + F�ec � �c)

�F�

�
(4.28)

4.1.4 Stability Properties

The Jacobian for the new formulation is the following

J =

264 @ _x
@x

@ _x
@P

@ _P
@x

@ _P
@P

375 =
264 x [F� (3x� 2) (eh � ec) + 2 (��h + �c)] + �h � �c 0

n (eh � ec) ��

375
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The ambiguity of the sign of each element of the Jacobian of the system derives again

only by the element @ _x=@x

sign (J) =

264 ? 0

> 0 < 0

375
Below we compute the Jacobian in every steady state

� For the steady state in fx�1; P �1 g, the Jacobian will be

J jfx�1;P �1 g =

264 �h � �c 0

n (eh � ec) ��

375
with eigenvalues

f�1; �2g = f��; �h � �cg

We can see that �1 < 0 < �2, implying that the steady state in fx�1; P �1 g is a saddle

path.

� For the steady state in fx�2; P �2 g, the Jacobian will be

J jfx�2;P �2 g =

264 ��h + F� (eh � ec) + �c 0

n (eh � ec) ��

375
with eigenvalues

f�1; �2g = f��;��h + F� (eh � ec) + �cg

The �rst eigenvalue is negative, i.e. �1 < 0, while the second eigenvalue, �2 has an

ambiguous sign. The conditions for its sign are given below

�2 > 0, i¤ �c > �h � F� (eh � ec)

�2 < 0, i¤ �c < �h � F� (eh � ec)
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The only admissible condition is for �2 > 0, since it is the participation constraint.

Thus the steady in fx�2; P �2 g is also a saddle path.

� For the polymorphic steady state in fx�3; P �3 g, the Jacobian will be

J jfx�3;P �3 g =

264 (�h��c)(�h�F�(eh�ec)��c)
F�(eh�ec) 0

n (eh � ec) ��

375
with eigenvalues

f�1; �2g =
�
��; (�h � �c) (�h � F� (eh � ec)� �c)

F� (eh � ec)

�

The �rst eigenvalue is negative, i.e. �1 < 0, while the second eigenvalue, �2 has an

ambiguous sign. The conditions for its sign are given below

�2 > 0, i¤ �c < �h � F� (eh � ec)

�2 < 0, i¤ �c > �h � F� (eh � ec)

The only admissible condition is for �2 < 0, since it is the participation con-

straint. Thus, the steady in fx�3; P �3 g is a stable node, since the discriminant

tr
�
J jfx�3;P �3 g]

�2
�4Det

�
J jfx�3;P �3 g

�
is non-negative. Notice thatDet

�
J jfx�3;P �3 g

�
>

0, i¤ �c > �h � F� (eh � ec).

4.1.5 Policy Implications

The di¤erence between the two distinct formulations used for the subjective probability

of audition, is that when it becomes a function of the ratio of non-complying �rms, � (x),

then the replicator dynamics equation is fully decoupled from the pollution level. This

could o¤er an opportunity for the regulator to intervene by manipulating this to her

advantage in order to achieve a speci�c pollution goal. For example, if we assume that

the emission rule has been set indirectly, i.e. through the use of optimal taxation in the
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frame of an in�nite horizon pollution control problem, then the tax rate � � is not a policy

instrument anymore and can be considered to be �xed to the original level that leads

complying �rms to emit ec. The only available policy instrument for the regulator is the

�ne F that can now be used for any adjustments of the system back to any pollution

goal she would set. Suppose that there is a desirable pollution level, denoted by P d,

that needs to be attained due to the fact that the existence of violators has perturbed

the original system from the pollution goal. The regulator could use equation (4.22)

separately from the replicator dynamics in order to �nd the required violators ratio, that

would lead pollution to the desired level, as follows

x� : P d (x) =
n [x�eh + (1� x�) ec]

�
(4.29)

The solution for x� will be

x� =
nec � �P d
n (�eh + ec)

(4.30)

For x� to be well-de�ned we need 0 < x� < 1. Solving the double inequality we end up

with the following condition
nec
�
< P d <

neh
�

Notice that the sides of the inequality are the steady state levels of pollution in the case

of full and no compliance respectively as seen in (4.23) and (4.24), i.e.

P �jx=0 < P d < P �jx=1

This condition is quite intuitive since it states the obvious, i.e. the target pollution has no

need to be below the socially optimum P �jx=0 which is the one if all �rms emit according

to the rule ec, nor above the socially worst case scenario P �jx=1 which is the one if all

�rms violate and emit eh.

Having found the required ratio of violation x�, the regulator can now obtain the

level of �ne that will lead the pollution through the behavior of �rms described by the

replicator dynamics equation to the desirable level. This is done by substituting x� back
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into (4.20) and solving for F � as follows

F � : (�h � � (x�)F �� (eh � ec)� �c) = 0

yielding

F � =
n (�h � �c)
� (�P d � nec)

which will be positive i¤ P d > nec
�
, or equivalently when P �jx=0 < P d a plausible and

necessary requirement, as shown above. This means that unless the sector achieves a

�rst best, i.e. a pollution level where every �rm complies, and pollution level is the least

possible P �jx=0 = nec
�
, the regulator can set a desirable second best target just above

that level and �nd the required �ne level to achieve it.

In the case of a subjective probability as a function of pollution level � (P ), the

regulator cannot proceed with such an intervention due to the nature of the problem.

The pollution level is present in the replicator dynamics equation, and thus the regulator

can only intervene after the system has settled to a steady state. For example if the

system settles in the interior steady state described by

fx�3; P �3 g =

8<:
�
�+nec
ec�eh �

�F�
�h�F�(eh�ec)��c

�
n

;
�c � �h

�h � F� (eh � ec)� �c

9=;
then the regulator can change the level of �ne, in order to drive the system to lower levels.

The �rst order derivatives with respect to the �ne are

@x�3
@F

= � �� (�h � �c)
n (�h � F� (eh � ec)� �c)2

< 0

@P �3
@F

= � � (�h � �c) (eh � ec)
(�h � F� (eh � ec)� �c)2

< 0

Both derivatives can only be negative, with only �c 6= �h � F� (eh � ec) as a necessary

condition, which means that any policy change concerning the �ne rate would move the

system towards the desirable direction.
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4.2 Second Scenario - 3 Strategies

4.2.1 Pollution based inspection probability

The dynamical system describing the model of three available strategies is described by

equations (2.12), (2.13), and (2.14), rewritten using � (k) � � (P )

_xh = xh (1� xh) (�h � � (P )F� (eh � ec)� �c)

�xhxl (�l � � (P )F� (el � ec)� �c) (4.31)

_xl = xl (1� xl) (�l � � (P )F� (el � ec)� �c)

�xlxh (�h � � (P )F� (eh � ec)� �c) (4.32)

_P = n [xheh + xlel + (1� xh � xl)ec]� �P (4.33)

For � (P ) = P
P+1

, the system has six steady states of the form fx�h; x�l ; P �g that are de�ned

as solutions to _xh = _xl = _P = 0 and distinguished according to their type as:

Monomorphic steady states, which imply states described by a mixture of full com-

pliance or full non-compliance in the population

fx�h1; x�l1; P �1 g =
n
0; 0;

nec
�

o
fx�h2; x�l2; P �2 g =

n
0; 1;

nel
�

o
fx�h3; x�l3; P �3 g =

n
1; 0;

neh
�

o

and polymorphic steady states, which imply states of polymorphic compliance or non-

compliance in more than one of the types of �rms

fx�h4; x�l4; P �4 g =

8<:0;
�
�+nec
ec�el �

�F�
�l�F�(el�ec)��c

�
n

;
�c � �l

�l � F� (el � ec)� �c

9=;
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fx�h5; x�l5; P �5 g =

8<:
�
�+nec
ec�eh �

�F�
�h�F�(eh�ec)��c

�
n

; 0;
�c � �h

�h � F� (eh � ec)� �c

9=;
fx�h6; x�l6; P �6 g =

8<:
�
� �+nel
eh�el +

�F�
�l+F�(eh�el)��h

�
n

;

�
�+neh
eh�el �

�F�
�l+F�(eh�el)��h

�
n

;
�h � �l

�l + F� (eh � el)� �h

9=;
Notice that in the polymorphic case, all three steady states describe a situation in which

two of the three emission levels attract a share of the population and one of them is

always left with a zero share. Since by construction it holds that x�c = 1 � x�h � x�l , it

is easy to verify that there will be no steady state where all three shares, x�, will be

non-zero at the same time.1

4.2.2 Stability Properties

In this section we provide the stability properties of the steady states described above.

It is important to note that due to the increased dimensionality of the problem the

Jacobian matrices cannot be presented due to their size. Furthermore, ambiguities arise

concerning some signs of eigenvalues and determinants, therefore we present the general

stability properties and the main conditions for which they hold.

We start with the monomorphic steady states, which bear much resemblance to the

steady states of the two-strategy case. The �rst steady state, fx�h1; x�l1; P �1 g =
�
0; 0; nec

�

	
,

is the best case scenario since we have a state of full compliance, i.e. x�c = 1. The second

steady state, fx�h2; x�l2; P �2 g =
�
0; 1; nel

�

	
, implies that all �rms violate, but choose the low

emissions level, and the third steady state fx�h3; x�l3; P �3 g =
�
1; 0; neh

�

	
, is the worst case

scenario, where all �rms violate and choose the high emissions rule. The eigenvalues of

these three steady states respectively are given below

1It can be easily veri�ed that x�c6 = 0.
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Full Compliance

f�1; �2; �3g =

�
��; � (�h � �c) + nec (�h � F� (eh � ec)� �c)

� + nec
;
� (�l � �c) + nec (�l � F� (el � ec)� �c)

� + nec

�

Low emissions monomorphic rule

f�1; �2; �3g =

�
��; � (�h � �l) + nel (�h � F� (eh � el)� �l)

� + nel
;
�� (�l � �c) + nel (��l + F� (el � ec) + �c)

� + nel

�

High emissions monomorphic rule

f�1; �2; �3g =

�
��; �� (�h � �c) + neh (��h + F� (eh � ec) + �c)

� + neh
;
�� (�h � �l) + neh (��h + F� (eh � el) + �l)

� + neh

�

In all cases, the �rst eigenvalue is always negative, thus there is always a stable sub-

space around these steady states, implying that the saddle path stability cannot be ruled

out. The sign of the rest eigenvalues varies depending mainly on two new participation

constraints and double inequalities concerning the population of �rms n. The participa-

tion constraints are given below

�c > �h � F� (eh � ec) (4.34)

�c > �l � F� (el � ec) (4.35)

�l > �h � F� (eh � el) (4.36)

which imply that there must be an unambiguous motive for a strategy switch, i.e. from

higher to lower emission levels, when inspection is certain. The case of equality must be
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eliminated in order to have hyperbolic steady states. The speci�c signs of each eigenvalue

is beyond the scope of this part, since the conditions for all eigenvalues to be negative are

way too complicated, and require conditions that cannot be supported by intuition alone,

but have to do with the magnitude of the parameters. The only thing worth noting is that

all three steady states that describe monomorphic behavior have real valued eigenvalues

and that at least one is negative, implying a saddle path stability.

As far as the polymorphic steady states are concerned, things get even more com-

plicated, since the eigenvalues contain square roots. Nevertheless, for each steady state

there exists one real-valued eigenvalue the sign of which depends on the relative magni-

tude of the parameters. The real-valued eigenvalues of each polymorphic steady state are

shown below

For the steady state fx�h4; x�l4; P �4 g:

�real =
eh (�l � �c) + el (�c � �h) + ec (�h � �l)

ec � el

For the steady state fx�h5; x�l5; P �5 g:

�real =
eh (�c � �l) + el (�h � �c) + ec (�l � �h)

ec � eh

For the steady state fx�h6; x�l6; P �6 g:

�real =
eh (�c � �l) + el (�h � �c) + ec (�l � �h)

eh � el

The rest eigenvalues for each polymorphic steady state can either be real-valued or

complex, thus the steady states can be one of the following:

� Saddle: if all eigenvalues are real and at least one of them is positive and at least

one is negative.

� Focus-Node: if it has one real eigenvalue and a pair of complex-conjugate eigenval-

ues, and all eigenvalues have real parts of the same sign. The equilibrium will be

stable when the sign is negative.
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� Saddle-Focus: if it has one real eigenvalue with the sign opposite to the sign of the

real part of a pair of complex-conjugate eigenvalues.

4.2.3 Violation based inspection probability

We now proceed with the same formulation, as far as strategies are concerned, but using a

probability of audition that is a function of the ratio of non-complying �rms, i.e. � (k) �

� (x). The system of di¤erential equations becomes

_xh = xh (1� xh) (�h � � (x)F� (eh � ec)� �c)

�xhxl (�l � � (x)F� (el � ec)� �c) (4.37)

_xl = xl (1� xl) (�l � � (x)F� (el � ec)� �c)

�xlxh (�h � � (x)F� (eh � ec)� �c) (4.38)

_P = n [xheh + xlel + (1� xh � xl)ec]� �P (4.39)

We will be using a simple form for the probability of audition, i.e.

� (x) = xh + xl (4.40)

The main advantages of this formulation is that it provides a realistic counterpart of

the two-strategy case and yields tractable results. Due to the nature of this speci�c

formulation, we end up with one less steady state due to simpli�cations. To tackle this,

one can transform the probability to a weighted sum as follows

� (x) = �xh + (1� �)xl

with � 2 [0; 1] and � 6= 1
2
. Then we get all six steady states as in the previous case

of � (P ). Without any loss of generality and intending to keep the model as simple as

28



possible, we will be using the original formulation as in (4.40) and end up with �ve steady

states. The steady states can again be distinguished in monomorphic and polymorphic

as follows:

Monomorphic steady states imply the existence of only one dominant strategy in the

population

fx�h1; x�l1; P �1 g =
n
0; 0;

nec
�

o
fx�h2; x�l2; P �2 g =

n
0; 1;

nel
�

o
fx�h3; x�l3; P �3 g =

n
1; 0;

neh
�

o

Polymorphic steady states imply the existence of more than one strategy shares in

the population

fx�h4; x�l4; P �4 g =

�
0;

�l � �c
F� (el � ec)

;
n (�l + F�ec � �c)

�F�

�
fx�h5; x�l5; P �5 g =

�
�h � �c

F� (eh � ec)
; 0;
n (�h + F�ec � �c)

�F�

�

Notice that the monomorphic steady states are exactly the same as in the previous

probability formulation. The polymorphic steady states imply that when the probability

of audition depends on the shares of violators as a whole, there will be no equilibrium in

which both violating strategies, x�h and x
�
l coexist.

4.2.4 Stability Properties

The eigenvalues of the monomorphic steady states are given below:

Full Compliance

f�1; �2; �3g = f��; �h � �c; �l � �cg

Low emissions monomorphic rule

f�1; �2; �3g = f��;��l + F� (el � ec) + �c; �h � F� (eh � ec)� �lg
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High emissions monomorphic rule

f�1; �2; �3g = f��;��h + F� (eh � ec) + �c;��h + F� (eh � el) + �lg

In all cases the �rst eigenvalue is negative, and the only plausible assumption for all

the rest real-valued eigenvalues is to be positive if the participation constraints (4.34),

(4.35) and (4.36) hold. We have seen these conditions throughout this work, and the

logic remains the same here as well. The case of equality must be eliminated in order

to have hyperbolic steady states. Therefore, all monomorphic steady states behave as

saddle paths.

The eigenvalues of the polymorphic steady states are given below:

For the steady state fx�h4; x�l4; P �4 g:

f�1; �2; �3g =
�
��; (�l � �c) (�l � F� (el � ec)� �c)

F� (el � ec)
;
eh (�l � �c) + el (�c � �h) + ec (�h � �l)

ec � el

�

For the steady state fx�h5; x�l5; P �5 g:

f�1; �2; �3g =
�
��; (�h � �c) (�h � F� (eh � ec)� �c)

F� (eh � ec)
;
eh (�c � �l) + el (�h � �c) + ec (�l � �h)

eh � el

�

In all cases, the �rst eigenvalue is negative. The second one is negative as well, given

that the participation constraints (4.34) and (4.35) hold, and the third eigenvalue has

ambiguous sign depending on the relative magnitude of parameters. Depending on the

sign of the last eigenvalue, we have a stable node if �3 < 0 or a saddle path if �3 > 0 .

4.2.5 Policy Implications

As in the previous section, let us assume that the only available instrument for the

regulator is the �ne rate, F , and that the tax rate has been optimally set at a time

prior to what is described in this work. The setting in which � (k) � � (x) decouples

the replicator dynamics equations from the pollution accumulation equation, o¤ering an

opportunity for intervention. The di¤erence in this setup is that the regulator can no
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longer indirectly compute all desired levels of violation. Notice that the �rst step will be

to solve the pollution accumulation equation when _P = 0, set desired level of pollution

P � = P d and solve for one of the levels of violation, say xl. More speci�cally, we set

equation (4.39) equal to zero and try to indirectly �nd the level of violation x�l that will

lead to the desired pollution level P d as:

x�l : P
d (xl) =

n [xheh + xlel + (1� xh � xl)ec]
�

(4.41)

The solution for x�l will be

x�l (xh) =
nec � �P d + nxh (eh � ec)

n (�el + ec)
(4.42)

For x�l to be well-de�ned we need 0 < x
�
l < 1. Solving the double inequality we end up

with the following condition

n (ec + xh (eh � ec))
�

< P d <
n (el ++xh (eh � ec))

�

Notice that both sides of the inequality are positive.

The regulator can now substitute x�l (xh) back into the replicator dynamics equations

(4.37) and (4.38), rendering them functions of xh and the �ne. Thus, solving the system

of the two equations when _xh = _xl = 0, the regulator can �nd the steady states for

fx�h; F �g. In this way, she can indirectly manipulate two of the three ratios of compliance

and since the third is a linear combination, she can choose the best combination of ratios,

having also set a pollution goal. More speci�cally, the solution to the system after the

substitution yields three steady states.

The �rst steady state:

fx�h1; x�l1; x�c1g =
�
0;
nec � �P d
n (�el + ec)

;
�nel + �P d
n (�el + ec)

�

F �1 =
n (��l + �c)
� (nec � �P d)
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which is a polymorphic steady state where no high violation is present. The conditions

for well-de�ned x�l1 and x
�
c1 and a �ne that is positive are synopsized in the following

nec
�
< P d <

nel
�

or

P �jxc=1 < P
d < P �jxl=1

The condition states that the desired pollution goal is bounded by the levels of pollution

of full compliance and full low violation. Notice that as the pollution goal approaches

to the socially optimum, i.e. P �jxc=1 =
nec
�
, then we arrive at a monomorphic steady

state x�c1 ! 1. The same holds for the case that the regulator chooses a very lax policy,

choosing a high pollution goal. As the goal approaches the level of P �jxl=1 =
nel
�
, which

is the full low violation state, then we arrive close to a situation of a monomorphic steady

state x�l1 ! 1. It is obvious that the regulator will have an incentive to keep the goal as

low as possible to the level of full compliance.

The second steady state:

fx�h2; x�l2; x�c2g =
�
nec � �P d
n (�eh + ec)

; 0;
�neh + �P d
n (�eh + ec)

�

F �2 =
n (��h + �c)
� (nec � �P d)

which is again a polymorphic steady state where no low violation is present. The condi-

tions for well-de�ned x�h2 and x
�
c2 and a �ne that is positive are synopsized in the following

nec
�
< P d <

neh
�

or

P �jxc=1 < P
d < P �jxh=1

The same logic holds here as well, and although it might seem inferior to the �rst steady
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state, due to the fact that it allows for high violation, it is all a matter of policy priori-

tization. After all, the pollution goal is what matters, no matter how contradictory the

results may seem, and as we can see from the inequality, it can approach the level of the

socially optimum P �jxc=1 =
nec
�
. Therefore, in terms of total pollution, this steady state

is equally desirable.

The third and �nal steady state:

fx�h3; x�l3; x�c3g =
�
�nel + �P d
n (eh � el)

;
neh � �P d
n (eh � el)

; 0

�

F �3 =
�h � �l
� (eh � el)

which is again a polymorphic steady state where no compliance is present. The conditions

for well-de�ned x�h3 and x
�
l3 and a �ne that is positive are synopsized in the following

nel
�
< P d <

neh
�

or

P �jxl=1 < P
d < P �jxh=1

This steady state, is unambiguously not desirable, since the lowest desirable pollution

level that it can achieve is greater than the one where all �rms produce low emissions. It

is thus dominated by the previous two and will never be chosen by the regulator.

5 Discussion and further research

In this work we have investigated a simple evolutionary model of compliance of �rms

under the emissions tax regime. All �rms had an incentive to report the least produced

emissions and taxed accordingly. However, they also had the incentive to deviate and

violate by polluting more. Inspections guaranteed that violating �rms are liable to a �ne

based on the taxable emission violation. The �rms could choose between the available

strategies, including compliance and violation with the emission rule, by following the
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strategy that would o¤er the highest expected payo¤. Firms formed beliefs about the

auditing stringency depending on the announced level of pollution or the announced level

of violation. Depending on the case of available strategies and the subjective probability,

we have seen the steady states achieved by the coevolving system of violating �rms and

air pollution. We have seen that in our context, if the �rm expects to be inspected as the

ratio of violators increases, i.e. when the subjective probability of audition is a function

of announced violation rate, the work of the regulator becomes more �exible. In terms

of e¢ ciency, it is a matter of prioritization and parameter values that would shed light

to whether the signal about stringency should be the ratio of non-compliance or the level

of pollution. The same holds for the steady state stability, since all monomorphic steady

states can be achieved depending on initial conditions.

Future research would de�nitely need to address the optimal control problem with

respect to the behavior of �rms described here. In that way, one can use an appropri-

ate objective function that would serve as the goal for the regulation authorities, and

investigate the implications for the policy instruments and as well as which subjective

probability works best. There can also be a generalization on the population of strategies,

using either a discrete number or in�nite dimension replicator dynamics to allow for a

more general and realistic treatment for that subject.
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