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Abstract

In this paper we are concerned with the issue of the existence of
locally uniform Edgeworth expansions for the distributions of para-
meterized random vectors. Our motivation resides on the fact that
this could enable subsequent polynomial asymptotic expansions of
moments. These could be useful for the establishment of asymptotic
properties for estimators based on these moments. We derive suffi-
cient conditions either in the case of stochastic processes exhibiting
weak dependence, or in the case of smooth transformations of such
expansions.
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1 Introduction

In this paper we are concerned with the issue of the approximation of the
distributions of a sequence of random vectors by sequences of Edgeworth
distributions uniformly with respect to a compact valued Euclidean para-
meter. Our motivation resides on the fact that the uniformity could enable
subsequent polynomial asymptotic expansions of analogous moments with
respect to appropriate sequences of the aforementioned parameter (see for
example lemma 2.3 of Arvanitis and Demos [I]). This in turn can facilitate



the extraction of higher order asymptotic properties of estimators that are
defined by the use of such moments. A prominent example is the indirect
estimator defined by Gourieroux et al. [10] (abbreviated as GMR2 estimator
in Arvanitis and Demos [I], definition D.3.) as a minimizer of a criterion
involving the expectation of an auxiliary estimator (see in particular the last
part of the proof of lemma [4.2).

We will hereafter refer to the aforementioned approximation as a locally
uniform Edgeworth expansion of the involved random vectors. We notice
that analogous expansions have been studied by Bhattacharya and Ghosh [3]
(see Theorem 3) in the iid case and Durbin [7] for the case where the random
vectors are of the form of /n times an arithmetic mean.

In what follows we will provide sufficient conditions for the existence of
such an approximation in two cases. The first concerns the one where the
random vectors are of the form of /n times an arithmetic mean, the elements
of which are members of a stochastic process exhibiting weak dependence, in
the spirit of Gotze and Hipp [9]. There, the authors validate the pointwise
(w.r.t. the parameter) formal Edgeworth expansions. We essentially follow
their line of reasoning, whereby by strengthening their conditions we estab-
lish the result ensuring that the relevant remainders are independent of the
parameter. In the second case we assume that a locally uniform Edgeworth
expansion is valid, and given a sequence of smooth transformations for the
random vector at hand, we provide sufficient conditions for an analogous ex-
pansion to exist for the transformed random vector. In this case our line of
reasoning is close to the one in Skovgaard [14], but compared to this paper
we utilize additional conditions concerning the dependence of the transfor-
mations on the parameter. Obviously these can be recursively used for the
establishment of valid locally uniform Edgeworth expansions in composite
cases.

The structure of the paper is as follows. In the next two sections we are
concerned with the aforementioned cases respectively. In the fourth section
we provide a simple example concerning a GARCH model involving estima-
tors for the asymptotic analysis of which we utilize all the previous results.
In the final section we conclude.

2 Valid Locally Uniform Formal Edgeworth Expansions
Under Weak Dependence

In the following we denote with © a compact subset of R? (w.r.t. the usual
topology). The following assumption defines the form of the eligible stochas-



tic processes for the results that follow.

Assumption A.1 Let (g) be a sequence of iid random variables, g : RN x
© — R and h : R? x © — R* be Borel (jointly) measurable functions and
suppose that h has uniformly equicontinuous (w.r.t. ©) first order derivative

w.r.t. (Zj,...,Zj1p-1). Define for j € Z, 0 € ©
Z;  =g(gj_;:1>0,0) (1)
Xj L= h(Z ---;Zj+p—170)

where supgeg E | Dzh (Z;, ..., Zitp-1,0)|| < K for some constant K > 0.

During this section, we occasionally suppress the dependence of Z; and X
on 6 for notational simplicity. Now, let S,, (0) = \/iﬁ Yo (X (0) — EXy (0)),
for r =0,...,s let x,, () be the cumulants of t"'S,, of order r, i.e.

T

d :
Xrm (1) = T log E exp (izt"S,)

=0

Obviously ¥,.,, depend on ¢. Let ¥,  (t) be the formal Edgeworth measure
of S, of order s — 2, s > 3, defined by its characteristic function (I\f,w (t) =

s—2
exp (Xz,s) + Z n‘rﬂﬁm (t), where the functions ﬁm (t), r =1,2,... satisfy
r=1
the formal identity
exp <X2n + Z Ty (ﬂ) = exp (Xp) + Y7 Prn (t)

r=1

and B, the collection of convex Borel set of R*.

Question Given under what conditions

sup sup |P (S, (6) € A) = Wy, (0) (A)] = 0 (%) (2)

0cO AecB.

The next assumption provides sufficient conditions so that the previous ques-
tion is well-posed and has an affirmative answer. It essentially corresponds
to a uniform extension of the analogous conditions (2)-(4) in Gotze and Hipp
[9]. The proof of sufficiency follows naturally the line of proof of Theorem
1.1 of Gotze and Hipp [9], by establishing that due to assumption the
terms appearing in the relevant bounds are independent of 6.



Assumption A.2 Let the following conditions hold:
-M (Existence of Moments)

sup F HX1HSJrl < Beia
0cO

-WD (Weak Dependence) There exist constants K < oo and a > 0 inde-
pendent of 0 such that for m > 1,

Ellg(ej:7>0,0)—g(co,---16m,0,...,0)]| < Kexp(—am)

-SM (Smoothness) There exist « > 0 independent of 0 and r > 0 such
that for arbitrary large fived k > 1 and all n > m > o' and t € R*¥ with
n® > |t > o,

E|E (exp (V-1t' (Xo+ ...+ Xam)) lgj : [§ —m| > 7)| < exp (—a)
The next theorem provides the required result.

Theorem 2.1 If assumptions[A.1 and[A.3 are valid then equation[3 holds.

Auxiliary Lemmas For the proof of the previous theorem we will need the fol-
lowing auxiliary results. First, we denote with D4, _1_p, j+p+1 the o-algebra
generated by (€j1p—1-m, - - -,Ej1p+1) Which is obviously independent of # and
satisfies conditions (2.4) and (2.6) of Gotze and Hipp [8] for any m,n,p due
to the definition of (¢;) in assumption The first auxiliary result is the
uniform extension of Lemma 2.1 of Gotze and Hipp [9)].

Lemma 2.2 Under assumptions[A. 1], [A.F3-M and[A.Z-WD there exist a con-
stant K, independent of 0 and a (for any 0 € ©) Djip_1_m, j+p+1-measurable
random element X7 such that

s
EFl|X, - X <K - 3
2 =1 = e [ ¥

Furthermore under assumptions and[A.4 we have that
inf liminf inf var (¢S, (6)) >0 (4)

e n|ltl=a
Remark R.1 [t is easy to see that equation implies that infyce lim inf,, )\fin 0) >
0 where \)'™ (0) denotes the minimum eigenvalue of var (S, (0)) implying that

they are uniformly positive definite. Suppose the contrary, i.e. there exists
x # 0y for which infycg liminf,, 2’ var (S, (6)) z = 0. Then let z = ﬁ:p and

0=

”ﬁf infyce liminf,, var ('S, (0)) which is impossible due to equation .
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Proof of Lemma (For analytic proof see Arvanitis and Demos [2]) Let
go be the composition of i (-, 0) and g (-, ) such that X; = go (€j4p— : 1 > 0,0).
For m >p—1let

XJI ((9) ‘= 4o (5j+p—17 ce ,€j_m+p_1,0, ce ,Q) .

Define the obviously D;;, 1-m,jip+1-measurable random element X7 (6)

X 0) =01 (|50 < ")

where a,, = exp (%) Further, let B,, be the set of sequences of ¢; such
that

sup ||DZh (Zja R Zj+p—17 0)” S Kam

0co

and
am
sup || Zj1v — 9 (€j1vs - -+ Ejrv—m, 0, ..., )| < Kexp [— —a(m— U)] :
0€6 3

Due to the uniform equicontinuity, assumption [A.T], there exist mg such that
for m > mg and ¢;, j € Z, in By, suppee [|[Dzh|| < K exp (%) on the seg-
ment connecting the Z vectors of the infinite and truncated (at m) sequence
of ¢; for any ¢ € ©. Now,

E HX] _ X;H <2F HXjHS+1 a;ﬂs/(erl) + F HXJ — X]*” 1||Xj||§a3r{(s+1)

since || X;]| > abl Y o X1 < 1%, amt/CHY andP(HX [ >a1/(5+1)) <

E X7 am®™/ G que to Markov’s inequality. Also

E|X; - X:||1

E|X; - X}

Lix, <ty 1, +E || X5 — X5

1 <am 7 L i<atyern Lz,

B, C {(5) : zugHDh (Zj. .. Zjyp-1,0)| > Kam}
€
DU 1 Zesy = 9 (g1 1m0, B)]| > Kamexp(—a(m — p))}

Due to equation and the fact that o > 0 we have that for any m

P ({(g) sup [IDR (X, X ) > Kam}) =0



and that due to assumption [A.2}WD and the inequality of Markov

s+1

1

P(| Ztsp — 9 (€jips - - -+ Ejip—m; 0, ..., 0)|| > Kay, exp (—a (m —p))) < exp (—ap) am° .

Hence
s+1

P (B:) < exp(—ap) am’

and therefore

1
1||Xj||<a},{(s+”1B%L < 2exp (—ap) amn".

E|X; - X;

Finally due to the Mean Value Theorem and the fact that 1H X, [[<al/ GV 1p, =
JII=Am

1 means that 1 1641 = 1
1 || <ant
* * —1
E||X; = X7[| 15, <ty lp, < Cay,

for C* = pC’K2%P (B,,) > 0 and independent of §. Hence

E|X; - X}|| < K™,

1

where Ky = 2F || X;||*"" + 2exp (—ap) + C*an’*' independent of 6.

1 1—exp(—2a)
1—exp(—27) 2 and

g=r+1+ Lia log <Klas+3C’s7aE§ X1 ||S+1>J , where |z | denotes the integral
part of z. Notice that all constants, v, C; , and ¢, are independent of 6. For
n > 2q let D; denote the o-algebra generated by €;, | < jg+p—1, and define

Now let v = % and Cs o =

Aj = 't [E (Su|D;) — E (Sa|Dj-1)].

Writing n = Lg+ N with N < ¢, the following variance decomposition holds:

L
var (£8,) =n 'Y EA?+ E[t' (S, — E(Sulei,1 <n+p—1-N))".

j=1

Since X,,v < jq, are Dj-measurable for any 6 € ©, we obtain

jg—1 n
A=t Y (X E(XF) + Y (B (X|F) — E(X|F))
v=jq—q+1 v=jq
= V+R,.



Define €, 1 = (Epip-1sEvip-2s---»Ergip-1,0,...) for v > Mgq and ¢, =
(€vtpi : 1 > 1). We have that

EI/QA]Z Z E1/2‘/j2 - EI/QR?

and employing Holder’s inequality and the definition of ¢ we get

independent of . On the other hand the inequality x%/2 > 2sin® (z/2) =
1 — cos (x) together with

1
var (Z) = §E(Z — 7V >1—|Eexp(iZ)|

for any r.v. Z and an independent copy, say Z*, as well as condition [A.2FSM
with ||t]| = « we get
2
EVE > 1 —exp(—2a)
which concludes the proof of equation [4] as all bounds are independent of 6.

|
Hence, the following corollary.

Corollary 2.3 Under assumption conditions (2.2)-(2.6) of Gotze and
Hipp [8] hold with constants independent of 6.

Proof of Corollary By assumption conditions (2.2), (2.4), (2.5)
and (2.6) of Gotze and Hipp [§] obviously hold with constants independent
of #. Condition of (2.3) of Gotze and Hipp [8] follows from lemma m

Now we need to show how the uniform versions of conditions (2.2)-(2.6)
of Gotze and Hipp [8] imply intermediate results that lead to the proof of
theorem Again these are uniform extensions of the analogous results in
Gotze and Hipp [8]. We shall employ the following notation. Define

I B Y
(z) = M@[)(Hxnn*ﬁ) otherwise

lll
where ¢ € C* (0, 00) independent of 6, satisfying

(r) = r ifr<i1
1 is increasing
w(r) = 2 ifr>2.



For j = 1,.,nlet Y; = T(X;) and Z; =Y; — E(Z;). Define S;; =
n~ V2 (Zi + ...+ Z) and H, (t) = Eexp (it"S}). Notice that P, ,, Yj, zZ3,
Sy and H,, depend on 6.
Let
E.U = EUexp (it"S:) /H, (t)

and define the cumulant of order p

ke (a] S5, .val St 0 9

-y Gy n) = a—gla—gp B lan (t+€1a,1 + .. +5pap)a

=...=gp=0
where ay, ..., a, € R¥. Write

T Q* T ox 1. T o* T o
ke | @ Syy e S@,é Sr, 008,

>

= Ky (aTS,’;j, bTS;';l) ,

Vv Vv
j—times l—times

the Taylor expansion of In H,, (t) can be written

S

1
InH, (t) = Z —jho (it"S) 4+ Resq (t)  where (5)
r=2
I s T
Repi (t) = a (1 —=n)" ke (it" S dn
"Jo

In what follows c (e) stands for a constant depending on the arguments
within the parentheses.

Lemma 2.4 Under assumption Lemma (3.33) of Gotze and Hipp [§]
holds with constant ¢ independent of 0, i.e. for every t with ||t|]] < ¢*n®, we
have that

D (B (6) = 0 (1))
< c(r K, s, al) (1+ By) (1 n ]\tH?'(S*l)H“') exp (—c (@) ¢]2) n-/2

forc* >0,0<&<1/2 and c(r, K, s,|a|) a constant depending on r, K, s
and |a| but not on 6.

Proof of Lemma (For analytic proof see Arvanitis and Demos [2])
Naturally, we follow closely the proof of Lemma (3.33) of Gotze and Hipp
[§]. From Lemma (3.28) of Gotze and Hipp [§] we have that for 2 <r < s

ko (aTS2, ..., aTS2)| < c(r, K, 5)n~ =226 |ay || .. ||a, |

8



where ¢ depends on r and d but not on 6. Now for ||t|| < ¢*n® we have that

S T Qx*r
DaZM _ D2 for3 <o <s .
7! n-1/2 ||t||37‘a| for |a| <3

1 for s < |a|
r=3 ‘

Now employing equation we get

A = D (Hn (t) — exp [i%])

r=3
Ko (ZtTS;T)

= Z Cayay D™ €XP [Z T] D (exp [Rs41 (1)) — 1),

a1tas=a r=3

where ¢,,q, are combinatorial coefficients. From Lemma (3.20) of Gotze and
Hipp [8] we have that

al
52

Ry (t+ sb)‘ <e(rK) (14 Buya) 0= 7 (10, (07 (1 1)),

e=0

where 0 < e* < 1, ¢(r, K) depends on r and K and for every ¢ satisfying

(n) €*/2
o (t) +exp (—c(a)n/?)
i) = H, 1)

where b € R* with ||b]| < 1 and

o™ (t) :sup{‘EeXp (S}p)ﬂ :p < m,|I] Sr}

<oo, [l <2 (6)

where I such that s+1 < 7 < s+1+1, S = in"1/2{7 3" Z; and 3" extends
over all 1 < j < n such that |j — ji| > mr. Hence we get that

AL < e K (T ) 15 (04 Bupa) 2 exp (=t 1) (14 6, (1))

Now for complex a; € C* with ||[Im a;|| < 7 and Lemma (3.30) of Gotze and
Hipp [8] we have that

‘lio (alTS:L, s afSZ) — Ko (alTSn, vy CLTTSn)} (7)
< e(r)yn TR g ey, for 1< r<sand 0<e™ <1
Hence we have that

exp (i Ko (Ti.!tTS:LT)> = exp [0 (n_(S—l)/Q—‘rs** ||tH)] (@ns () + 7, (t))

r=2

= (I}n,s (t) + RS (t)

9



where

Ry(t) < c(r,K,s)n V2 (14 8,.,) (ths+1 + Ht||3(s_1)) exp (=2 |[Ret|]” + esn?)

Since U, (t) and R, (t) are analytic in ¢, the Cauchy’s inequalities can be
employed to estimate the derivatives DR, (t). Noting that due to assump-
tion |A.2| and remark [R.1 ‘\Tln,s (t)‘ < cexp (—c|Re (t)||2), for some ¢ > 0

independent of 6, ||Im (¢)|| < n and |Re (t)|| < ¢*n®" we get

DRy (1)] < (K ) nm e (1 JPC ) exp (< 1))
for every t € R* with ||t|| < ¢*n®. Hence

D (Ha (1) = .0 1))
< c(r,K,s) (1+ Boyq) <1 + HtH3(S—1)+\al) <1 40, (t)‘“'“) exp (=" [[t][2) n~ D127

Now for 6, (t) in equation |§|7 let T; = n~'/? 22:1 Z;,, for 1 <1 < n for
any sequence j; < j» < ... < j; and define H (1},t) = Eexp (it"T;). Now
equation [5, Lemma (3.20) and Lemma (3.28) of Gotze and Hipp [8] can be
employed together to prove that for 1 <! <n and a = 0:

1 _
H (T}, t) = exp {—éﬁo (t"T7 + =275 |t]° 16,5 <t>)}
where
* € (») 3 .
l = - ) 9 . = 9 Y = = )
0,5 (1)] < Sup{‘<exp( c*n )+H<Tu t)) JH (T, t)’ 1/<3,0<p<m Tl}

where Tl(ﬁ) = in~ Y21 Y"* Z; where Y " extends over all 1 < j <[ such that
|7 — 71| > pm for every j; € I C {1,2,...,1}. Notice that here ¢, ¢* and m are
independent of [, 1 <[ < n. The claim is that

sup {|0,3 (¢)] : It]| <n°} <2 forl=1,2,..,n (8)

provided that n is sufficiently large (depending on s,k,d, 3,,,) but not on
6. For [ = 1 the above inequality holds trivially and the proof follows by
induction as in Gotze and Hipp [8] (see Arvanitis and Demos [2] for analytic
proof, as well). ®

10



Lemma 2.5 Under the assumptions of the previous lemma, (3.3) of Gotze
5—24+68

and Hipp [§] holds with constant ¢ and o (n 2 > independent of 0, i.e. for

f: RY — R such that |f (z)] < M (1+ ||z|®) for every x € R* and M
independent of 6. Then for k > 0

sup
0ce

c (k, s, ﬁs+1) M sup sup/ ‘Do‘ [(Hn (t) — ‘/I\’n,s (t)) K (n_”t) exp (itTen)} ‘ dt
|| <k+1+s9 0€O

Bf(S) - [ fav..

IN

+c (k,s,B,1)supw (g:n ") +o (n—s_§+‘5>
9co
where

5 > 0, g(e)=f(x)/ 1+ z]*),
wlg:in™) = / sup {Jg (z + 1) — g ()] : |ly]| < 0"} ®s,, (da),
Y, = var(S,)

and K is a continuous function with compact support independent of 6.

Proof of Lemma Following the proof in Gotze and Hipp [g], define
S = n~1/2 > 1Y, and letting € > 0, to be defined later, define

A= {supHSnH < ns}, B = {sup S| < ne} :
0co

06
Then employing that (z 4+ y)" < 2" (2™ + y™), n, z, y > 0 we get

sup £ ||Sn — SZHSO
€O

< ¢(s) <supE 15, 1 4c + sup £ HSZHSO 1ge +n* sup P {5, # ST/L}) :
90 0O 0ce

Furthermore, due to equation [7] we have that there exists 0 < § independent
of @, such that

sup E[|S, ]| 1 4¢
9co
< ¢ (s, Bs—i—l) 0 (n7(372+5)/2) + 20" sup P {Sn + S,é} +sup E||S,|I™® 15¢
6O

0cO

11



and consequently,
E||S, - si|”
< c (3, 5s+1) (SUPE HS/Z”SO 1ge +n" sup P {Sn #* Sé}) +o0 (n—(5—2+5)/2) .
€0 0€O

Now Lemma % imply that for arbitrary positive integer r we have that
S

=
SUPyee SUP,, I

< 0o and consequently for € such that

0<E<(s+1)B1—(s—2)/2
-hence, independent of 6-we get that
E||Sy = S| < ¢ (5,801) 0 (077272
This along with the definition of f imply that
B (Sa) = Ef ()| < ¢ (s, Bua) 0 (n~¢272).
Notice that for

e, =0 (n1/2n*85s+1) — 0 (n7(572+6)/2)

which is independent of 6 and

[ reniv.. - [ gav.,

Now from Lemma 11.6 in Bhattacharya and Rao [4], by applying the Sweeting
Smoothing Inequality (Lemma 5 of [I5]) and by noting that this inequality
involves constants that depend solely on the properties of g and therefore are
independent of 6 along with a similar choice of K we get the result. m
We are now ready to prove theorem [2.1}

Proof of Theorem Consider the functions f and g as defined in
lemma [2.5] Then, from lemma [2.4 and lemma[2.5 and for k = (s — 2 + §) /2
we obtain that

‘Ef 5 [ fiv..

sup — 0 (n7(372+5)/2) .

0cO

< ¢ (kys, Bu) supw (g0 O 2O) LM e (s, Bpy) 0 (0 F)
0co

Now for f (z) = 1¢ (x) (1 + ||lz||*®)[] where C' € B¢, and 1¢ () is its indicator
function we have that

sup |l (z+y) — 1o (2)] < 1(80)717;9 (7)

y<n—F

I'Notice that in this case M = 1 and therefore independent of the choice of C.

12



for large enough n (where 0 is the boundary operator and the superscript
™" denotes the analogous enlargement), hence

sup w (g : n—(s—2+5)/2)
0co

= sup [sup {lg (o +9) ~ g (@)] s Iyl < n > s, ()
€ Y

< 300 1 pteseor (0, () =508 [ 1o e (2) @)

and due to remark for 3* the diagonal matrix with elements consisting

of the inverse of infycg lim inf,, {/A™™ (6), due to the fact that O and enlarge-

ment commutes with >*, the linear transformation of a convex set is convex
the we have that the last term is less than or equal to

—(5—2)/2
/1(8(2*0))n_(5—2+5)/2 (x) @ (d.f) = 0 (n ( )/ )

due to Corollary 3.2 of Bhattacharya and Rao [4]. =

2.1 Sufficient Conditions For Smoothness

In this paragraph we provide uniform versions of conditions 2.3.(i)-(iii) of
Gotze and Hipp [9] and prove that they imply assumption [A.2}SM in the
case that X in assumption is represented as

XJ:g(gj_ZZEZ,Q), jGZ (9)

(obviously ¢ in the current representation could be the composition of & (-, )
with ¢ (-,0) in the language of assumption [A.1)). Again the proof of suffi-
ciency traces the arguments in the proof of Lemma 2.3 of Gotze and Hipp
[9], establishing that the analogous bounds can be chosen independent of 6.
Again we employ the auxiliary notation of the aforementioned paper as well
as extend to uniform versions the auxiliary results. Hence, for j € Z and
y € RZ z € R let (y,2)’ be the sequence with coordinates

z, 1=
Yi-1 1> ]

Consider the following assumption.

13



Assumption A.3 Let the following conditions hold:
-EL There exist K < oo, and a > 0, not depending on 6, such that,

S“pZE(‘ ) <o

-CPD (Almost sure continuity of partial derivatives) For j € 7 there
exists G; C R, P(G;) = 1 independent of 0, such that for all xy € G, , 7,
0 > 0 there exists T > 0 independent of 0 satisfying

P yERZ VYV eR, |z —mo| <, Fec 29X exists at the point (y,z) and
>1-n
SUPgeco a%)XJ <(y, x)’ ,9> 650X (<y’x0) ’6)‘ =0

-NDD (Non-degenerate derivatives on a set of positive probability)
For some distinct ly, ...l > 0 independent of 6,

. =~ 0
(}ggdet (Z an v = 1,...,/€) #0

860

on a set of positive P-probability independent of 6.

Notice that assumption [A.3}EL is weaker than the condition 2.3.(i) in
page 2073 of Gotze and Hipp [9]. In fact in our example, although the
aforementioned condition does not hold, assumption [A.3}EL applies. The
required result is the following.

Lemma 2.6 Under equation [9, assumption [A.3 and if ¢; admits a positive
continuous density, then assumption —SM holds for the sequence (X;),
jEeZ.

For its proof, we shall need the following lemma which is the uniform
extension of Lemma 2.2 of Gotze and Hipp [9].

Lemma 2.7 Let O, C R* denote an open ball with radius r and let F :
R x © — R* denote a measurable function that is injective and continuously
differentiable function on O, w.r.t. the first argument for any 6 € ©, such
that for constants n > 0 and M < oo that do not depend on 6 and for all
x €O,

n < ‘detF/ (,0)] <M and HF/ (z,0)|| < M.

where F/ denotes the aforementioned derivative. Let h denote a density on
R* satisfying h(z) > n, © € O,, and fir 6 > 0. Then there exists p < 1
depending only onn, 6, M and r such that for t € R* with ||t > 6,

sup
)

/exp [it"F (x,0)] b (z) dz| < p(k, 8, M,r).

14



Proof of Lemma For this proof, p (e) is a constant depending on the
arguments within the parentheses. Following the proof in Gotze and Hipp
[9] (see Arvanitis and Demos [2] for analytic proof), by a change of variables

and noticing that for x € O we have that infycq % > % we have that

(z,0)
T (Fy " (u)) n
/FQ(OT) exp [it"u] (‘det F/(Fy " (u),0)] a M) du

Ui
< h(x d:z:—/ —du.
/or @) Fyon) M

Fix 1 < j <k and uy, ..., uj_1, Ujt1, ..., up. Then {u; : (ul, wug) € Fy(O,)}

is an interval with endpoints, say, a (6) < b(6) exp [it"u] du]‘ <

\t E Let A( ) = {(Ul, vy Uj—1, Ujy1,y .- ) . Elu] eR: (Ul, ,Uk) € Fg( )}
)i

and since A () is the projection of Fj ((’) ) onto R*~! and F} (O,.) is contained
in a ball of radius Mr, we get that

/ exp [itTu] du
Fy(Or)

Since 1 < j < k was arbitrary, we can find £ > 0 depending on k, n, M and
r only such that for t € R* and ||t|| > &,
1
<= / dx.
2 Jry0n)

/ exp [itTu] du
F9 (Or)

2
< — (2Mr)*!
12

Hence for these t,

‘ / exp [it"F (,0)] h (z) de

< /h(x)d:c—l—/ :c—— d:c—l—— dx
; Or Fy(Or) Fy(Or)
0 P k/2pk
= 1-— d <1—— d— = p(k,n, M,7).
[

We are now ready to prove lemma
Proof of Lemma Following closely the proof in Gotze and Hipp
[9], by assumption [A.3}NDD we can find a number > 0 and a set A of
sequences y € RZ, independent of §, with P (A) > 0 such that for y € A the
partial derivatives a%)X j» J € Z, are defined at y, and

=9
Z—Xj U= 1,...,k>
(jzo dei,

15
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> n.
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Let | B|| = sup {||Bz|| : ||z] < 1} for any k£ x k matrix B and let ¢ (k) denote
a universal constant satisfying

[det By — det By| < e (k) (IB1*™" + 1Bl ) 1By - Bl
for arbitrary k x k matrices B; and Bs. From assumption [A.3EL we get
that

2K

1 —exp(—a) (10)

L) <

It follows that there exists a measurable subset A’ C A , independent of 6,
with P (A/) > 0 and mg > 0 such that for y € A/,

Ui

=9
—X; v=1,.. < ——m——
2 Xy v =1kl < 7o

1)
j=mo+1 by

sup
0cO

k
where C (k, K,a) = 2C (k) (L) . Further estimating the difference

1—exp(—a)
of determinants for all y € A/ we get

det (Z 9 v =1, ,/{:)
€1,

For y € RZ and x = (xy,...,7;) let (y,7) be the sequence, such that for
v=1,..,k, x, is inserted at place [, and all other places are filled with the
components of y :

B zj, ifje{l, ...k},
(y,2); = { Yj—i, ifi=1,.. kandl,_1 <j<li.

<30

< (11)

sup
0cO

Here Iy = —o0 and [, = +o00. For z € R let
A(x)={yeR”: (y,z) € A}.

Since P (A) > 0, we can find (¥ € G, x ... x Gy, such that P (A (z(¥)) > 0.
Assumption CPD implies that for § > 0 there exists a small ball B C R¥
containing #(® and a set A’/ c A/ with P (A/ / ) > 0 such that for y € A//
and x € B and for v = 1,...,k and j = 0, ..., my, B X exists at (y,x) for
all 0 € © and

a 0
5 X ((19).0) = 52, ((0).0) | <

sup
fcO




Choosing appropriately small §, we obtain (estimating the change of deter-
minants) from this and equation , r€Bandyec A/,

det (ZO %Xj ((y,x),0):v=1, ,k)

j=0 "t

inf
0o

> 1
=2

This implies that for m > mg and € B, y € A’/ we have by equation
again estimating the change of determinants

. NG,

ég(g det (Z ng (y,z),0):v=1,..., k:)

>

>3

1

By lemma[2.7] we get that for § > 0 there exists p < 1 depending only on 0,
and B (not on m and ) such that for m > mg and all y € A// and ||t|| > 6,

sup
C)

k
/ exp [it" (Xo+ ... + Xi)] Hh (e1,) degy...dey, | < p(6,m,b)
B

r=1

where b is the radius of the ball B. Now the left-hand side is an upper bound
for
|E (exp [itT (Xo+ ...+ Xm)} lej |7 —m| > r)!
where 7 = max (y, ..., [x). This implies
E|E (exp [it" (Xo+ ... + Xo)] lej : [j —m| >7)| <1-P (A//)+pP (A//) ,

which proves the lemma. m

3 Sequences of Smooth Transformations of Valid Locally
Uniform Edgeworth Expansions

We are now considering the question of whether appropriately smooth trans-
formations of sequences of random elements, with distributions that admit
locally uniform Edgeworth expansions as the one described in equation
admit analogous expansions. In this section we follow the line of reasoning
of Skovgaard [14]. We suppose that (S, (¢)),, is a sequence of random ele-
ments not necessarily of the form described immediately after assumption
Furthermore the distribution of S, (¢) admits a locally uniform Edge-
worth expansion of order s — 2, i.e. there exists some 0y and £ > 0 for which
equation [2] holds for all § € O (6, ¢), where O (6y,¢) denotes an open ball
with centre 0, and radius ¢, with ¥, ,(f) an Edgeworth distribution (not
necessarily the formal one)ﬂ

2For the definition of the general form of an Edgeworth distribution see equations (3.7)
and (3.8) of Magdalinos [11].
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Question Let f, : R? — RP. Find sufficient conditions for the validity of

sup sup [P (£,(5, (6)) € 4) = W3, (6) ()] =0 (0= %) (12)

where W7 () is an Edgeworth distribution of order s —2 (s > 3) on R? and
B is the collections of the convex Borel subsets of RP.

In section 4 we will utilize the forthcoming answer to this in order to
establish locally uniform Edgeworth expansions of statistical functions of
interest. We first make the following assumption.

Assumption A.4 Let the following conditions hold:
; xitt i
-POL f, (z,0) = S0-7 % where A;, 1 © x RY™ — RP 4s (i 4 1)-

linear V0 € ©, 2' = | z,....z |, Ao, (0) = Ay (#), rank Ay (6) = p VO € O,
A;, equicontinuous on ©, Vaitl,

-EEQ The i polynomial, say, m; (2,0) of U, . (0) is equicontinuous on ©
VzeRY fori=1,...,8s—2, and if ¥ (0) denotes the variance matriz in the
density of U,, s (0) then it is continuous on © and positive definite.

Remark R.2 Obviously assumption [A.J-POL implies that p < q while if
U, s (0) is the formal Edgeworth distribution the required equicontinuity in
[A4-EEQ would follow from the continuity of E (K; (S, (0))) on © fori =
1,...,5s+1 and K; any i-linear real function on R , while lemma equa-
tion [4) provides sufficient conditions for the validity of the eigenvalue con-
dition in [A.FEEQ. Furthermore continuity and compactness imply that
infgee Amin (Ao (0)) ,infgece Amin (X (0)) > 0 where Apin (+) denotes the small-
est absolute eigenvalue.

The following theorem provides the first result of this section.
Theorem 3.1 Under assumption[A.4] there exist an Edgeworth distribution

Wy, (0) for which equatz’on 18 valid, with polynomials that satz’snyEQ.
Furthermore, if K is a m-linear real function on RP then

sup

0O | JRp Ra

K@) a0, 0) - [ K (G @)t 0)] =0 ()

In order to prove the theorem we will utilize the following auxiliary results.

18



Lemma AL.1 Suppose that S,, admits an Edgeworth expansion of order s —
2. Then for anyi < j:1,...q, pr,; (Sn) = (Sni?SnH—l’ .. .,Snj), admits an
analogous expansion of the same order.

Proof. The density of ¥,, ; (#) is of the form (1 + ZZ_ p ;i (z, 0)) Psy0) (T)-

For A a convex Borel set in R~“tlwe have

P (prm (Sn(0)) € A) = P (Sn (0) € pr<_-1 (A))

- /RX...XAX‘..R (1 " Zl_ nz ) Px) \ T ( )d.l" +o0 (n_%>
B /A (1 " ij nl i (v, 9)> iy pdv +o (n*%)

where v = pr;;(z), v = (v,v*), I = (0,1dj_i11xj-i11,0), and 7} (v) =
Jga—s i (U,0%,0) @5y (v,0*) dv* and o (n’%> is independent of A and 6.
n

Lemma AL.2 Suppose that S, (0) admits a locally uniform Edgeworth ex-
pansion of order s — 2 for which assumption [A.4FEEQ holds. Then there
ezists a constant C' independent of 6 such that

sup P (15, (0)] > C1en) = o (n°7)

_ =1 _ 7. 1/2
Proof. Let C carra [T 2@ H, (C) {x eR?: [jz]| > Cln n}
Then
1/2 o s—2 1 %
PIsu@l > ) = [ (14 30 s 006)) s o) oo (7

where the last term on the right is independent of . Now

/Hn(C) (1 - ZS fim (z, 9)> Ps(o) () dzx

1= nz

s—2 1 1
S ey (U sl (572 0)2.0) Jexp (= 1417
< / (1 —f—ZS QLSup}ﬂ'z (21/2 (0) zﬂ)‘) exp (_% ||Z||2> dz

=l n2 geo
Assumption |A.4 EEEQ see also the last part of [R.2)) implies that
Supgeo |mi (B2 (0) 2,0) | < 2'71 ¢; ||z||" for some finite m and ¢; i = 1,...,m

independent of §. The result follows from equation (A.8) in the proof of
Lemma 2 in Magdalinos [11]. m
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Lemma AL.3 Let f, be as in assumption[A.J-POL and p = q. Then there
i Cci+1
exists a function h, : © X R? — R? of the form hy, (z,0) = 3572 BinO)(a™)

1=0 nt/2
where the B;, (0) have the same properties with A;, (0), h, (fn (-,0),0) =
idge (*) + M, (-, 0) where M, (z,0) is polynomial in x of finite degree VY0 € O,

and supyeg || M, (x,0)]| = o (n%?) Vo € RP.

s—1

Proof: Let us call M, (z,0) = n'% M (z,0) + RS (z,0) for s > 3.
Proceed inductively. Let s = 3, and therefore

fn(x,0) = Ao (0) z + #Aln (0) (%) = Ag () = + #Aln (0) (fﬁ)

T

Then

1
nl/2

1

i B () @

ho (fo (2,6).6) = Boy(6) (Ao (9)x+#141n (9) (962))

hy (2,60) = By (0) x + By, (0) (z*) = By (0) = +

and

2 20 (o) + 500 (h )]

Hence
By (6) = A5 (0)
0 = o040+ 5.0) (400 ) =
B0 = —m@ a0 () @)
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and

M o) = o) (0 ) s (01,
e - o (1)
and it follows that

by (fo (2,0 ,0) = 2 + ~ MO (2,0) + R® (2, 6)

n

As Aj () is bounded away from zero uniformly w.r.t. 8, h, is unique. Then
due to the compactness of © the equicontinuity of A, (f) and the bound-
ness away from zero of Ag(6) uniformly w.r.t. 6 the properties described
in POL hold for Bj, (0) and consequently for h,,, as well. Furthermore,

VAS (x,0), which due to the previous, is clearly a 3¢ —linear polynomial in
LM (2,0) + B (2,0)]| =

SUpgeo || M (z,0)] =0 (n_%) Vo € RP. For s =4 (see Arvanitis and Demos

VO € ©, equicontinuous on ©, Yzt and supy.g

[2] for analytic proof) we proceed in the same spirit and we have that

Fo(2,0) = Ao (0) 7+ #Aln (0) () + #A% (0) ().

Then
1

e (,0) = Bo ()7 + 13 Bu, (6) (%) + - Ba, (0) (+*)
where By (0) and By, (0) as before, and
By, (0) (v*) = =By (0) As, (0) (45" (0) z, Ag™ (0) w, Ayt (0) 2) — M3 (Ag* (0) 2, 0) .

Obviously h,, is unique, as well, due to the boundness away from zero of
Ap (0) uniformly w.r.t. 6. Further, due to the compactness of © the equicon-
tinuity of A; (6) and M} (Ag" (9) z,0), and the boundness away from zero
of Ag (0) uniformly w.r.t. 6 the properties described in [A.4-POL hold for
h,, as well. Furthermore, M (7,0) is, again, clearly a 4" — linear polyno-
M (2,0) + B (2,0)| =

mial in x V0 € ©, equicontinuous and supyceo )

SUpgeg | My (2, 0)|| = 0 (n™!) Vo € RP.

Now, suppose that the result holds for s = k. For s = k£ + 1 choose
By (0) = Ay (0), B, (6) = B, () for i = 1,...,k — 2, where B; (0) is the
i" coefficient of the h,, in the previous step and identify By_;, (6) by

By, (0) (%) = =Axr, (0) (45" (0) 2)") = M (45" (8) 2,0)
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Notice that due to the properties of Ag (#) the solution exists, and it is unique,
and that By_1, (0) is equicontinuous on ©, Vzi*!. Furthermore, M\"™ (x, )
is a composition of By_1, (), B;, (0) and A;, (0) fori =1,....k — 2, and a
(k +1)*" — linear polynomial in z V8 € ©. Hence

o (fo (2,0) ,0) = idgo () + #M}f“ (2,0) + R (2,0),

where RJ (x,0) is a sum of compositions of B;, (f) and A;, (0) for i =
0,...,k—2 and in n with powers — (k + 1) up to —(k+1)/2. Hence RV (z, 6)
is a (k +1)* — linear polynomial in V0 € ©, as well, and

SUPgeco
Ve RP. R

k-1

L M (@,0) + R (o, e)H — Suppee || M (z,8)|| = o (n_T)

Remark R.3 In the notation of the proof of lemmal[AL.9 the previous result
implies that for x € HE (C)

ho (Fu (2,8),0) =2+ 0 (n*)
where the o <n%2> is independent of x and 6.

We are now ready to prove the aforementioned theorem.
Proof of Theorem Assume first without loss of generality that p = ¢,
for if p < ¢, consider

. Ag(0) 0 Sy ;
£ (6,0) = ( W ) DIEACIC

A;, (0) (27)
OQ*P
worth expansion with the prescribed property, then so does f, (.S,) by lemma

It suffices to prove that

sup | P (f (S, (0)) € A) — ¥ (0) (A)] = o <”_552>

0cO

where A} (0) (') = ) If £(S,) admits a valid Edge-

for an arbitrary Borel set A, due to the fact that any Normal distribution
attributes to the boundary of such a set zero measure, hence then [12| would
follow from Theorem 2.11 (and the subsequent Remark) of Bhattacharya and
Rao [4]. Now

P(f,(Sn,0)€A) = P(S,€ f,'(A0))

s—2
Uy (278> —s=2
= 1+ . z)dz+o(n" 2
/frl(A,e) ( 2 ni/? ) G ( )

n i=1
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uniformly over A € Bgr and 6. Then notice that

7T’L 7
/f (1 + Z T ) o) (2) dz
i (2,0) s
= 1+ A © (z)dz+o(n 2>
/fnl(Aﬁ)ﬂH%(C) < Zl ni/? ) =0

where the last term is independent of 6 due to the fact that

i (2,
L+ z)dz
/fn (A G)O'Hn ( Z TLZ/2 ) Z 9) ( )
s—2
|7 (2,0)] L
: iz - 2
< /Hn(C) (1 + Zz:: nil2 Psyp) (2)dz =0 <n )

as in the proof of lemma Now notice that due to [A.4POL and the
compactness of O, if z € f, 1 (A4,0)NHS (C) then f, (z,0) € Aand || f, (2)]| <
C*In'/? n for some C* independent of 6. Hence, substituting for u = f,, (z, 0)

we have that due to remark [R.3| z = h,, (u,0) + o (n’%ﬁ where the last

term does not depend on 6 or z, when z € H¢ (C*). Hence

-2

/fn Ay ( Z >902(9)( )dz

=1

:/ 1+S m( u9+0< ng),Q) K (u, 8) du
ANHg (O

ni/2

1=

1
2 7 (u,0)

. s—2
= 1+ O ® (u)du+0<n_?>
/A A (C°) ( ; ni/2 ) K(9)

here K (6) = Ay (6) V (6) Ay (0 ) G G
where K (6) = Ao (0)V(6) A0 (0). (1) = 00 and e

77 s are obtained by expanding and holding terms of the relevant order. Due
to assumptions [A.4] and the definition of B;, (0) (x't1)s, the s are

equicontinuous in 6 Yu € R?P and the terms in o <n’T> are independent of

6. Finally notice that since by an argument analogous to that of the proof
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of lemma [AL.2
s—2
1+ (u) du
/AmHn(c* ( ; nl/2 ) K(©)

o (2

where the last term is independent of 6, we obtain that

P (fa(50,0) € 4) / (1 T Z 7,/2 ) P (u) du+o (n‘%z)

uniformly over ©. For the second part of the theorem notice that

K (£ (2:0)") (1 > ”;fi;”) ey (2)d=

s—2

= /C(C) ((fa (2,0)) <1+ 1 mriz/z ><Pz(e) (2)dz

n 1=

+/n(o) ((fn(2,0)) <1+Z nl/z )@2(9) (2)d=

Mw
{

o
\/
§
S

QU

<

RP

and again due to an analogous argument as in the proof of lemma[ATL.2] the
fact that K is multilinear and the form of f, in assumption [A.4POL, the

last integral is o (n’%) which is independent of . Now exactly as in the

previous part for u = f,, (z,0)

[IRCACDIE ( Z W) o) () dz

=1

and the result follows exactly as the previous one, by simply noticing that
(some of) the remainders will also depend on K (u™) which is nevertheless
polynomial. m

The final result of this section, is partially a consequence of the previ-
ous theorem, and can be of convenience for the establishment of valid locally
uniform Edgeworth expansions for estimators that asymptotically satisfy suf-
ficiently smooth first order conditions with sufficiently high probability.
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Theorem 3.2 Suppose that:
-POLFOC M, () satisfies Opu1 = 3 1o s Z’“ i (0) <Mn 0) .S, (9)i+1—j)+

R, (0) with probability 1 — o (n_%) independent of 0 where Cyj, : © X

RY™ — RP 4s (i + 1)-linear Y0 € ©, Coo, (A),Cor, () are independent of n
and have rank p V8 € ©, Cy;, are equicontinuous on O, Ya'*,
-LUE S, (0) admits a locally uniform Edgeworth expansion that satisfies as-

sumption [A.JEEQ),
-UAT supyce P <||Mn (0] > C'1n'/? n> =0 (n_%) for some C > 0 inde-
pendent of 0,

-USR supyeg P (|| Rn (8)]| > 7,) = 0 (n’%> for some real sequence vy, =

) (n_%z> independent of 6.
Then M, (6) admits a locally uniform Edgeworth expansion that satisfies as-
sumption [AJ-EEQ.

In order to prove this we need the following result.

Lemma 3.3 Suppose that S, (0) admits a locally uniform Edgeworth expan-
sion that satisfies[A.J-EEQ and that U, () is such that

sup P (U, () = S, () + R, () =1 —o (n—>
0cO

where R, satisfies condition[3.3-USR. Then U, (0) admits the same locally
uniform Edgeworth expansion.

Proof of Lemma Let a = %52%. Notice first that

P (U, (0) € A)

P (U, (0) GA U, (0) =S5,(0)+R,(0)+ P U, (0) #5,(0)+ R, (6))
P (S, (0) + R (0) € A, | R (0)]] < 7,) + P (IR0 (0)]] > 7,) +0 (™)
— P(S,(0)e A— %)+o( *)

where all the remainders in the previous display are independent of . Now,
as S, (0) admits a locally uniform Edgeworth expansion, we have that for an
arbitrary Borel set A

IA A

5—2
i (2,0 a
P(S,(0)e A—~,) = /A ‘ (1—1—2%)@2(9)(2)(1,24—0(71 )
~Yn'lq i=1
5—2

;i (2, )
/(A—vniq)mﬁg(c) ( Z_: ni/2 ) (Z) Z 40 (n )

=1
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where 7, is a ¢ X 1 vector of 1’s, A — v, i, denotes translation by —v,i,, and
the last term is independent of § and A (see also the beginning of the proof
of theorem [3.1) and H¢ (C') was defined in the proof of lemma Now
by a change of variables we have that for large enough n

— Uy <Z7 0)
1+ » Osvey (2) dz
/f‘m(H%(C’)—i-vniq) ( Z ni/? ) ©)
o 7 (2 = 7,ig, 0) .
N 1+ i sy (2 = Vpiq) dz.
/Am(Hg(C)ﬂniq) ( ; ni/2 (©) q

Expanding terms using the mean value theorem, holding terms of the relevant
order due to the fact that [A.4lEEQ we obtain that

Ps(0) (2 = 7iq) = Ps(0) () + TnPs(6) (2 = 7niq) (%%E (0)iq — ilqz_l (0) Z)

, , O (2 — ki, 0)

Ur (Z — Tnlg 9) = Ty (Z7 9) - 7n22 9z 1
om;(z,0)

where 77,7, lie between 0yx1, =3 is also polynomial in z, and there
exists some C* > (' such that

5—2 .
i (2 — Yplg: 0) .
1+ i Osp) (2 = Vpiq) dz
/AO(H%(C)+7n) ( ; ni/2 () q

s—2
v (Zv 9)
= 1+ A Psy0) (2) dz + Ry, (0)
/Am(H%(O)Hn) ( Z n'/? ) =

=1

where
R} (9)
Val | Omi (2 — 771g,0)
< Z/Am e (c )nz/g\/a G Psyp) (2) dz
s—2

1Vl
T / Linl 1 (2.0
,Zl AN(HS (C)4,) M

XPOx(0) (2 — Ynig) dz

ST (0) i — i ST () 2|

q

s—2 2 .
7] ‘ Om; (2 — 77"ig, 0)
ST J one =
izl AN (©)+7,) 17 0z

x|

+ / 1V
AN(HS (C)+7,)

X5y (0) (2 — Ynig) dz

nig 2 (‘9) lqg — ilz_l (9) zH ‘PE(G) (2 = Yniq) dz

il (0)ig— i, 57" (0) 2|

26



which is less than or equal to

s—2

1Vl
ni/2\/a

i=1 /E*AH(H%(E*ICHE*%)
|07 (2(0) 2= £(0) 3300, 0)

5 ‘ ¢ (2)dz
7l
> Dl i, (20) 2.0)]
=1 J =T AN(HG (57| C)+5xy,) T
x ||yri St (0) i — il (6) z|| o (2 — 72 (0) viiy) dz
s—2

+

/ Omi (2 () 2 — X (0) 137ig, 0) H
= s A (12010)+20,) 0z
X |[Vpil S (0) ig — iV (0) 2| (2 — STV (0) viiy) dz
+ [ vl 0)i, - 157 )2
S AN(HG (15¥]1C)+57,)
X (2 — »-Y2(9) Viig) dz

>* the diagonal matrix with elements consisting of the inverse of A\, =
infpeo v/ Amin2 (0) and notice that on H¢ (|| X*|| C) + X*v,,
o (2= S72(0) 7iig)
= @(2)exp (ZE7V2(0)73ig) exp ((v3) 827" (0) dy)

< e e (L (0 (W n) o+ w;;f))

furthermore due to the properties of X (f) and the fact that the m; and
their derivatives are polynomials there exist positive constants independent

of z and ¢ such that [7; (X (0) z,0)] < > 7, ¢ 2|7, ‘ Bm(E(G)z—aX;(O)’y,’;*iq,e) H <
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;1 1Cij <||Z||j + |7n|]> hence we obtain that

IR*( )l

IN

S vl (1 i) e )
+;;23 Lo S 1 S (140
X e}_cp ( f (c (1n1/2 n) 7+ w:f)) o (2)dz
+ZZZ/L*%2 7 (< (1= + b))
<o il + e (£ (€ (wn) 2i + G2)F) ) o (2

q * q * *
b bV Gl e (S (0 () 5+ 0F) ) o ) s

for some large enough C* and each of these terms is o (n_¥> and inde-

pendent of # due to the properties of 7, and equation (A.8) in the proof of
Lemma 2 in Magdalinos [I1] that implies

/71g(0*) 2|7 ¢ (2) dz = K; (1 Y <n_%2>>

for C* large enough and any j. Finally

—2
- Psy o) (2) dz
/An(Hc(mm ( Z /2 ) =0

_ /<1+Zm 7 ) dz+o< %)
where the last term is independent of 6 due to the fact that
—2
- s (2) dz
/Amma( O)4,)° ( 2_1: n - ) )
</ pso) () dz =0 (n7F")
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and the last term is independent of 6, due to the properties of v, and equation
(A.8) in the proof of Lemma 2 in Magdalinos [11]. =

Proof of Theorem [3.2 For analytic proof please see Arvanitis and
Demos [2]. We first show that

A 0) (52 0)) +Qu (0)

with probability 1—o (n’%) independent of § with unique A;, (0) satisfying
assumption [A.4POL and @, () satisfying condition [3.2FUSR. We proceed
inductively. When s = 3, we have that with probability 1 — o (n’?2>

independent of 6 , supycq P (|| Ry, (0)] > v,) =0 (n_%), we have

Opx1 = Coo, (0) (Sn (0)) + Cor,, (0) (M, (0)) + - Cho, (0) (S, (0 %)
+ =30, (0) (M, (0), S, (0)) + = Cha, (0) (M, (0)%) + R, (0) =>

M, (0) = —Cqt (0) Coo,, (0) (Sn (0)) — 2= Cgi", (0) Cho, (0) (S, (6)*)
— A7 Con, (0) Cua, (6) (M (8), 5, (0) = 73 Cn, (6) Cra, (6) (Ma (9)°)
— Cqit (0) R, (0). Substituting out, from the right hand side, M, (6) by
—Cqt (0) Coo,, (0) (S (0)) and collecting terms we get:

My (6) = Ao, (6) (S0 (6)) + —37541, (6) (S0 (6)) + Q8 (6) + R 6)

Where Aon (0) = —007111 (9) Coon (9),

A1, 0) = it 0) Cu, (0 (o O O B ) et 0y, 0

o (0) Ca,, (0) (M, (6)%) >

. Ci (9) Con, (6) (54 (0)), Ci (6) Cro, (6) (S0 (6)°
Cor, (6) Ch “”( 2 ()5, (6)) - Cyi (6) Cra, (6) (M, (6)%) )

) Corl (8) Cin, (6) (M, (6). 5, (6)) + Co (8) Cra, (6) (M, (6)2).
~Co, (6) Cre, ”)( Corl (6) Coo, (9) (S, (0)) () )
e CL'(6) Cro, (6) (Sa (6)?)
ot 7 0) = =5, 000, 0 F (G0 1% G )



Lo Cork (6) Cho, (0) (S (0)7).
~wrCor, (0) Cra, (0) ( Carl () Cun, (0) (M, (0, S, (0)) + Con! (6) Cas,, (0) (M, (0)

. Coit (0) Cha,, (0) (M, (0) S, (0)) + Coit (0) Cha, (0) (M, ()
4G €. 0 Car, (6) Cu, 0) (5. 0))

1 el Cott (0) Cha,, (0) (M, (0) S, (0)) + Cort (8) Cha, (8) (M, ()
G (0) Gz, (6) ( o (6) Cuy. (6) (M, (6) . S, (8)) + Ci (6) Cha (6) (M, (6)

— Ciit (0) Ry, (9).

It is obvious that Ao, (f) and A;, (0) are defined uniquely and have the re-
quired properties due to analogous properties of Cj;, (f). Furthermore due
to the conditions structuring the theorem, lemma [AL.2] and the compactness

of © it is easy to see that there exists a sequence 7/, = o n_%> such that

condition [3.2FUSR holds for 1Q () + RS (6).
Suppose now that M, (0) has the following expansion for s = k

_ 1 i+1 1 (k (k
Mo (0) =3 e 0 (S0 (O)7") + Q% () + R (0).
Then for s = k-+1 we obtain A¢_1y (0) = QF (6’)+2§:0 (—1)7*! Cor- (0) Cii—y;, (0)
Id, 0 0 0 Cor- (0) Coo,, () 0 0 0
wherefio— | O Ty 0| 0 Id, 0 °:
0 o . 0 0 o . 0
0 0 Id, 0 o0 Id,
Cail (6) Co, (0) 0 0 0
—1 :
.., and K = 0 Cor,, (0) Con, (0) 0 ' ,
0 0 0
0 . 0 Cou, (0) Coo, (0)

and, as Coy,, () is full rank, it is unique. Again A1) has the required prop-
erties due to analogous properties of C;;, (#). Furthermore @), is determined
by the o (—2r75) terms of

k—2

=0

Gt )Y =5 Y C () ( (Z A 0) (S, <9>”1)) .S W”)

_00_1}1 (0) Rn (‘9)

(the largest order of which is O (nk—l/z)) and again due to the conditions struc-

turing the theorem, lemma and the compactness of © it is easy to

see that there exists a sequence 7/, = o (nkfgsuch that condition
3.3

USR holds for @, (6). In the light of lemma [3.3| the result would follow
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if S22 —= A, (0) <Sn (Q)iH) admits an analogous Edgeworth expansion.
This in turn follows by theorem which applies due to the properties of

the A;, (0) established previously and due to condition [3.2}LUE. B
We will make repeated use of this result in the following section.

4 Example

In this section we present a simple example that utilizes the previous results in
order to establish the validity of several M-type (mainly GMM and indirect)
estimators in the context of a GARCH (1, 1) model.

Assumption A.5 Consider the set of ergodic and covariance stationary
processes defined by the recursion

y = &l
h]’ = 91 (1 — 92 — 93) + (922’]2_1 + 93) hj,1

where the (¢;) are iid, with Eey = 0, Ee2 = 1, Eleo|*"* < +oo the dis-

tribution of €9 admits a positive continuous density and 0 = (91,02,03)' €

O = [Qw,ﬁw} X [Qa,ﬁa} X [Qﬁ,ﬁﬁ} where URU/NY/F > 0 and for any 0 € O,
2542

E (92 |€0|2 + (93) - < 1.

This assumption implies that F (thrl (6’)) exists and is independent of j
and thereby due to Theorem 3.1 of Bougerol [5] that the recursion defines
almost surely unique stationary and ergodic processes represented by

y? = €20, (1— 60, — 03) (1 +> g (0251 + 93))
r=0

For any 6 € x let X; (0) = ( yjz y;’-t y]?yf-fl y]?yf-f2 ) .

Proposition 1 Under assumptz'on Sy (0) = \/Lﬁ S (X (0) — EXq(9))
admits a locally uniform Edgeworth expansion of order s — 2 over O, with
U, s (0) the formal Edgeworth distribution. Moreover the polynomials of the

density of U, (0) satisfy assumption [A.4EEQ.

Proof: The logic of this proof is to establish condition and ap-
ply theorem For the establishment of assumption [A.2}SM we employ
lemma [2.6] First notice that a dominated convergence argument along with
the condition F (92 \50]2 + 93)2S+2 < 1 and the monotonicity of A w.r.t. 6
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in , imply that E (y;” (0)) exists and is continuous on © for any m =

1,...,4s + 4. Therefore supy., F || X, (9)|*"" < +oo establishing M.
This also implies that if the formal Edgeworth expansion is valid, the poly-
nomials of its density, which are equicontinuous functions of these moments
and the covariance matrix would satisfy assumption [A.4LEEQ. Let us now

call Aj = (622 + 03), Q (1+Z HMA],,I),W_(JIQ—QQ—&?,)
and Q, ;= <1 + Zm e [1—o Aj,k*,p,l). Hence,

E ‘y? — we?Qm‘ = 0,02+ 93)m+1
< (T +7)""

Analogously, for any 0 < k* < m notice that hjh;_g — w2y Qs
- Wh Z:Om k* H; 0 (9263 k*—p— 1+93>+h1 k*wZ:OmH; 0 (0283 p—1 +93)
- w2 Zr m Hp 0 (92€J —p—1 + 93) Zr =m—k* Hp 0 (92€j k*—p—1 + 93)

- Wh Zr:m—k* Hp:O (926]—’6 *—p—1 + (93)4‘&] Qm,k*,] Zr:m Hp:O (625371171 =+ 93)
and therefore due to the inequality of Cauchy-Schwarch, applicable due to the

moment existence conditions described before, we have that E |y2y? Yo g — W37 1 Qi Qe | =

wkE (hjﬁik* > ek Lp=o Aj—k*—p—l)

"‘WQE( €K+ mk*yzr me 0 Aj—p- 1)

< WEVA (hY) BVA (8_,.) BV (Zr e TLog A —pm 1)2

F W B2 () BV (0, Ty Aj o) i

+W? BV (5 ) BV (Zm T g Ay e 1) B2 (Z:im [T Aj—p—1>2
S5 e B (o A2 i)

23 e B <H;:0 Ajre—p1 T Aj—k*—p—l)

+wEY? (53) (Z (Hp 0 g p— 1> +28 (Z:OmH; 0 Ajp-1 Zifw H;*:o Aj—p—1>>

m—k*—1 4
T Z 5 Hp 0 A] k* 7_p1 1 .
+4 Z Hp 0 A] k*—p—1 Zr *>r Hp:O Aj*k**iﬂfl

+ 2E1/4 8 E1/4 m—k*—2 m—k*—1 ypr*
w (60) 6 Z Hp:() A?*k* —p—1 (Zr*)r Hp:() Aj_k* _p_1>
m—k*— r m—k*— *
AT Ty Ak —pet (er g Aj—k*—p—l)
00 r o) r* 1/2
1 (7 B (g A2 ) +2B (57 TTo iyt 55, T 0 Ayt ) )

1/2

— WE'* () BV (&})

1/2

2

3
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Now notice that

B (Mo Ay T g Arrn) = (B3 (=) + 02+20,00)™ 7 (13)
(9 )max(r %) —min(r,r*)

b <H;:0 A?fpfl H;:o Aj—p—l) = [ 9260 + 6’3
max(r,r*)—min(r,r*)

B (023 + 05)°| I(r>r)
+ (‘92 + 03)max(r,r*)—min(r,r*) I (T S 7’*)

Y

i| min(r,r*)+1

where I (-) is the indicator function. Furthermore, for r < r* < r** we have
that

(o A T4, ) = [E @ +02)"] " [E (03 +05)7] (19)

B (Il A T AL ) = [E(6:52+05)'] ™ B (e2ag+93)3r_(36)

B (Mo Ay T A I 0 Ar) = [B (4 00)Y] a7)

B (0262 +05)?] (0a+ 05"

B (T Ay pr T A2y a T Ayp) = [E (B 60)'] (18)
:E (6, 150\2+93)3]r*_ (05 + 05) 7",

B (Mo Ay T o A TS0 A2, ) = [B (v 0n)!] (19)

B (023 +63)°| " [B (623 + 65) ]_

and for r < r* < r** < r*** and
[T (ryr*,r, o) = H;:O Ajp H;*:o Ajpr1 Hp o Ajope1 H s g Ajp-1

B[t = [B@ec0)] [ (9253+93)3y (20)

ok

BB +02)7] a0y
To manage the length of various expressions, let us define Ny =M, 1N
3
T = o+ gy T = TR () + 73 + 2715 0, = B (n,&d+1,) 7 =

_ _\3 4 _ 4 .
E(naég—l—nﬁ) N, = E(Qagg—i-ﬂﬂ) , My = E(naég—i—%) , and for 7,7 =
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1
E(6288+03) — (9260+93)
Then by repeated applications of equations [I3}20| we have that

m—k*—
BV () BV (0 g Al ey

_ 1/4 _
<WEV(E) () = wPEV () P, where P = T

1 n 1_774,
and w? B4 (8) E/4 (4 S [0 A3 s DA Hg*:o Aj—k*—p—l)
1 p—
< WIEY (£8) P)’* where Py = 4121 [1_%4 + 774,1]
Further ,
m—k*—2 m—k*—1 Tr
w BV (5) B (6 2o szo Aifk*fpfl (Zr*>r szo Aj_k*_p_l> ) :
2E1/4( 8) P1/4
where Py = 67, == = +6 7747742*’121?_%11?_%21?_‘%4
+ 125 771 —?742 + 12 = 77217741
+12- 04 1_ﬁ1 M2,1M4,2-

*_ r m—k*— r* 3
Further w®E'/* () E'/* (4 S g Ajte <Zr*>l1€” = Aj—k*—p—l) ) <
V2BV (8) Py

where P4 - 4M (1 T ’“* Tl 3) + 121”171 1 7721 =7

+ 12 773 1771774774 1 k* + 12 7]1 (773 + 1) 773;?743

+12 773 (772+774)77427732 k* _’_24177;71 1773721773;]317]24

+ 1217737 ?37743 (1jﬁ4 +774,3777> +2417717 e 77 (1 T + 73 2) nﬁif
+ 24771772773 [772773 2742 k*1+3 <773774 + 1717 1) +MiN21M31 (mm@ +ﬁ4,3_n§*1+2)}

49241 — andfori,j = 2,3,47. . = max - -
-7, 771772,1772773,2E§ +1 7]4774,37 yJ 79y & T 4 02,03 E(9253+03)1—E(0253+93)]

1
B(0263+03) —(02+63)

2,3,4m; ; = maxy, g, and 7; ; = maxg, g,

1
E(9263+93)i—(92+93)

and ﬁi,l - maX92793
Finally notice
Zf’imfk* E (H;:U Ajz'—k* —p—l) +2 Z;f>r:mfk* E (H;:O Aj*k* —p—1 H;:O Aj*k* *p*1>

< C1ny* where C = (1 + 22—%1) %1_1%.

Hence we have that

—m/2
E ‘y?y?_k* - wzegsi_k*QQO_k* < B772/ : (21)

011/2 sup E1/4 (h4) +7, (1 _ 771> E1/4 ( 4) Cll/2ﬁ12c*/2

where B =17, (1 —1 > EY* (<5) \
il 0 (=7 (P1/4 Jr4Pl/4 Jr6]31/4 . P1/4> Cll/gﬁg /2
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Finally, for 0 < m < k* we have that

1
2,2 2 2
Elyjyip —wSei | < w 1= (62 +03) (1 - 92 ) S

+ (02 +03) T [0:2F (5) + 0] E (h§ i)
1

“"(”1—(9 03>> (i)

+2w% (05 + 03)" ' [02E (c8) + 03] .

Hence

70 -7) (1+ 1)
By} e — 0] 4o Qu| <8 45 [Tlasup B (e§) + 73] [sup B (hg) + 272 (1 =7)°] ¢ 77"
+m(ﬁlk—*ﬁ1) (1 + 1—1ﬁ1) sup B (ho)

1

(22)

Equations 21| and [22) imply that assumption |A.2-WD holds. Now - i

equals "
hj when m = 0 (23)

ewly > T8 -1y (0262_,_y +05) when m >0
8y;-1
= equals
252h2 when m =0

205we’h; (Zr me1 1]—o 1) (0262, 4 + 03)> when m > 0 (24)

yJJk

and for any k* > 0,

equals

7m

( 2 _
€5 i+ when m = 0

weie? 1.0 (ZT N [ [ {m—1} (9253« p1 T 93)) hj_g when 0 < m < k*
E2hihy e+ wede 0 (02 TIEE ™ (0222, 1+ 63) ) by e when m = k*

r—{m-—1
w262€ 2 Pk 2ormms H {{ 1}} (02€?_p_1 +93) when m > k*
\ ’ +hy 3 e Lo (9255—1&—;)—1 +63)
(25)
Hence
B ay]? 7., when j =0
el %“T"%; (T +75)" when j >0
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27iwﬁ when j =0

4
E a—y; < 27,0272, <1 -n,— 775> sup F (8) 77 771 1y
€0
20:7, (1 -, ﬂﬁ) sup E (£5) 1Jrﬁl M2, |7 when j >0
Supeee E (h0€2 k*h k*) Whenj = 0
E'ayy] . ﬁiﬁa<1+ 2 )ﬁl when 0 < j < k*
850 Suppeco £ (hjhj_k+) _’_ﬁaﬁw% when j = k*

7270 (C177} + CaTfy + CaTy + CyTfy + Cs75’ ) when j > k*

where C; = 27 SupE(aO);re?’ 4 2 sup £(<4) 7 —— + T, sup E (e§) + 75, Co =
(22,) (n.15) g
T, SUP E(sé)+ﬁ6 1 1 . 7, SUP E(Eg)+ﬁ5 3 _
el T I e e !

(A am
Cy = (ﬁa sup E (g7) —}—ﬁﬁ) o <ﬂi2 + ﬂ%ﬁ) and Oy = 272 pfk<*50)+776 . 1772
Notice that these do not necessarily imply condition 2.3.(i) in page 2073
of Gotze and Hipp [0]. In fact this condition does not apply in our case.
However, they imply assumption [A.3}EL. The form of imply condition

[A.2}CPD. Finally notice that imply

oo Oy o ,Oh
DY = AL AP (26)
~ dyf L o,
ZjZO 882 - 280h0 +2 Z hj% (27)
00 8y2y2_ -
Do b = Sahehoatelhuh +eleizho (28)

o0 Oh, 8h 1
DINEC E DREEC0Y
and

o Oy?y?. Oh oh
Z Pt 52_2h0h_2+5§h2h0+53521821h 1+ 338 ;h(29)

=0  QOed
o0 Oh; 8h _
+Z 6383 2( 2h; J th>

i=1 Oet 85%

and that the right hand sides of [26}28) are series of polynomial functions
of (¢%), hence are linearly dependent iff there exist A\;, i = 1,...,4 that are
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independent of j such that the relevant linear combinations of the coefficients
of the terms of the same monomials are zero for every j. A simple inspection
reveals that this is impossible for P almost all (¢?) and for all § € ©. This
in turn implies that the determinant of the matrix

ZOO dyr By Oyivi, Oyiyi o, . 1 4
i—0 9e2 02 de? de2 y =4
-7_ ll ll l/L l7;

with distinct [; where 0 = [; for some ¢ is different from zero for all 6§ € ©.
This along with the continuity of these four terms on © the continuity of the
determinant and the compactness of © imply that condition [A.2}NDD holds.
Finally lemma [2.6) and theorem [2.1] yield the result.l

Let
b(0) = (9 ’02(1 — (92+03)2«93)
1 — 260,05 — 05

and for some compact B D b(0) define

,92—1‘93)

2
: 1 ~ 52 /
S = 20, = —
Pn argglelgz H(?J P1 101) 4

15 2,2 V_ (2 2
w ?Fi(yt ylt;l> 7(3’2) . Furthermore define
;Zj:l(yt)_(y2>

22—l o2 o~
where y* = ﬁ2j21 Yi» Pi =

1 2
0 in — —b(0
» € argmin = o, —b(0)|

It is easy to see that due to the joint measurability, continuity and boundness
from below of the criteria, ¢, and 6, exist (see for example Theorem 2.13
of Molchanov [12]). ,, essentially corresponds to the definition of the first
of the indirect estimators in Gourieroux et. al. [I0]. For any compact
©’ C Int (O©) we obtain the following proposition.

Proposition 2 Under assumption[A.5 \/n (¢, — b(0)) and v/n (0, — 0) ad-
mit locally uniform Edgeworth expansions of order s — 2 over ©', the polyno-
mials of the density of which satisfy assumption[A.JFEEQ.

Proof. Let us define the function f (x) = (3:1, zz:zz, ﬁ%ﬁ) which is contin-
1 1

uous. A Taylor expansion of f-which is independent of 6- around E (X (0))
of order s — 1 implies that (.5, is as in proposition

Vi ((Fa 2) =50) = S0 D01 (B (X (0) (5,6, (0

i=0 ni/Q
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where

R, (0) = ——

—ayz (DUTUF (BT (0)) (S0 (0) = DEVF (B (X0 (6)) (S0 (9))°)

R} () lies between + > -1 X (0) and E (X, (¢)) with probability 1—o (n_%>

that does not depend on 6. Due to the continuity of D®~Y f on some compact
neighborhood of F (X (f)) we have that

IR (D)1 115 (O)]I"

(-2
Hence the definition of R;} (6), along with proposition [l lemma [AL.2, and '
theorem 3.3)imply that the result will hold if Y33 ~L> DD f (B (X, (6))) (S, (6))""
admits the relevant Edgeworth expansion. But this holds due to the fact that

Df (E (X (0))) has rank 3 for any § hence assumption [A.3}POL is satisfied,
while assumption [A.3IEEQ is satisfied due to proposition [I hence theo-

rem is applicable. Notice now that with probability 1 — o (n_%> that

1B ()]} <

S —~\/
does not locally depend on 0, ¢, = (y2, 015 %) . Hence due to theorem

the first result follow as \/n ((f, 015 Z:—f)l —b(0) ) admits a locally uniform
Edgeworth expansion of order s — 2 over ©' (in the notation of the theorem
Sp=+/n <(37,ﬁ1, %)I — b(@)) and R, is zero).

For \/n (0, — ) initially observe that due to the first part, for some ©* =
[Qz,ﬁ;‘:} X [Q’;,m} X [Qg,ﬁ;} where 0 <n* <wn .7, > 1, for m =w,a,p,
such that Int (©) D ©* D ©'

sup P (i, (6) € 0 (60,8)) =1 -0 (n~%")
0cO(60,0)

and it is easy to see that 25 has full rank for any 6 in O (6,6*), hence

with probability 1 —o <n’%2> that does not locally depend on 6, 6, satisfies

¢, = b(0,). The mean value theorem along with the constant full rank and

continuity of % on © imply that for some ¢ > 0 independent of #

sup P (Vi [0~ 0]l < v, ~b@)]) = 1- o (0 F)
0€0(00,9)

which along with the result of the first part and lemma imply that for
some C* > 0 independent of ¢

sup P <\/ﬁ 16,, — ]| > C*In'/? n) =0 (n*%> (30)

0€0(00,0)
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A Taylor expansion of b (#,,) around b (#) of order s — 1 implies that (S, is
as in proposition

O3x1 = v/ (¢, — b(0)) +vn Z: #D(””b 0) (Vi (0, — 0))""" + R, (6)
where

R, (0) = ﬁ (D& 0 (67) (v (0 = 0)) ™" = DEDb(8) (Vi (60— 0)")

6" lies between 6,, and § with probability 1—o (n_%Q> that does not depend

on #. Due to the continuity of D¢~1b on some compact neighborhood of @

we have that o
16 — 6]l IV (6. — )]
n(s—2)/2

Hence the definition of 8, along with proposition , equation , and theo-
rem imply that the result will hold if condition POLFOC holds since in
this case theorem is applicable. But this holds due to the constant full
rank of the Jacobian of b. m

For the final part of this section we utilize the following assumption.

122 ()] <

Assumption A.6 s> 5 and ey~ N (0,1).

Remember that ¢, and 6, depend on X; which in turn depends on 6.
When needed this dependence will be explicitly denoted. Define

1 2
* in=llo. —E 0
¥ € argmin o len (¢n ()]

and
0F € argm1n—||9 —E(0, ()]

These correspond to the definition of the second of the indirect estimators in
Gourieroux et. al. [I0]. The boundness of B and © imply that the relevant
expectations exist for any #. The P almost everywhere continuity of X;
w.r.t. ¢ along with the definitions of ¢,, and 6,, and the boundness of B and
© ensure via the dominated convergence theorem that the expectations are
also continuous and this along with joint measurability and the boundness
from below of the criteria imply again the existence of ¢ and 6. Similarly
to the previous case we obtain the following proposition.
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Proposition 3 Suppose that \/n (¢, —b(0)) and \/n (6, —6) admit locally
uniform Edgeworth expansions of order s — 2 over ©' the polynomials of the
densities of which satisfy assumption-EEQ cmd holds. Theny/n (¢ — 6)
and /n (0 — 0) admit locally uniform Edgeworth expansions of order s — 3
over ©" for any compact ©" C ©'.

For the proof of the previous proposition we use the following auxiliary
results. In the following lemma m,, (6) denotes a generic random vector some
elements of which admit values in a bounded subset of some Euclidean space.

Lemma 4.1 Suppose that \/nm,, () admits a locally uniform Edgeworth ex-
pansion of order s —2 over ©', the polynomials of the density of which satisfy
assumption —EEQ. Let the random element \/n~,, (0) be comprised by ele-
ments of \/nm,, (0) such that its support is bounded by +/nI" for T a bounded
. " - Mn (9>
set of some FEuclidean space. Then /nm? (0) = \/ﬁ( Y () Ev, (6) >
admits a locally uniform Edgeworth expansion of order s — 3 over O (6y,6),
the polynomials of the density of which satisfy assumption [AJFEEQ.

Proof. Lemma implies that /n7, () admits a locally uniform Edge-
worth expansion of order s — 2 over ©', the polynomials of the density of

which satisfy assumption [A.4-EEQ. Due to Lemma 3.1 of Arvanitis and
Demos [1] we have that

s—3
T (27 9)
.y VL, - /R & (1 * Z n(z‘+1)/2) v (2)dz
ST (5 0)] (e
Qsél(gl \/ﬁ 0n Zz‘zl nz/Z =o\n

where (1 + 3070 W;Lf/f ) Py(p) (2) denotes the density of the Edgeworth dis-

tribution of proposition [2| truncated up to the O (n_%) order, i.e. of the

(obviously) valid locally uniform Edgeworth expansion of order s — 3, given
the one in , ki (z,0) = zm; (2,0) and Z,, = o ki (2,0) oy (2) dz.
Using the fact that the m;’s satisfy assumptlon @-EEQ it is easy to see
that so do the Z, (k; (2,0)). It is also obvious that the random vector
Vnl, (6) = /n ( 73” ((g; ) admits a locally uniform Edgeworth expansion

of order s — 2 over ©’, the polynomials of the density (say 7}) of which

0 im(mg,
satisfy assumption [A.4-EEQ. Consider the vector v, = ( ZS; I‘E(kizzﬂ)) )
i=1 — pi/2
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For an arbitrary Borel set A due to the previous
P (Vam?, (6) € A)
= P (\/ﬁln 0)e A+v,+o (n_%?’))

Odim mn _s=3
s—3 T (Z+ < 25_3 I‘E(kizz,G)) ) + o0 (n 23> ’9)

1=1 nt/2

_ 1+ :
/AmHg(C) ; ni/?

Odim(mn) _s—3 _ s—3
Xy @) | # t ZH T, (ki(2,0)) +0<n 2 ) dz+o<n 2 )

i=1 ni/2

where H¢ (C') analogously to the relevant term in the proof of theorem
Expanding and holding terms of relevant order, by noticing that the =, are
polynomial in z, and that the o <n_%2> are independent of # we obtain the
needed result. m

The second auxiliary result is the only one employing assumption [A.6]

Lemma 4.2 Suppose that \/n (¢, — b (0)) and /n (0,, — 0) admit locally uni-
form Edgeworth expansions of order s —2 over © the polynomials of the den-

sities of which satisfy assumption [AJEEQ and[A.{ holds. Then E (p, (9))
and E (0, (0)) are two times differentiable on © and for any 0 € ©" and

1/2

any sequence 0, # 0 with values in ©' such that |0, — 0] < C™52 for
C>0,i=12 H@M—“))_K (9)” — o(1) where My, (8) = E (o, (9)),

¢’

My, (0) = E (0, (0)), K, = %, Ky = idgs.

Proof. Consider first the case of E (¢, (0)). Let o (g9) the smallest sub
o-algebra of F w.r.t. the ey,e_1,... are measurable. We have that

E (¢, (0)) = E(E (¢, (0) /o (c0)))

Now notice that

1 1 n ?(6)
Bl 0) fo () = [ o, S e (2 Eliw)

and the differentiability result would follow via the dominated convergence
theorem if

E (sup s (9)H) and 7 (5;15 1 “’”')

0co’
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. Oh; (6 n 92h;(0
are finite where s,, (0) = > 7, (5 —-1) - 1(9) 69( ) H, 0) =27, (5? -1) m aeég)’)_
B

> (2¢2-1) hg_l(a) 89( )a}ée(, ) 5, (0) = L5, (0), H, (0) = H, (9). First no-
tice that h; (0) > (1 =7, —T73) = ¢ and due to the fact that

oh; (9) Oh;—1 (6)

891 = (1 — 92 — 93) + ((925?_1 + 93) jaT,

oh; (0 Oh;_1 (6

8]7(2) = —91 + 6] 1hj_1 (9) + (928?,1 + 03) #U, and

oh; (0 Oh;_1 (6

ajTi) = O+ (0) + (022, + 03) #()

we have that

n 1 h; (6)
2 j
P | @05 )
R— oh; (0)||”
< E1/2 2 -1 E1/2
< L2 BN - B s |
and for 6* = (ﬁ:,ﬂz,ﬂz>/1t is easy to see that
oh; (9) || oh; (07) ||
9N <« 9N
Eessg 50 < F 90 < +00
Furthermore, since
0%h; (0)
5 = 0
9%h; (0) o Ohi(0) 5 Oh;1(0) 5 Ohj_1 (0)
ae% — _9]_ + <€j_1 892 + 5]'_18—92 + (92€j_1 + 93) 8—93
0%h; (0) Oh;_, (0) 0%h;_, (0)
= 9, +29 " 4 (9,32 0.) —21 =7/
502 T + (02621 + 03) 02
d%h; (0) s Oh;_1(0) Ohj_1(0)
= -1 Pt i R 2 Zt A7
90,00, Ty, T (it 0s) oo
02h; () Oh;j_1 (0) 82h; (0)
= 14 I (e 0 Z
06,005 oo, T+ (Oecia T05) Hoag
we have that
n 1 0%h; (0)
E 21 J
<esél<§f 2 (& )50 o600 D
1 e g2 s || 0%R (607
C*ijlE le2—1]"E Soog || <+
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and

n 1
E 2e2 — 1
(esélé)f 2 (2= 2 (0) ae aa’ H)
1 n 1 2 Oh; (0" )
il /21922 12|20\ )
ZijlE 22 - 1]°E o < 400
Next notice that for any 6 in © any ¢ = 1,...,3, and any sequence 0,, as

described above we have that
L (¢, (0n)) 9b(0)
00, 00,
PFE (¢, (07))
00,00

E (¢n (0n)) = E (9, (0)) _ 0b(6)
0, — 0; 90

in

< 2 sup
0*ce’

oo

Then lemma 2.3 of Arvanitis and Demos [1] implies that due to the behavior
of 6, the last term on the right hand side of the last display is o (1). Hence
% ‘ =o0 <1n}//’§n>. The previous
along with an application of the Cauchy-Schwarz and the triangle inequalities
imply that for any ¢

the result would follow if supg«cgn )

sup

ae ae’ H

6co’
< sup B lp,, (6) - 0]’
0ce’
g <SUP EY?|s5,(0) ), (6) — EH, (0)[|* + sup E'*||H,, (0) — EH, (6)] )
0ce’ 0cO’

Furthermore, due to assumed Edgeworth approximation for v/n (¢, (6) — 6),
and the fact that s > 5 lemma 3.1 of Arvanitis and Demos [I] along with

theorem [3.1] imply that supyee £ |(, — b(0))|]> = O (\%) Hence the

result would follow if

— 2 n

sélgEHnsn 5, (0)+EH, (0)]" = o(m)
I J— 2 n

sup B[, (6) = B, (0)]* = o(:-)

From the proof of Lemma A.1 of Corradi and Inglesias [6], we can prove that
Vn(Sk(0) — E (S (0))), where S* contains stacked the elements of 5,, and
H,, admits a locally uniform Edgeworth expansion of order s — 4 over ©' by
establishing the conditions [A.2M-WD and [A.3JEL-CPD through the provi-
sion of bounds independent of § using the compactness of © and condition
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[A.3INDD using the result of the referenced proof, the P almost everywhere
continuity of the elements of S* (f) on ©’, the continuity of det and the com-
pactness of ©’. Then the remark immediately after the proof of lemma 3.1
of Arvanitis and Demos [I] implies that

sup B |75, (0) 5, (0) + EH,, (0)||" = 0O(1)

sup E ||H, () — EH, (0)|" = O (1)
oce’ n
which establish the needed bounds. The result about E (6, (0)) is derived
analogously. m

We are now ready to prove the main proposition.
Proof. Notice first that uniform consistency of ¢, to b(f) along with the
boundness of © imply by uniform integrability that

sup |Eop, —b(0)] = 0(1) (31)

hence for any ¢ > 0

sup P (sup low — B, (0)] = [b(8%) — b (9)]] > )
0*cO 0cO

< sup P(lp, —b(0%)[+0(1) >¢) =0 <n_ST>
0*€O

due to the analogous consistency of ¢,,. Hence

sup P (¢, € O(0",e)NO)=1—-0 (n_552>
0*cO

for any £ > 0. Then from lemma and the proofs of lemma [2] and lemma
2.4 of Arvanitis and Demos [I] we obtain that

sup P (\/ﬁlsaii — 6] > Cn'/? n) =0 <n7552) (32)

0*co"

for some appropriate C' > 0. Now using remark (2.12) and paragraph 4 of
Gotze and Hipp [8] we obtain that the a, j, terms that structure the cumu-
lant asymptotic expansions for S,, and thereby the coefficients of the polyno-
mials and the quadratic form in the relevant Edgeworth density are smooth
functions of power series of the form ¢ () > 27, ;. g i ... where c (6)
is s times continuously differentiable for any 6 in ©” due to the fact that
it is obtained as a smooth function of moments of products of powers of
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elements of X of order less that or equal to s+ 2 which are s times continu-
ously differentiable for any # in ©” by dominated convergence. Furthermore,
z;; is of the form E (6 [eo|™ + O5e?)™ where s1s3, 5255 < 25 + 2 hence the
previous power series is s times continuously differentiable inside the rele-
vant unit ball and z;; is s times continuously differentiable for any 6 in ©”
again due to dominated convergence. Hence the coefficients of the polyno-
mials and the quadratic form in the in the formal Edgeworth density of .S,
are s times continuously differentiable for any # in ©”. This along with the
analogous differentiability of f in the proof of proposition [2| imply that the
m; there are also s times continuously differentiable for any € in ©” for any
z € R. Then dominated convergence implies the same for Z,, (k; (z,6)) for
alli=1,...,s+2. Then lemma 2.3 of Arvanitis and Demos [I] implies that
for any stochastic sequence 0, for which

sup P (\/ﬁ Nn > C'In'/? n)
66@//
then
sup P (|[v/n (E; ¢, — Eopn) — A ()| > 7,) =0 (n_s;z>
L
where
N2 1 j+1 s=2-j I, (,9)))( 5 j“)
0= e (ro s B ) (A (o)

and v, = o(n™%) mdependent of 6. This along with lemma 4.2 imply that
9E¢, (¢y)
00

converges to 27 for any 0 in ©” with probability 1 — o (n %2)

ae'
independent of 0, hence with the same probability o}, satisfies ¢, = E -« @,.

Hence with probability 1 — o <n_%> independent of 0, ¢; satisfies

0=n(p, — Eopy) + An (0) + Ry (0)

and the result follows from [32] proposition .1 lemma [AL.2] and theorem
The case of ¢, follows in complete analogy to the previous by sim-
ply replacing in the previous proof any invocation to f with b~!(p) =

13—/ (1=(202=09)") (1=¢8)  —(1=20205+03)+/(1=(205— ‘p3)2)(1_wg)) and of b

Y1 2(p2—p3) ’ 2(pa—p3)
with the identity. m

Remark R.4 Notice that 0, can be shown to be locally uniformly second
order unbiased (i.e. supgegr |Eol}, — 0| = 0o (n™')) something that is not the
case for 0,, or ¢, even though the three estimators posses the same second
order MSE uniformly over ©" (see Arvanitis and Demos [1] Corollary 2 and
Lemma 3.6).
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5 Conclusions

We have established sufficient conditions for the existence of locally uniform
Edgeworth expansions under weak dependence and/or smooth transforma-
tions. These extend analogous pointwise results in the relevant literature
and can be applied for the establishment of high order asymptotic properties
of estimators arising in the context of eligible stochastic processes. Special
cases are M-estimators defined by the expectation of auxiliary ones. In these
cases the results enable the polynomial approximation of the equations that
are asymptotically satisfied by the estimators without the use of higher or-
der derivatives, something that avoids the establishment of issues such as
their rates of convergence. The interest on these estimators lies on the fact
that under appropriate conditions they can possess desirable higher order
properties. A question for future research concerns the issue of establishing
Edgeworth type expansions (see Magdalinos [I1]) when 6 lies in the boundary
of the parameter space.
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