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Abstract

We analyze endogenous pattern formation resulting from forward-looking

optimizing behavior of economic agents in the presence of spatial spillovers

modelled by continuous kernels. We use Fourier methods to identify nec-

essary and suffi cient conditions for the emergence of optimal agglomeration

through an optimal spillover induced instability of a spatially homogeneous

steady state. We apply our methods to study the emergence of optimal ag-

glomeration for a rational expectations equilibrium and an optimal growth

model. We believe that our analytical methods can be used to systematically

study optimal agglomeration and clustering in dynamic economics.
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1 Introduction

Modeling spatial interactions and studying spatial patterns which emerge

endogenously as a result of interactions among agents has drawn considerable

attention in scientific fields such as economics or biology. The main emphasis

of this literature is on dynamical systems forces that cause agglomeration of

economic activity (e.g. Krugman 1996) or general agglomeration phenomena

in biology (e.g. Murray 2003).

A major approach to modelling spatial interactions is the use of an influ-

ence kernel which describes the effects of state variables located at different

spatial sites on a state variable located at a given site.1 Early writers such

as Krugman (1996) and Fujita et al. (2001) used influence kernels to cap-

ture the tension between local centripetal forces and more distant centrifugal

forces associated with the market potential of a location. Later writers such

as Lucas (2001), Quah (2002), Lucas and Rossi-Hansberg (2002), Ioannides

and Overman (2007) and Desmet and Rossi-Hansberg (2007) use kernels to

incorporate spatial or geographical spillovers into economic models, to reflect,

for example, the impact of employment at neighboring sites on productivity

at a given site, or the impact of accumulated knowledge at neighboring sites

on accumulated knowledge at a given site.

The purpose of this paper is to develop what we believe to be the first

relatively general treatment of pattern formation and agglomeration in infi-

nite horizon recursive forward-looking dynamical systems models, in which

spatial effects are modelled by influence kernels. Our modelling includes

kernel expressions in the law of motion and/or the payoff function, which

makes it suitable for use in dynamic economics. The applicability of our

method is demonstrated in section 4, through the study of the emergence of

agglomeration in growth models with spatial effects.

Although earlier results in biology have used influence kernels to model

1The other major approach to modeling (mainly short-range) spatial interactions is
the use of classical diffusion where a state variable moves from locations of high to low
concentration. See for example Murray (2003, Vol. I, Ch. 11), or Brock and Xepapadeas
(2008, 2009) for the analysis of infinite horizon forward-looking systems where the spatial
interactions are of diffusion type.
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long-range effects (e.g. Murray 2002), our contribution is that we explicitly

solve for the optimization problem and derive conditions for the endogenous

emergence of spatial patterns which result from the forward-looking opti-

mization behavior of economic agents. The results obtained in biology do

not incorporate optimizing behavior. Since in the majority of applications

influence kernels are modelled by continuous functions and spatial spillovers

by linear integral operators, the forward-looking optimization problems ana-

lyzed in this paper lead to infinite dimensional optimal control problems. We

use Fourier type bases to decompose the infinite dimensional optimal control

problems into a countable sequence of tractable finite ones. This approach

allows us to fully characterize conditions for local stability/instability of a

steady state to spatial spillovers and thus to study the emergence of eco-

nomic agglomeration in terms of finite dimensional dynamical systems. We

consider this to be an additional contribution as it provides tools for study-

ing forward-looking dynamic optimization problems, which are at the core

of dynamic economics, in infinite dimensional Hilbert space settings. We

believe our methods could provide a useful basis for systematic analysis of

agglomeration and clustering in dynamic economic models.

2 Spatial Spillover Dynamics and Optimiza-

tion

This section presents results regarding necessary and suffi cient conditions of

optimal control under spatial spillovers modelled by a kernel. We consider a

distributed control system where the state and the control are respectively

represented by real functions x (t, z) and u (t, z) of time t ∈ [0,∞) := T ,
and the spatial variable z ∈ [−π, π] := Z.2 Following Appel et al. (2000),

the real function x (t, z) of two variables (t, z) is identified with the abstract

function x = x (t) of one variable t ∈ T which takes its values in a separable
2Circular spaces of the form Z := [− |Z| , |Z|] can be handled by a change in units.
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Hilbert space X of square integrable functions,3 X = L2 (Z) , defined as

x (t) = x (t) (z) = x (t, ·) . Similarly the control u (t, z) is identified with the

abstract function u = u (t) = u (t) (z) = u (t, ·) , u (t) ∈ U = L2 (Z) . We

make the following assumptions:

A1: For each [0, T ] ∈ T , the controls u (t, ·) are measurable functions in
t that lie in the subset B[0, T ] of L2 such that

B[0, T ] =
{
u (t, ·) ∈ L2 (Z) : ‖u (t, ·)‖L2(z) ≤ b (T ) <∞

}
(1)

where the bound b (T ) is finite but may depend upon T. We call such controls

L2- bounded measurable controls.4

A2: The set of pairs (x, u) is admissible if for each T, u is L2- bounded

measurable control in B[0, T ] and x is uniformly L2- bounded on [0, T ].

Long-range spatial effects describing the impact of the concentration of

the state variable x (t, z′) in locations z′ on x (t, z) are modelled using the

kernel formulation:

X (t, z) =

∫
z′∈Z

w (z − z′)x (t, z′) dz′ := (Kx) (t, z) . (2)

A3: The kernel function w (·) is continuous and symmetric.
Assumption A3 implies that the operator K defined by (Kx) (t, z) in (2)

is a compact linear operator that maps the Hilbert space L2 (Z;R) to itself. 5

The kernel function quantifies the impact of site z′ on site z. Spatial impacts

are assumed to be symmetric, or w (z − z′) = w (z′ − z).

When spatial spillovers are combined with a temporal growth function

3A square integrable function v (z) in the interval a ≤ z ≤ b satisfies the condition∫ b
a
|v (z)|2 dz <∞.
4By Carleson’s theorem each such u (t, ·) has a Fourier series that converges pointwise

for almost all z.
5A linear operator A : H → H, where H,H are Hilbert spaces, is compact if the image

of every bounded subset B of H under A is relatively compact in H. For a continuous or
square integrable kernel w (·) , the operator A is compact. For a symmetric L2-kernel the
operator is self-adjoint. An operator A is linear if A (β1f1 + β2f2) = β1 (Af1)+β2 (Af2) ,
for constants β1, β2 and square integrable functions f1, f2. Thus the operator we use is
compact, linear and self-adjoint (for details, see e.g., Dieudonne, 1969, Chapter XI). To
simplify notation, sometimes we write Kv instead of (Kv) (t, z) for some function v (t, z) .
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g (x (t, z) , u (t, z) , X (t, z)) , the rate of change of the state x at time t and

location z depends also on the values of the state at locations z′ ∈ Z and

can be written as:

∂x (t, z)

∂t
= g (x (t, z) , u (t, z) , X (t, z)) , x (0, z) = x0 (z) (3)

where x0 (·) ∈ L2 (Z) . Equation (3) describes the effects of spatial spillovers

on the evolution of the system’s state (e.g. capital stock, knowledge, tech-

nology) both in the time and the space domain. Using the identification of

x (t, z) , u (t, z) as x = x (t) , u = u (t) which take values in separable Hilbert

spaces, (3) can be written as the ordinary differential equation in X × U :

dx

dt
= g (x, u,X) , x (0) = x0. (4)

A4: The function g (x, u,X) , x = x (t) , u = u (t) , X = X (t) =

X (t, ·) = (Kx) (t, ·) satisfies a Lipschitz condition; is C2; and sup ‖∂g/∂v‖ ,
v = x, u,X is bounded. We also assume enough regularity in (4) so that L2-

bounded measurable control inputs yield L2- bounded state outputs.

From A4, (4) has an L2- bounded solution x (t) for a given u. The solu-

tion x = x (t) defines a generalized solution x (t, z) = x (t) (z) of the integro-

differential equation (3).6 Equation (3) can be used as a dynamic constraint

in an optimal control problem where the objective is to choose admissible

controls u (t, z) which will maximize discounted benefits over the spatial do-

main Z associated with a payoff function. We associate with the control

system (2)-(3) the payoff expression:

J (x0 (z) , u (·)) =

∫ ∞
0

e−ρtF (x (t) , u (t) , X (t)) dt. (5)

A5: F (·, ·, ·) is a differentiably concave and upper-semicontinuous func-
tion on L2×L2×L2 that satisfies the coercivity condition F (x (t) , u (t) , X (t)) ≤
a− c ‖x (t)‖L2(Z) , (a, c) > (0, 0) , (Leizarowitz 2008).

6A generalized solution x = x (t, z) is measurable on T × [−π, π] , x (·, z) is absolutely
continuous on T for each z ∈ [−π, π] and satisfies (3) almost everywhere. For details see
Appel et al. (2000, Chapter 1).

5



Payoff functional (5) corresponds to the optimization problem of a decen-

tralized agent at site z who maximizes the discounted sum of net benefits at

its own site taking the choices of agents at other sites as fixed and beyond

its control. This implies that X (t) is a fixed parameter. Of special interest

is the payoff functional that corresponds to the maximization of discounted

benefits over the entire spatial domain, when taking the choices of agents

located in different sites explicitly into account, or

F (x (t) , u (t) , X (t)) =

∫ π

−π
f (x (t, z) , u (t, z) , X (t, z)) dz. (6)

A6: f (·, ·, ·) is a differentiably concave and upper semi-continuous func-
tion f : R3 → R.
Payoff functionals (5) and (6) can be associated with two important types

of economic problems. When the payoff is maximized over the entire spatial

domain, the problem can be stated as:

max
{u(t,z)}

J (x, u) =

∫
z∈Z

∫ ∞
0

e−ρtf (x (t, z) , u (t, z) , X (t, z)) dtdz (7)

subject to (2) and (3).

Problem (7) provides a framework for the analysis of dynamic optimization

problems in economics in which a social planner maximizes discounted bene-

fits by internalizing spatial spillovers. For example, in the special case where

f depends only on u, problem (7) can be regarded as describing the social

planner’s problem for the classic Ramsey growth model extended to include

geographical spillovers. In this case f is a standard utility function, u is

consumption and x is capital stock at time t and site z, and X (t, z) reflects

spatial spillovers on the production function g from capital located on sites

around z. The introduction of x and X into the utility function could reflect

stock effects and spatial effects on utility. Maximization of (5) subject to

(2) and (3) with X (t, z) = Xe can be regarded as the problem of a private

agent located at z who does not internalize spatial spillovers. This problem

can be associated with a rational expectations equilibrium. Both problems
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are analyzed below.

Problem (7) is an optimal control problem of an infinite dimensional sys-

tem. Our assumptions in the context of the results developed by Papageor-

giou (1990) suggest that (7) admits a solution.7 Optimality conditions for

(7) can be obtained using Pontryagin’s maximum principle. Dropping (t, z)

to ease notation, we introduce the current value Hamiltonian function:

H (x, u,X, λ) = f (x, u,X) + λg (x, u,X) (8)

and associate the costate variable λ (t, z) with transition equation (3). Let

u∗ (t, z) be a control function satisfying A1 and A2 and let x∗ (t, z) be a

generalized solution of (3) corresponding to u∗ (t, z) and originating at x0 (z) .

First-order necessary conditions state that, in order for u∗ (t, z) to be optimal

for problem (7), a function λ (t, z) must exist such that:8,9

(i) x∗ (t, z) and λ (t, z) are a solution of the system

∂x

∂t
= g (x∗, u∗, X∗) = Hλ (x∗, u∗, X∗) , x (0) = x0 (z) (10)

∂λ

∂t
= ρλ− (f ∗x + λg∗x)− (Kf ∗X +Kλg∗X) = (11)

ρλ−Hx (x∗, u∗, X∗)−KHX (x∗, u∗, X∗) (12)

satisfying a temporal limiting transversality condition, and spatial transver-

7Actually Papageorgiou provides existence results for a more general problem then
ours. Similar existence results can also be found in, e.g., da Prato and Ichikawa (1993).

8The conditions can be obtained using a variational argument and the linearity of the
integral operator. For a heuristic discussion of the derivation, see Appendix 1.

9To ease notation we denote partial derivatives with subscripts. We write Hλ (x, λ,X)
in (11) to emphasize that Hλ is a function of three arguments (x, λ,X) . We use the
shorthand notation introduced in (4) to write (10) in a more compact way. In order to
ease notational clutter we write the mappings

Kv (t, z) =

∫
z∈Z

w (z − z′) v (x (t, z′) , u (t, z′) , X (t, z′)) dz′dz′ (9)

where v (x, u,X) stands for fX , or λgx, orHX (x, u,X) , asKf∗X ,Kλg
∗
x,KHX (x

∗, u∗, X∗) .
Superscript (∗) indicates evaluation along the trajectory (x∗, u∗, X∗) .

7



sality conditions for a finite spatial domain with circle boundary conditions10

lim
T→∞

e−ρT
∫
z∈Z

λ (T, z)x (T, z) dz = 0 (13)

λ (t,−π) = λ (t, π) , x (t,−π) = x (t, π) , for all t. (14)

(ii) The Hamiltonian function H (x∗, u,X∗, λ) has a (possibly local) max-

imum as a function of u at u∗ (t, z) for all t ≥ 0. For an interior maximum,

∂H

∂u
= 0, or fu + λgu = 0⇒ u∗ = u∗ (x, λ,X) . (15)

As shown in Appendix 2, under standard differentiable concavity assumptions

the necessary conditions stated above are also suffi cient.

If we interpret - as is common in such problems - the costate variable

λ (t, z) as the shadow price of the state variable at time t and location z,

condition (11) suggests that geographical spillovers influence the evolution of

shadow prices in both time and space. Assume for example that f does not

depend on X and that ∂x/∂t = g (x, u) +Kx. Then (11) becomes ∂λ/∂t =

ρλ−Hx−(Kλ) (t, z) , (Kλ) (t, z) =
∫
z′∈Z w (z − z′)λ (z′, t) dz′. That is, at the

optimal solution, prices are affected in a similar way as the stocks (quantities)

by geographical spillovers, but the effect on prices is in the opposite direction

from the effect on quantities. Thus if the stock quantity in location z′ has

a positive effect on the stock accumulation in location z, the corresponding

price in z′ will have a negative effect on price changes in location z.

If we use (5) as the objective functional, the optimization can be inter-

preted as having a planner at each site z that maximizes discounted benefits

on the site and considers the spatial spillover X (t, z) affecting her/his site

as an exogenous parameter Xe. This problem can be written as:

max
{u(t)}

∫ ∞
0

e−ρtF (x (t) , u (t) , Xe) dt, subject to (16)

dx

dt
= g (x (t) , u (t) , Xe) , x (0, z) = x0 (z) ,∀ z ∈ Z. (17)

10For a concave problem (7) the temporal limiting transversality condition is a necessary
condition (e.g., Benveniste and Scheinkman 1982).
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This is a standard optimal control problem with current value Hamiltonian

function h = F (x, u,Xe) + λg (x, u,Xe) . Setting X (t, z) = Xe in the opti-

mality conditions of problem (16)-(17), a rational expectations equilibrium

is characterized by the Hamiltonian system:

∂x (z, t)

∂t
= g (x, û,Kx) = hλ (x, λ,X) (18)

∂λ (z, t)

∂t
= ρλ− (fx + λgx) = ρλ− hx (x, λ,X) (19)

where û maximizes the current value Hamiltonian h.

3 Optimal Spillover Induced Instability and

Agglomerations

A question which arises in the study of problems described by (7) is whether

solutions exhibit spatial homogeneity or spatial heterogeneity. Spatial homo-

geneity means that the state, costate and control variables which are solutions

of (7) have a spatially uniform distribution along the optimal spatiotempo-

ral path. Heterogeneity means that spatial distributions are not uniform

and thus spatial patterns are formed. This implies that clusters or economic

agglomeration emerge as a result of optimizing behavior and may become

persistent at a spatially heterogeneous steady state.

To study the emergence of economic agglomeration we follow the general

approach introduced by Turing (1952) which examines the stability of a stable

spatially homogeneous, or flat, steady state of reaction-diffusion systems to

spatially heterogenous perturbations.11 We extend this approach to deal with

the system of equations such as (10)-(11) which constitute the Hamiltonian

system for problem (7). Define a flat optimal steady state (FOSS) (x∗, λ∗)

as the steady state of system (10)-(11), which is obtained when (∂x/∂t) =

(∂λ/∂t) = 0 where state, costate and control have the same value at all spatial

11Turing’s approach has been used in new economic geography (e.g. Krugman 1996,
Fujita et al. 1999, Chincarini and Asherie 2008), in biology (e.g. Murray 2003) and in
ecosystem management (Brock and Xepapadeas 2008, 2009).
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sites but are optimal given the same initial conditions as in the FOSS. To

examine the stability of this FOSS we consider small perturbations off the

FOSS, (x (t, z)− x∗, λ (t, z)− λ∗) . For suffi ciently small perturbations the
stability analysis can be obtained in terms of linearization of (10)-(11). This

linearization is the Fréchet derivative of (10)-(11) evaluated at (x∗, λ∗) . Since

we integrate over finite limits when defining (Kx) (t, z) and the kernel w (·) is
continuous, the Fréchet derivative is a compact linear operator, which has an

integral representation and countable numbers of eigenvalues besides the zero

eigenvalue.12 Using, by a slight abuse of notation, (x, λ) to denote deviations

from (x∗, λ∗) , and setting X = Kx to simplify notation, the linearization is:

∂x

∂t
= H∗λxx+H∗λXKx+H∗λλλ (20)

∂λ

∂t
= −H∗xxx− 2H∗XxKx−H∗XXK (Kx) + (ρ−H∗xλ)λ−H∗XλKλ(21)

where the superscript (∗) indicates that the Fréchet derivatives are evalu-

ated at (x∗, λ∗). Our approach in studying the stability of the FOSS to

spatially heterogeneous perturbations off the FOSS, is to transform the infi-

nite dimensional system (20)-(21) into a countable sequence of linear sys-

tems of ordinary differential equations so that we can use linear stabil-

ity analysis. To do this we consider pairs of square integrable solutions

(x (t) (z) , λ (t) (z)) = (x (t, z) , λ (t, z)) and we construct trial solutions using

an orthogonal basis of L2 (Z) created in terms of functions cos (kz) , sin (kz) ,

z ∈ [−π, π] , for mode k = 0, 1, 2, ... which form a complete orthogonal basis

over [−π, π] . Our assumptions about functions f and g suggest that the solu-

tion (x (t, z) , λ (t, z)) of the optimal control problem will be smooth enough

12For a statement of these results in an applied context see Kot and Schaffer (1986).
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to be expressed in terms of Fourier basis, or:13

x (t, z) =
∞∑
k=0

〈ak (t) , Bk (z)〉 , x (0, z) =
∞∑
k=0

(ak (0) ·Bk (z)) (22)

λ (t, z) =
∞∑
k=0

〈Ak (t) , Bk (z)〉 (23)

where Bk (z) = (cos (kz) , sin (kz)) is the sine/cosine basis, ak = (a1k, a2k) ,

Ak = (A1k, A2k) . and 〈·, ·〉 denotes inner product.
Proposition 1: Assume that the state and costate variables are expressed

by the Fourier basis (22)-(23), then the linearized infinite dimensional system

(20)-(21) can be transformed to the following countable sequence of linear

systems of ordinary differential equations for k = 0, 1, 2, ... :

dxk
dt

= [H∗λx +H∗λXW (k)]xk +H∗λλλk , (24)

W (k) =

∫
ζ

w (ζ) cos (kζ) dζ, ζ = z − z′ (25)

dλk
dt

=
[
−H∗xx − 2H∗XxW (k)−H∗XXW 2 (k)

]
xk + (26)

[ρ−H∗xλ −H∗XλW (k)]λk.

For Proof see Appendix 3.

This transformation suggests that the standard spatially homogeneous

optimal control problem can be regarded as a special case of our more general

spatially dependent problem (7) for k = 0. To analyze the stability of the

FOSS for (7), it is suffi cient to analyze the stability of the FOSS for each

of the mode-k systems (24)-(26). If the FOSS becomes unstable at some

mode k, this implies that spatially heterogenous perturbations destabilize

the FOSS and economic agglomeration begins emerging. The stability of

the FOSS for system (24)-(26) at mode k depends on the eigenvalues of a

countable sequence of Jacobian matrices indexed by k = 0, 1, 2, ... . Let

13As shown in Priestley (1981, Section 4.2) any function in the class L2 (−π, π) has a
Fourier expansion which converges to the function in the mean square sense. Furthermore
the Fourier coeffi cients αk (t) , Ak (t) exist for each t and the Fourier series converges for
each t. For more details see Appendix 3.
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Jk (x∗, λ∗) := J∗k denote this sequence of Jacobian matrices with eigenvalues

(σ1k, σ2k). The trace of J∗k is ρ > 0 which implies at least one positive

eigenvalue for all modes k ≥ 0. Thus for k = 0, the spatially homogeneous

case, the FOSS is either saddle point stable or completely unstable. As shown

by Scheinkman (1976), the local solution manifold structure in this case is

obtained by choosing, for a given initial state value a0 (0) suffi ciently close

to the FOSS x∗, the initial costate value A0 (0) such that (a0 (t) , A0 (t)) lies

on the one-dimensional manifold corresponding to the smallest eigenvalue of

the “Poincare pair” (ρ− σ0, σ0) . This local manifold is tangent to the true
nonlinear manifold at the FOSS. For a two-dimensional Hamiltonian system

the tangent manifold is a line that passes through the FOSS and its slope is

equal to that of the eigenvector that corresponds to the smallest eigenvalue.14

This argument, extended to mode k > 0, suggests that the local solution

manifold structure for mode k can be constructed by choosing, for each initial

condition ak (0) which is suffi ciently close in L2 norm to x∗, the initial mode-k

costate Ak (0) such that (ak (t) , Ak (t)) lies on the one-dimensional manifold

corresponding to the smallest eigenvalue of the “Poincare pair”(ρ− σk, σk)
with the initial value Ak (0) determined by the eigenvector corresponding to

the smallest eigenvalue and initial conditions ak (0) . If the smallest eigenvalue

is negative the local mode-k manifold is asymptotically stable and tangent

to the true nonlinear mode-k manifold. In this case the FOSS retains the

local saddle point property at mode k, and J∗k has two real eigenvalues at this

mode, one positive and one negative. If the smallest eigenvalue is positive

the local mode-k manifold is unstable and optimal economic agglomeration

due to spatial spillovers emerges around the FOSS at mode k. In this case,

the FOSS is destabilized by spatial perturbations at mode k and J∗k has two

positive eigenvalues or two complex eigenvalues with positive real parts at

this mode. Thus we derive a solution that satisfies the first-order necessary

conditions for problem (7). Furthermore our suffi ciency conditions under

strict concavity imply that this solution is a solution to (7) and is thus

14If the smallest eigenvalue is negative then the local solution manifold converges to the
FOSS. If the smallest eigenvalue is positive the solution manifold does not converge but it
is optimal, provided it satisfies the optimality conditions and the temporal transversality
condition at infinity.
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unique.

Our results extend Turing’s method to forward-looking dynamic opti-

mization problems with spatial spillovers modelled by continuous symmetric

kernels. Since our spatial instability is the result of optimizing behavior and

spatial spillovers, we call it - by analogy to Turing’s diffusion induced in-

stability - optimal spillover induced instability. Thus from a saddle point

FOSS, an optimal spillover induced instability emerges if the determinant of

the Jacobian matrix J∗k becomes positive for some mode k > 0. This deter-

minant is called the dispersion relationship and is presented analytically in

Appendix 3. Our stability/instability conditions for all modes k = 0, 1, 2, ...

are independent of the choice of basis for L2 (Z) as shown below.

Proposition 2: Let (x∗, λ∗) be a FOSS for the linearized system (20)-

(21). The FOSS will be a local saddle point iff it is a local saddle point for

all modes k. The FOSS will be locally unstable iff a mode k exists such that

the FOSS is unstable for this mode. The local stability/instability result is

independent of the basis chosen in L2 (Z).

For Proof see Appendix 4.

Proposition 2 means that if the FOSS is unstable to spatially hetero-

geneous perturbations for the sine/cosine basis at some mode k, it will be

unstable at the same mode for any other complete basis in L2 (Z). Con-

versely if the FOSS is stable for all modes k ≥ 0 for the sine/cosine basis, it

will be stable for any other complete basis in L2 (Z). Thus the cyclic class of

perturbations is suffi cient to check for the emergence or not of spatial insta-

bilities and economic agglomeration. If the dispersion relationship becomes

positive for some mode k, then optimal spillover induced instability emerges.

On the other hand, for optimal spillover induced instability not to emerge,

the dispersion relationship must remain negative for all k ≥ 0.

Our approach, like Turing’s, focuses on the initial stages of a process

where spatial spillovers cause deviations from the FOSS which do not die

away, but grow over time to create agglomeration. Growth requires two pos-

itive eigenvalues or two complex eigenvalues with positive real parts for J∗k
at mode k, i.e. an unstable mode-k tangent manifold. The eigenvalues of J∗k
(see Appendix 3 for exact definition) depend on the fundamental parameters

13



of our system, which include the discount rate; the second derivatives of the

Hamiltonian function at the FOSS, which can be associated with benefits

and costs of controlling the system to the FOSS; the spatial spillovers; and

the mode itself through W (k). Since we consider optimized systems, emer-

gence of agglomeration at a specific mode may be interpreted as suggesting

that at this mode the system can attain a higher value when not controlled

towards the FOSS but letting an “optimal agglomeration”develop at mode

k.15 The optimal agglomeration will be realized as an emerging wave-like

spatial pattern which grows over time on the unstable tangent manifold in

the neighborhood of the FOSS. This agglomeration will persist if it is real-

ized as a spatially heterogeneous steady state. This steady state, if it exists,

will correspond to a time stationary solution (x∗ (z) , λ∗ (z)) of the system of

integral equations resulting from (10)-(11) for (∂x/∂t) = (∂λ/∂λt) = 0. An

example is provided in section 4.2.

We can also study spillover induced instability of the rational expectations

equilibrium. Following the theory developed above, Fourier expansions imply

the following sequence of linear systems of ordinary differential equations

indexed by k:

dxk
dt

=
(
h̄λx + h̄λXW (k)

)
xk + h̄λλλk (27)

dλk
dt

=
(
−h̄xx − h̄xXW (k)

)
xk +

(
ρ− h̄xλ

)
λk (28)

where all derivatives are evaluated at the flat steady state (FSS),
(
x̄, λ̄
)
.16 Let

Jk
(
x̄, λ̄
)

:= J̄k be the Jacobian matrix associated with (27)-(28). Destabi-

lization of the FSS requires that traceJ̄k = ρ+ h̄λXW (k) > 0 and det J̄k > 0.

By comparing (24)-(26) to (27)-(28) we see that the conditions for the desta-

15The relation between the system’s fundamental parameters and the unstable mode
is discussed in Krugman (1996) or Fujita et al. (2001, Chapter 6). We study this issue
in a dynamic optimization framework with spatial spillovers, which as far as we know,
has not been done before. Brock and Xepapadeas (2008, 2009) analyze a similar issue for
short-range spatial interactions modelled by classical diffusion.
16FSS is the spatially homogeneous steady state defined by setting (∂x/∂t) = (∂λ/∂t) =

0 in (18)-(19). Thus we distinguish between the spatially homogeneous steady states
corresponding to the social planner’s problem (the FOSS) and the rational expectations
equilibrium (the FSS). We denote FOSS with (∗) and FSS with (−) .
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bilization of the FOSS and the FSS due to spatial spillovers are not the same.

First note from (24), (26) that at each mode k the J∗k of the linearization of

the social planner’s problem, i.e. , satisfies the property that traceJ∗k = ρ.

Second, note that if σ is an eigenvalue of J∗k , ρ − σ is also. Hence as ρ ap-
proaches zero, the eigenvalues appear in opposite pairs, i.e. we have a saddle

point. Since we have a saddle point for each mode k, we expect no pattern

generation for small ρ for the social planner’s problem under the usual dif-

ferentiable concavity assumptions. This result is expected intuitively from

the turnpike literature in infinite dimensional problems under the usual con-

cavity assumptions. Turn now to a comparison with the linearization for the

rational expectations system, i.e. equations (27)-(28). First we notice that

traceJ̄k is not equal to ρ unless h̄xXW (k) = 0. But in this latter case there is

no spatial externality at mode k. Thus it is intuitively clear that the saddle

point property would be recovered without the spatial externality. Second,

the “extra force”of concavity, i.e. the term, h̄XXW 2 (k), which is negative,

is missing from J̄k in contrast to J∗k . Thus we would intuitively expect fewer

patterns to be present under the usual concavity assumptions of economics,

all other things equal, for the social optimization problem in contrast to the

rational expectations equilibrium problem. We now use the above theoretical

framework to study a classical problem of growth theory.

4 Geographical Spillovers, Pattern Formation

and Optimal Growth

The classic Ramsey growth model, extended to include spatial spillover ex-

ternalities in the production function, is a special case of problem (7). In

this case, the problem of the social planner can be written as:

max
{c(t,z)}

∫ π

−π

∫ ∞
0

e−ρtU (c (t, z)) dtdz subject to (29)

c (t, z) +
∂x (t, z)

∂t
= f (x (t, z) , X (t, z) , l)− ηx (t, z) , x (0, z) = x0 (z)(30)
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where c (t, z) denotes consumption at site z at date t; U (c (t, z)) is a standard

utility function which is C2, strictly differentiably concave, strictly increasing,

with U ′ (0) = ∞, U ′ (∞) = 0; x(t, z) denotes capital stock at site z at date

t which depreciates at the rate η (t, z); l denotes labor; and X(t, z) defined

by (2) denotes an external effect on production at site z at date t. For the

production function we assume (fx, fX) > (0, 0) , (fxx, fXX) < (0, 0) , fxX >

0. As both x(t, z), X(t, z) are treated as inputs, the quantity X(t, z) will have

different interpretations in different contexts. If X(t, z) represents a type of

knowledge which is produced proportionately to capital usage, it is natural

to assume that the kernel w(ζ), ζ = z − z′ is single peaked with a maximum
at ζ = 0, like kernel w1(ζ) in Appendix 5 (Figure 2). If X(t, z) reflects

aggregate benefits of knowledge produced at (t, z′) for producers at (t, z) and

damages to production at (t, z) from usage of capital at (t, z′), then non-

monotonic shapes of w(ζ) in ζ, like kernel w2(ζ) in Appendix 5 (Figure 4),

are plausible. This production function could be considered a spatial version

of a neoclassical production function with Romer (1986) and Lucas (1988)

externalities modelled by geographical spillovers given by a Krugman (1996),

Chincarini and Asherie (2008) specification. To concentrate on the impact of

geographical spillovers, we assume zero exogenous technical change and fixed

labor input in each site l normalized to unity, i.e. l = 1, for all sites z so x (t, z)

denotes total and per capita capital, and we write f (x,X, l) := f (x,X). We

assume that f (x,X, l) exhibits constant returns to scale in (x, l) for each

X. Notice that labor and capital cannot be moved across sites. Thus the

social planner’s problem (29)-(30) has an extreme assumption that capital

and labour are completely immobile across locations. If capital, labor, and

consumption goods are completely mobile, then it can be shown that it is easy

to reduce problem (29)-(30) to one that is equivalent to a one-dimensional

Ramsey type problem. Of course the cases of complete immobility of capital

and labor and complete mobility of capital and labor are polar cases, but they

can be used to provide insight into the more realistic case where there are

frictional costs to the movement of capital and labor. A special case of the

planner’s problem (29)-(30) is the one where each economic agent considers

the spatial externality X (t, z) as given and maximizes discounted utility at

16



each site z, subject to (30). This optimization problem can be associated

with the concept of rational expectations equilibrium. We first analyze this

problem and then move to the more general problem of the social planner.

4.1 Rational Expectations Equilibrium

Assume that within each site representative consumers maximize the dis-

counted sum of utilities subject to the intertemporal budget constraint α̇ (t, z) =

r (t, z)α (t, z) +w (t, z)− c (t, z) , where α (t, z) denotes net assets per capita

at site z. Representative consumers at z rent out their capital at rate r(t, z),

receive wages w (t, z) , and take r(t, z) and w (t, z) as parametric. Repre-

sentative firms take spatial spillovers Xe (z, t) as parametric and, dropping

(t, z) to simplify, hire capital and labor to maximize profits π = f (x,Xe)−
(r + η)x−w by facing rental rates on capital and wages parametrically. Con-
stant returns to scale imply that after capital, labor are paid competitive

rents, wages, the remaining net income for the firm is zero. A competitive

equilibrium is produced in each site conditional on the commonly shared

point expectations on Xe (t, z) . In equilibrium α (t, z) = x (t, z) . Substitut-

ing profit maximization and the zero profit conditions, r + η = fx (x,Xe) ,

w = f (x,Xe)− fxx respectively, into the consumer’s budget constraint, the
following representative consumer’s problem generates a competitive equilib-

rium at each site z:

max
{c(t,z)}

∫ ∞
0

e−ρtU (c (z, t)) dt subject to (31)

c (t, z) +
∂x (t, z)

∂t
= f (x (t, z) , Xe (t, z))− ηx (t, z) , x (0, z) = x0 (z) .

A rational expectations equilibrium is where Xe (t, z) is actual X (t, z) for

each (t, z) . Since we assume that capital is completely immobile, we interpret

“capital”as a type of capital embodied in humans, knowledge or technology

which does not move across “sites” z.17 Using conditions (18)-(19) and the

results of section 3, the Hamiltonian system for problem (31) can be trans-

17A richer model would allow mobility of capital by imposing some type of “haste makes
waste”adjustment costs. This however is an area for future research.
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formed, using the Fourier basis approach, into the following countable num-

ber of finite dimensional linear equilibrium problems, one for each mode, with

derivatives evaluated at the FSS rational expectations equilibrium (x̄, p̄).

dxk
dt

=
[
ρ+ f̄XW (k)

]
xk − c′ (p̄) pk , c′ (p) < 0. (32)

dpk
dt

= −
[
f̄xx + f̄xXW (k)

]
p̄xk. (33)

Mode k = 0 corresponds to a spatially homogeneous rational expectations

equilibrium. For the spatial externality to generate economic agglomeration,

the FSS should become unstable to spatially heterogeneous perturbations

induced by the spatial spillovers at some mode k. Therefore, the stability

analysis of section 3 suggests that clustering will emerge at the rational ex-

pectation equilibrium at mode k, if the mode-k Jacobian matrix of (32)-(33)

has positive trace and determinant or:

traceJ̄ (k) = ρ+ f̄XW (k) > 0 (34)

det J̄ (k) = ϕ (k) = −c′ (p̄) p̄
[
f̄xx + f̄xXW (k)

]
> 0. (35)

Thus ϕ (k) is the dispersion relationship. With a Cobb-Douglas production

function, xα1Xα2 , a FSS will solve the equation ρ+ η = α1x
α1−1 (W (0)x)α2 ,

W (0) =
∫ π
−π w (ζ) dζ = w̄. That is, only mode zero matters. Relationship

(35) implies that this FSS becomes completely unstable and agglomeration

emerges at mode k if α1 + α2 (W (k) /W (0)) > 1.18 Thus the emergence

of agglomeration requires increasing social returns to capital at some mode

k. On the other hand, decreasing social returns to capital (α1 + α2 < 1) at

mode k = 0 imply that ϕ (0) < 0 and the rational expectations equilibrium

FSS has the saddle point property, which is the expected result.

18The shape of the W (k) for two different types of kernels is presented in Appendix 5
(figures 3 and 5).
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4.2 The Social Planner’s Optimum

The social planner, assuming that capital x (t, z) is immobile in the sense

described above and that consumption goods c (t, z) are produced on site,

solves problem (29)-(30). The Ramsey type optimality conditions for the so-

cial optimum can be derived by direct application of (10)-(15). Assume that

a FOSS (x∗, p∗) , as defined in section 3, exists and has the saddle point prop-

erty. The Fourier basis approach transforms, as seen earlier, the planner’s

infinite dimensional linearized Hamiltonian system into a countable sequence

of systems of linear ordinary differential equations indexed by mode k. Fol-

lowing section 3, the saddle point stable FOSS becomes completely unstable

at a mode k, and agglomeration emerges if the determinant of the mode-k

Jacobian matrix of the linear system of ordinary differential equations, i.e.

the dispersion relationship, is positive at this mode k, or

ψ (k) = (ρ+ η − f ∗x − f ∗XW (k)) (f ∗x + f ∗XW (k)− η)− (36)

p̄c′ (p̄)
[
f ∗xx + 2f ∗xXW (k) + f ∗XXW

2 (k)
]
> 0.

It might be interesting to compare the rational expectations equilibrium

steady state FSS and the social planner’s FOSS, with respect to their size

and likelihood of becoming unstable due to spatial spillovers. Let (x̄, p̄) ,

(x∗, p∗) denote the FSS and the FOSS respectively, and assume that the

production function is Cobb-Douglas with decreasing social returns at the

spatially homogeneous case. Then it can be easily shown that, as expected,

x̄ < x∗. To compare agglomeration forces we compare the dispersion re-

lationships (35) and (36). Write (36) as ψ (k) = T1 (k) − T2 (k) and as-

sume that the function g (x, k) := f (x, xW (k)) is concave in x for each

k. Define T3 (k) = f ∗xx + 2f ∗xXW (k) + f ∗XXW
2 (k) < 0, then T2 (k) =

p̄c′ (p̄)T3 (k) > 0. At a flat steady state ρ+ η = f ∗x − f ∗XW̄ (0) , thus T1 (k) =

f ∗X (W (0)−W (k)) ( f ∗x + f ∗XW (k)− η) . The emergence of clusters at the

FOSS requires that T1 (k) > 0 and T1 (k) > |T2 (k)| . On the other hand, the
emergence of clusters at the FSS requires that ϕ (k) > 0 or f̄xx+ f̄xXW (k) >

0, since −c′ (p̄) p̄ > 0. Numerical simulations, presented in Appendix 6, sug-
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gest that the FSS is more likely than the FOSS to become unstable under

spatial spillovers, confirming the intuition discussed in section 3. Instability

of the FSS means that an equilibrium steady state agglomeration may be

realized in the long run. Such an agglomeration, obtained numerically, is

presented in figure 1 (see Appendix 6 for details). The flat line corresponds

to the FSS which is destabilized by spatial spillovers.
-3-2-10123z10203040xHzL

Figure 1: Equilibrium steady state agglomeration and FSS

5 Conclusions

This paper develops a fairly general approach to the study of infinite dimen-

sional, infinite horizon, intertemporal recursive dynamic optimization models

in continuous spatial settings, as well as analytical techniques for local sta-

bility analysis of spatially flat optimal steady states to spatial spillovers.

Our work is related to the stability analysis of infinite dimensional, infinite

horizon optimal control problems in Hilbert space settings (e.g. Carlson et

al. 1991, Chapter 9; Leizarowitz 2008), but we formulate and analyze mod-

els with spillovers represented by kernels as in the new economic geography

literature, technology spillover models, and elsewhere. We exploit Fourier

basis techniques to organize the local stability analysis around an analyti-

cally tractable dispersion relation. Using the dispersion relation, which is a

20



function of modes, we locate necessary and suffi cient conditions for the local

stability/instability) of a FOSS and FSS. Our stability analysis, which as we

show is independent of the basis choice, allows us to study the emergence of

optimal economic agglomeration in fairly general dynamic settings.

We apply our methods to the classic Ramsey model of growth theory

extended to include spatial spillovers in the production function, and to a

rational expectations competitive equilibrium under similar spatial spillovers.

Our results suggest that there is a range of parameter values where the FSS

associated with the rational expectations equilibrium is locally unstable to

spatial spillovers, while the FOSS associated with the planner’s problem is

locally stable. This illustrates the economic point that in a world of low

enough discounting, the social optimum would be stable due to the usual

logic behind turnpike theorems (e.g. Scheinkman 1976), but the rational

expectations competitive equilibrium can easily be unstable. In other words,

it is socially optimal not to have agglomeration form, yet the competitive

equilibrium produces agglomeration.

What about future research? We think the top priority is to extend the

general forward-looking infinite dimensional, infinite horizon optimization

approach developed here to new economic geography models, to structural

change models, and to the general study of symmetry breaking in economics.

We need to enrich the models studied here to include endogenous prod-

uct variety at each site, increasing returns to production of each variety at

each site, imperfect competition among varieties, backward/forward linkages,

costly movement of resources, and other ingredients that expose the role of

increasing returns, elasticity of substitution among varieties, costliness of

moving resources, and so on. We view our paper as a contribution to the set

of analytical techniques useful for analyzing models in this area.
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Appendix 1
First-Order Necessary Conditions
In this Appendix we provide a heuristic discussion about first-order nec-

essary conditions as a translation of the received work in the mathematical

literature associated with optimal control in infinite dimensional spaces (e.g

Ahmed 1985, Papageorgiou 1990) to our more special case, where the no-

tation can be lightened and the first-order necessary conditions are more

interpretable to economists.

We consider a distributed control system where the state and the control

are respectively represented by real functions x (t, z) and u (t, z) of time t ∈
[0,∞) := T , and the spatial variable z ∈ [−π, π] := Z. 19 Following Appel et

al. (2000), the real function x (t, z) of two variables (t, z) is identified with

the abstract function x = x (t) of one variable t ∈ T which takes its values
in a separable Hilbert space X of square integrable functions,20 X = L2 (Z) ,

defined as x (t) = x (t) (z) = x (t, ·) . Similarly the control u (t, z) is identified

with the abstract function u = u (t) = u (t) (z) = u (t, ·) , u (t) ∈ U = L2 (Z) .

We make the following assumptions:

A1: For each [0, T ] ∈ T , the controls u (t, ·) are measurable functions in
t that lie in the subset B[0, T ] of L2 such that

B[0, T ] =
{
u (t, ·) ∈ L2 (Z) : ‖u (t, ·)‖L2(z) ≤ b (T ) <∞

}
(37)

where the bound b (T ) is finite but may depend upon T. We call such controls

L2- bounded measurable controls.21

A2: The set of pairs (x, u) is admissible if for each T, u is L2- bounded

measurable control in B[0, T ] and x is uniformly L2- bounded on [0, T ].

Long-range spatial effects describing the effects of the concentration of

the state variable x (t, z′) in locations z′ on x (t, z) are modelled using the

19Circular spaces of the form Z := [− |Z| , |Z|] can be handled by a change in units.
20A square integrable function v (z) in the interval a ≤ z ≤ b satisfies the condition∫ b
a
|v (z)|2 dz <∞.
21By Carleson’s theorem each such u (t, ·) has a Fourier series that converges pointwise

for almost all z.
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kernel formulation, as:

X (t, z) =

∫
z′∈Z

w (z − z′)x (t, z′) dz′ := (Kx) (t, z) . (38)

A3: The kernel function w (·) is continuous and symmetric.
Assumption A3 implies that the operatorK defined by (Kx) (t, z) in (38)

is a compact linear operator that maps the Hilbert space L2 (Z;R) to itself.22

The kernel function quantifies the impact of site z′ on site z. Spatial impacts

are assumed to be symmetric, or w (z − z′) = w (z′ − z).

When spatial spillovers are combined with a temporal growth function

g (x (t, z) , u (t, z) , X (t, z)) , the rate of change of the state x at time t and

location z depends also on the values of the state at locations z′ ∈ Z and

can be written as:

∂x (t, z)

∂t
= g (x (t, z) , u (t, z) , X (t, z)) , x (0, z) = x0 (z) (39)

where x0 (·) ∈ L2 (Z) . Equation (39) describes the effects of spatial spillovers

on the evolution of the system’s state (e.g. capital stock, knowledge, tech-

nology) both in the time and the space domain. Using the identification of

x (t, z) , u (t, z) as x = x (t) , u = u (t) which take values in separable Hilbert

spaces, (39) can be written as the ordinary differential equation in X × U :

dx

dt
= g (x, u,X) , x (0) = x0. (40)

A4: The function g (x, u,X) , x = x (t) , u = u (t) , X = X (t) =

X (t, ·) = (Kx) (t, ·) satisfies a Lipschitz condition; is C2; and sup ‖∂g/∂v‖ ,
v = x, u,X is bounded. We also assume enough regularity in (40) so that

L2- bounded measurable control inputs yield L2- bounded state outputs.

22A linear operator A : H → H, where H,H are Hilbert spaces, is compact if the image
of every bounded subset B of H under A is relatively compact in H. For a continuous or
square integrable kernel w (·) , the operator A is compact. For a symmetric L2-kernel the
operator is self-adjoint. An operator A is linear if A (β1f1 + β2f2) = β1 (Af1)+β2 (Af2) ,
for constants β1, β2 and square integrable functions f1, f2. Thus the operator we use is
compact, linear and self-adjoint (for details see e.g., Dieudonne 1960, Chapter XI). To
simplify notation, sometimes we write Kv instead of (Kv) (t, z) for some function v (t, z) .
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From A4 (40) has an L2- bounded solution x (t) , for a given u. The

solution x = x (t) defines a generalized solution x (t, z) = x (t) (z) of the

integro-differential equation (39).23 Equation (39) can be used as a dynamic

constraint in an optimal control problem where the objective is to choose

admissible controls u (t, z) which will maximize discounted benefits over the

spatial domain Z associated with a payoff function. We associate with the

control system (38)-(39) the payoff expression

J (x0 (z) , u (·)) =

∫ ∞
0

e−ρtF (x (t) , u (t) , X (t)) dt. (41)

A5: F (·, ·, ·) is a differentiably concave and upper-semicontinuous func-
tion on L2×L2×L2 that satisfies the coercivity condition F (x (t) , u (t) , X (t)) ≤
a− c ‖x (t)‖L2(Z) , (a, c) > (0, 0) , (Leizarowitz 2008).

The payoff functional which corresponds to the maximization of dis-

counted benefits over the entire spatial domain is defined by:

F (x (t) , u (t) , X (t)) =

∫ π

−π
f (x (t, z) , u (t, z) , X (t, z)) dz. (42)

A6: f (·, ·, ·) is a differentiable concave and upper semi-continuous func-
tion f : R3 → R.
When the payoff is maximized over the entire spatial domain, then the

distributed parameter optimal control problem can be stated as:

max
{u(t)}

J (x, u,X) =

∫ ∞
0

e−ρtF (x (t) , u (t) , X (t)) dt (43)

subject to (39) and (38).

To develop a version of the maximum principle for this problem, we first

23A generalized solution x = x (t, z) is measurable on T × [−π, π] , x (·, z) is absolutely
continuous on T for each z ∈ [−π, π] and satisfies (3) almost everywhere. For details see
Appel et al. (2000, Chapter 1).
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consider a fixed terminal time, free endpoint problem with discounting.

max
{u(t,z)}

J (x, u,X) =

∫ t1

0

∫ π

−π
e−ρtf (x (t, z) , u (t, z) , X (t, z)) dzdt (44)

subject to (39) and (38)

x (t1, z) free for all z ∈ Z. (45)

Suppose that u∗ (t) = u∗ (t, ·) = u∗ (t, z) is an optimal control function for

problem (44) and let x∗ (t) = x∗ (t, ·) = x∗ (t, z) represent the optimal path

for the state of the system when x (0, z) = x0 (z) .We select an ε > 0 and we

define the variation (see, for example, Athans and Falb 1966, Evans 2008)

u (t; ε) = u∗ (t) + εβ (t) , 0 ≤ t ≤ t1 (46)

where β (t) = β (t, ·) is a function which satisfies assumptions similar to A1
and which is selected such that u (t; ε) satisfies A2 for all suffi ciently small

ε > 0. We call the function β (t) an acceptable variation and we assume

that such a function exists. Let xε (t) = x (t; ε) = x (t, ·; ε) be a solution of
(40) corresponding to uε (t) = u (t; ε) = uε (t, ·; ε) which satisfies A2, and let
Xε = X (t; ε) = (Kxε) (t, ·) . Since a small variation in the control generates
a small variation in the motion of the system,

xε (t) = x∗ (t) + εψ (t) (47)

where ψ (t) = ψ (t, ·) . Since xε is a solution of (40) we have, dropping t to
ease notation,

ẋε = g (xε, uε, Xε) = g (x∗ + εψ, u∗ + εβ,X∗ + εΨ) (48)

where by the linearity of the integral operator, Xε = Kxε = K (x∗ + εψ) =

Kx∗ + εKψ = X∗ + εΨ. Furthermore

ẋε = ẋ+ εψ̇. (49)

Expanding the right hand side of (48) around ε = 0, and denoting Fréchet
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derivatives with subscripts, we obtain

g (x∗ + εψ, u∗ + εβ,X∗ + εΨ) =

g (x∗, u∗, X∗) + gx (x∗, u∗, X∗) εψ + (50)

gu (x∗, u∗, X∗) εβ + gX (x∗, u∗, X∗) εΨ + o (ε)

where o (ε) is defined in the L2 norm sense, and limε→0
o(ε)
ε

= 0. Using (47),

(49) and (50),

εψ̇ = g∗xεψ + g∗uεβ + g∗XεΨ + o (ε) or (51)

ψ̇ = g∗xψ + g∗uβ + g∗XΨ +
o (ε)

ε
(52)

where (∗) indicates that all derivatives are evaluated along the trajectory

(x∗, u∗, X∗) and ψ (0) = 0, since the trajectory x (t, ·; ε) starts at x (0; ε) =

x0 (z) .

Suppose that y (t) = y (t, ·) = y (t) (z) is the solution of the linear ordinary

differential equation

ẏ = gx (x∗, u∗, X∗) y + gu (x∗, u∗, X∗) β + gX (x∗, u∗, X∗)Y (53)

y (0) = 0 , Y = (Ky) (t, ·) . (54)

Then it follows that

xε (t) = x∗ (t) + εψ (t) = x∗ (t) + εy (t) + o (ε) (55)

with ẏ given by (53)-(54). In the following we will replace xε (t) by x∗ (t) +

εy (t) instead of the more strictly accurate x∗ (t) + εψ (t) , and Xε (t) with

X∗ (t) + εY (t) .

Since (x∗, u∗, X∗) is optimal,

J (xε, uε, Xε) = J (ε)− J (x∗, u∗, X∗) ≤ 0, (= 0, when ε = 0) . (56)

Thus J (ε) assumes its maximum at ε = 0, which implies dJ(ε)
dε

∣∣∣
ε=0
≤ 0,
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or

dJ (ε)

dε

∣∣∣∣
ε=0

(57)

=

∫ π

−π

[∫ t1

0

e−ρt
d

dε
(f (x∗ + εy, u∗ + εβ,X∗ + εY )) dt

]
dz =∫ π

−π

[∫ t1

0

e−ρt (f ∗xy + f ∗uβ + f ∗XY ) dt

]
dz ≤ 0 (58)

where (∗) indicates that all derivatives are evaluated along the trajectory

(x∗, u∗, X∗) . To define the adjoint dynamics we introduce an adjoint equation

for a costate variable. The costate variable is a real function λ (t, z) , of two

variables (t, z) and is identified with the abstract function λ = λ (t) of one

variable t ∈ T which takes its values in a separable Hilbert space of square
integrable functions and is defined by λ (t) = λ (t) (z) = λ (t, ·) . We require
that the costate variable satisfy the ordinary differential equation

λ̇ = ρλ− (f ∗x +Kf ∗X)− (λg∗x +Kλg∗X) (59)

with e−ρt1λ (t1) = 0. (60)

Taking the time derivative
d(e−ρtλy)

dt
we obtain

d (e−ρtλy)

dt
= e−ρt

(
−ρλy + λ̇y + λẏ

)
. (61)

Integrating the right hand with respect to time, using integration by parts

for the term λẏ, and noting that y (0) = 0 we obtain∫ t1

0

e−ρt
(
−ρλy + λ̇y + λẏ

)
dt (62)∫ t1

0

e−ρt
(
−ρλy + λ̇y

)
dt+

[
e−ρt1λ (t1) y (t1)− λ (0) y (0)

]
− (63)∫ t1

0

e−ρt
(
−ρλy + λ̇y

)
dt = 0 (64)
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or using (53)∫ t1

0

e−ρt
[
−ρλy + λ̇y + λg∗xy + λg∗uβ + λg∗XKy

]
dt = 0. (65)

Substituting this into (58) we obtain∫ π

−π

[∫ t1

0

e−ρt
[
λ̇y − ρλy + f ∗xy + f ∗XKy + λg∗xy + λg∗XKy + (f ∗u + g∗u) β

]
dt

]
dz ≤ 0.

(66)

By changing the order of integration we note that two terms of the form∫ π

−π
f ∗X

∫ π

−π
w (z − z′) y (t, z′) dz′dz,

∫ π

−π
λg∗X

∫ π

−π
w (z − z′) y (t, z′) dz′dz

(67)

appear above. Let φ denote f ∗X , or λg
∗
X , then the two terms can be written

as ∫ π

−π
φ

∫ π

−π
w (z − z′) y (t, z′) dz′dz. (68)

By changing the order of integration we obtain∫
z′∈Z

[∫
z∈Z

φw (z − z′) dz
]
y (z′) dz′.

Since the integration area is the same by re-labeling z as z′ and z′ as z, we

obtain ∫
z∈Z

φ

[∫
z′∈Z

w (z − z′) y (t, z′) dz′
]
dz = (69)∫

z∈Z

[∫
z′∈Z

φw (z′ − z) dz′
]
y (t, z′) dz = (70)∫

z∈Z
(Kφ) y (t, z) dz. (71)

Substituting into (66) we finally obtain∫ π

−π

[∫ t1

0

e−ρt
[(
λ̇− ρλ+ f ∗x +Kf ∗X + λg∗x +Kλg∗X

)
y + (f ∗u + λg∗u) β

]
dt

]
dz ≤ 0 or

(72)
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∫ π

−π

[∫ t1

0

e−ρt (f ∗u + λg∗u) βdt

]
dz ≤ 0 (73)

because of (59). Inequality (73) must hold for every acceptable variation

β (t, ·) . If we define the current value Hamiltonian function as

H (x, u,X, λ) = f (x, u,X) + λg (x, u,X) (74)

the coeffi cient of β in (73) is ∂H(x
∗,u∗,X∗,λ)
∂u

. This implies that given x∗ (t, ·) , X∗ (t, ·)
and λ (t, ·) the optimal control u∗ (t, ·) should be selected to attain an ex-
tremum for the current value Hamiltonian function H (x∗, u,X∗, λ) among

admissible control functions.

If we let t1 →∞, then (60) can be written as

lim
t→∞

e−ρtλ (t, ·) = 0 (75)

which motivates the temporal transversality condition at infinity. Collecting

our results we can state that:

In order for u∗ (t, z) to be optimal for problem (7), it is necessary that

there exist a function λ (t, z) such that:

(i) x∗ (t, z) and λ (t, z) are a solution of the system

∂x

∂t
= g (x∗, u∗, X∗) = Hλ (x∗, u∗, X∗) , (76)

x (0) = x0 (z) , X = (Kx) (t, z)

∂λ

∂t
= ρλ− (f ∗x + λg∗x)− (Kf ∗X +Kλg∗X) = (77)

ρλ−Hx (x∗, u∗, X∗)−KHX (x∗, u∗, X∗)

satisfying a temporal limiting transversality condition,24 and spatial transver-

24For a concave problem (43) the limiting transversality condition is a necessary con-
dition (e.g. Benveniste and Scheinkman 1982). For general cases see Ekeland and
Scheinkman (1986) for discrete time, and Kamihigashi (2001) for continuous time.
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sality conditions for a finite spatial domain with circle boundary conditions,

lim
T→∞

e−ρT
∫
z∈Z

λ (T, z)x (T, z) dz = 0 (78)

λ (t,−π) = λ (t, π) , x (t,−π) = x (t, π) , for all t. (79)

With circle boundary conditions for the state variable x (t,−π) = x (t, π) =

x̂ (t), similar spatial transversality conditions λ (t,−π) = λ (t, π) for all t,

should be satisfied for the costate variable for the solution of the system of

equations (76)-(77).

(ii) The Hamiltonian function H (x∗, u,X∗, λ) has a (possibly local) max-

imum as a function of u at u∗ (t, z) for all t ≥ 0. For an interior maximum,

∂H

∂u
= 0, or fu + λgu = 0⇒ u∗ = u∗ (x, λ,X) . � (80)

Appendix 2
Suffi cient Conditions
Assume that f (x, u,X) and g (x, u,X) are differentiably concave func-

tions. Suppose that x∗ (t, z) , u∗ (t, z) , λ (t, z) satisfy conditions (76)-(80)

and that λ ≥ 0, and let functions x (t, z) , u (t, z) satisfy (39) and ini-

tial and boundary conditions. Let f ∗, g∗ denote functions evaluated along

(x∗ (t, z) , u∗ (t, z) , X∗ (t, z)) and let f, g denote functions evaluated along the

feasible path (x (t, z) , u (t, z) , X (t, z)) . To prove suffi ciency we need to show

that

W ≡
∫
z∈Z

∫ ∞
0

e−ρt (f ∗ − f) dtdz ≥ 0. (81)

From the concavity of f it follows that

(f ∗ − f) ≥ (x∗ − x) f ∗x + (u∗ − u) f ∗u + (X∗ −X) f ∗X . (82)

SettingX = Kx, and using, for functions φ1 (t, z) , φ2 (t, z) , reasoning similar

to (69)-(71) to write
∫
z
φ1 (Kφ2) dz =

∫
z
φ1 (Kφ2) dz, we obtain:∫

z∈Z
(f ∗ − f) dz ≥

∫
z∈Z

[(x∗ − x) (f ∗x +Kf ∗X) + (u∗ − u) f ∗u ] dz.
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Then,

W ≥
∫
z∈Z

∫ ∞
0

e−ρt [(x∗ − x) (f ∗x +Kf ∗X) + (u∗ − u) f ∗u ] dtdz = (83)∫
z∈Z

∫ ∞
0

e−ρt
[
(x∗ − x)

(
ρλ− ∂λ

∂t
− λg∗x −Kλg∗X

)
+ (u∗ − u) (−λg∗u)

]
dtdz =

(84)∫
z∈Z

∫ ∞
0

e−ρtλ [(g∗ − g)− (x∗ − x) g∗x − (X∗ −X) g∗X − (u∗ − u) g∗u] dtdz ≥ 0.

(85)

Condition (84) follows from (83) by using conditions (77) and (80) to substi-

tute for f ∗u and f
∗
x +Kf ∗X . Condition (85) is derived from (84) in the following

way.

(1) The term
∫∞
0
e−ρt (x∗ − x)

(
ρλ− ∂λ

∂t

)
dt is replaced, after integrating

by parts
∫∞
0
e−ρtλ∂x

∂t
dt and rearranging terms, by:∫ ∞

0

e−ρtλ

(
∂x∗

∂t
− ∂x

∂t

)
dt (86)

∂x∗

∂t
= g∗,

∂x

∂t
= g.

(2) ∫
z∈Z

(x∗ − x) (Kλg∗X) dz =

∫
z∈Z

λ (K (x∗ − x) g∗X) dz = (87)∫
z∈Z

λ (X∗ −X) g∗Xdz. (88)

Substituting (86) and (88) into (84), the first term of (84) can be written

as: ∫
z∈Z

∫ ∞
0

e−ρt [λ (g∗ − g)− λ (x∗ − x) g∗x − λ (X∗ −X) g∗X ] dtdz. (89)

Finally by substituting (89) into (84) we obtain (85) which holds by the

concavity assumption about g and the assumption that λ ≥ 0. �
Appendix 3
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Proof of Proposition 1
The linearized Hamiltonian system of problem (43) at the FOSS can be

written as:

∂x

∂t
= H∗λxx+H∗λXKx+H∗λλλ (90)

∂λ

∂t
= (−H∗xx − 2H∗Xx)x−H∗XXK (Kx) + (ρ−H∗xλ)λ−H∗XλKλ (91)

where the superscript (∗) indicates that the Fréchet derivatives are evalu-

ated at (x∗, λ∗). Our approach in studying the stability of the FOSS to

spatially heterogeneous perturbations off the FOSS, is to transform the in-

finite dimensional system (90)-(91) into a countable sequence of linear sys-

tems of ordinary differential equations so that we can use linear stability

analysis. To obtain this we consider pairs of square integrable solutions

(x (t) (z) , λ (t) (z)) = (x (t, z) , λ (t, z)) and we construct trial solutions using

an orthogonal basis of L2 (Z) created in terms of functions cos (kz) , sin (kz) ,

z ∈ [−π, π] , for mode k = 0, 1, 2, .... which form a complete orthogonal basis

over [−π, π] . Our assumptions about functions f and g suggest that the solu-

tion (x (t, z) , λ (t, z)) of the optimal control problem will be smooth enough

for it to be expressed in terms of Fourier basis, as:

x (t, z) = eσt
∞∑
k=0

[α1k cos (kz) + α2k sin (kz)] , z ∈ [−π.π] (92)

λ (t, z) = eσt
∞∑
k=0

[A1k cos (kz) + A2k sin (kz)] (93)

where ak (t) = (eσta1k, e
σta2k) , Ak (t) = (eσtA1k, e

σtA2k) are the Fourier coef-

ficients. As shown in Priestley (1981, Section 4.2), any function in the class

L2 (−π, π) has a Fourier expansion which converges to the function in the

mean square sense, and any continuous and bounded variation function of

(−π, π) has a Fourier series expansion which converges to values of the func-

tion in (−π, π). To save on notation let v (t, z) stand for x (t, z) or λ (t, z) .

Since v (t, ·) ∈ L2 (−π, π) for each t, v (t, ·) has a Fourier series. This is so
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because the Fourier coeffi cients αk (t) , Ak (t) exist for each t and the Fourier

series converges for each t (Priestley 1981, Section 4.2.1). As shown by

Priestley the Fourier basis is a complete orthogonal basis for each t. For the

Fourier coeffi cients to be Lipchitz in t on compact subsets Tc ∈ [0,∞), some

more regularity is required. This regularity assures that solutions exist for

the integral equation for each mode k. As one can see from Priestley (1981,

equations (4.2.5), (4.2.6)), a suffi cient condition for the Fourier coeffi cients of

v(t, z) to be uniformly Lipchitz in t on compact subsets Tc ∈ [0,∞) is the fol-

lowing: For each compact subset Tc of [0,∞), there is L(Tc), 0 < L(Tc) <∞,
such that for all (t, t′) ∈ Tc, we have |v(t, z)− v(t′, z)| ≤ L(Tc)|t− t′|, for all
z ∈ Z.
By the symmetry of the kernel w (z − z′) = w (z′ − z) , setting ζ = z′− z

we obtain
∫
z′∈Z w (z′ − z) v (t, z′) dz′ =

∫
ζ∈Z w (ζ) v (t, ζ + z) dζ, v = x, λ.

Substituting the trial solution under the integral we obtain, dropping t to

simplify notation:

(Kv) (t, z) =

∫
ζ∈Z

w (ζ) v (ζ + z) dζ =

eσt
∫
ζ∈Z

w (ζ)
∞∑
k=0

[αvk cos (k (ζ + z)) + βvk sin (k (ζ + z))] dζ.

Using the formulas

cos (A+B) = cosA cosB − sinA sinB

sin (A+B) = sinA cosB + sinB cosA

and noting that because of the symmetry of the kernel w (ζ) = w (−ζ) , it

holds that
∫ |Z|
−|Z|w (ζ) sin (kζ) dζ = 0 for any constants Z, k, we obtain for the
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terms Kx and Kλ in (90)-(91):

(Kx) (t, z) = eσt
∑
k

[a1k cos (kz) + a2k sin (kz)]

∫
ζ∈Z

w (ζ) cos (kζ) dζ = x (t, z)W (k)

(Kλ) (t, z) = eσt
∑
k

[A1k cos (kz) + A2k sin (kz)]

∫
ζ∈Z

w (ζ) cos (kζ) dζ = λ (t, z)W (k)

W (k) =

∫
ζ∈Z

w (ζ) cos (kζ) dζ.

For the term K (Kx) in (90) we have:

Put y (t, z) = (Kx) (t, z) , then

K (Kx) (t, z) = (Ky) (t, z) =∫
w (ζ)

(∫
w (ζ) eσt

∞∑
k=0

[αvk cos (k (ζ + z)) + βvk sin (k (ζ + z))] dζ

)
dζ =∫

w (ζ)x (t, ζ + z)W (k) dζ = W (k)

∫
w (ζ)x (t, ζ + z) dζ =

W (k)

∫
w (ζ) eσt

∞∑
k=0

[αvk cos (k (ζ + z)) + βvk sin (k (ζ + z))] dζ =

W (k)x (t, z)W (k) = W 2 (k)x (t, z) .

Substituting the rest of the trial solutions into (90)-(91) and collecting

terms we obtain

dxk
dt

= [H∗λx +H∗λXW (k)]xk +H∗λλλk (94)

dλk
dt

=
[
−H∗xx − 2H∗XxW (k)−H∗XXW 2 (k)

]
xk + (95)

[ρ−H∗xλ −H∗XλW (k)]λk.

This is a sequence of linear systems of ordinary differential equations indexed

by k which corresponds to mode k. Mode k = 0 and W (0) correspond to a
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spatially homogenous system.25 From the Jacobian matrix J∗k ,

J∗k =

(
H∗λx +H∗λXW (k) H∗λλ

−H∗xx − 2H∗XxW (k)−H∗XXW 2 (k) ρ−H∗xλ −H∗XλW (k)

)
(96)

of the sequence of the linear systems (94)-(95) it follows that mode k is

saddle point stable if the pair of eigenvalues of (94)-(95) have opposite signs,

and it is unstable if both eigenvalues are real and positive or complex with

positive real parts. In (96) traceJ∗k = ρ > 0, while the determinant defines

a quadratic expression in terms of W (k) . This is the dispersion relationship

for the optimal control problem with spatial spillovers, which can be written

as:

ψ (k) =
[
H∗XXH

∗
λλ − [H∗λX ]2

]
W 2 (k) +

[H∗λX (ρ− 2H∗λx) + 2H∗XxH
∗
λλ]W (k) +

[
ρH∗λx − [H∗λX ]2 +H∗λλH

∗
xx

]
.(97)

If there exists k such that ψ (k) > 0 for k ∈ (k1, k2) , then both eigenvalues

(σ1, σ2) of (94)-(95) which characterize temporal growth are positive and the

FOSS is not stable to spatially heterogeneous perturbations. The eigenvalues

are obtained as the solution of the characteristic equation

σ2 − ρσ + ψ (k) = 0

with eigenvalues:

σ1,2 (k) =
1

2

(
ρ±

√
ρ2 − 4ψ (k)

)
. (98)

Spillovers induced spatial instability requires ψ (k) > 0 for k ∈ (k1, k2) . A

linear approximation solution for (90)-(91) in the neighborhood of the FOSS

can be obtained by setting the constant of the largest eigenvalue, which does

25A similar decomposition can be obtained by using as trial solutions xk (t, z) =
cxeλt+ikz, λk (t, z) = cλeλt+ikz k = 0, 1, 2, ... for constants

(
cx, cλ

)
and Z = [0, 2π] . In this

case W (k) =
∫
ζ
w (ζ) eikζdζ is a scaled Fourier Transform and the sequence

√
1
2π e

ikζ is a

complete orthonormal basis in L2.
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not satisfy transversality conditions at infinity, equal to zero. �
Appendix 4
Proof of Proposition 2
Let (x∗, λ∗) be a FOSS for problem (43), and let Bk (z) be a complete or-

thonormal basis in L2 (Z) , such that the closed linear manifold generated by

Bk (z) is L2 (Z) , such that (x (t, z)− x∗, λ (t, z)− λ∗) = (
∑∞

k=0 ak (t)Bk (z) ,
∑∞

k=0Ak (t)Bk (z)) ,

where (ak (t) , Ak (t)) are Lipchitz in t on compact subsets Tc ∈ [0,∞). Such

a basis exists since a separable Hilbert space has at least one complete or-

thonormal basis (e.g. Yosida 1980, Chapter III). This orthonormal basis can

be constructed, for example, from the orthogonal sine/cosine basis using the

Schmidt process.

Consider small perturbations (x (t, z)− x∗, λ (t, z)− λ∗) offthe FOSS and
write

ξx (t, z) = x (t, z)− x∗, ξλ (t, z) = x (t, z)− x∗. (99)

For theBk (z) basis we know that the Fourier coeffi cients for ξx (t, z) , ξλ (t, z)

are

ak (t) = 〈ξx (t, ·) , Bk (·)〉 , Ak (t) =
〈
ξλ (t, ·) , Bk (·)

〉
(100)

where 〈·, ·〉 denotes inner product. Then by Parseval’s formula (Yosida 1980,
Chapter 3)

‖ξx (t, ·)‖2 =
∞∑
k=0

|ak (t)|2 ,
∥∥ξλ (t, ·)

∥∥2 =

∞∑
k=0

|Ak (t)|2 . (101)

Assume that another complete orthonormal basis B′k (z) exists in L2 (Z) with

(A′k (t) , a′k (t)) Lipchitz in t on compact subsets Tc ∈ [0,∞). Then

ξx (t, z) =
∞′∑
k=0k

a′k (t)B′k (z) , ξλ (t, z) =
∞∑
k=0

A′k (t)B′k (z) . (102)
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Parseval’s formula implies then that

‖ξx (t, ·)‖2 =

∞∑
k=0

|ak (t)|2 =
∞∑
k=0

|a′k (t)|2 (103)

∥∥ξλ (t, ·)
∥∥2 =

∞∑
k=0

|Ak (t)|2 =

∞∑
k=0

|A′k (t)|2 . (104)

Then:

If there is a mode k such that (ak (t) , Ak (t)) → ∞, as t → ∞, the
FOSS goes completely unstable for the basis Bk (z) and any other complete

orthonormal basis B′k (z) in L2 (Z) for this mode since ‖ξv (t, ·)‖2 → ∞,
v = x, λ. If ‖ξv (t, ·)‖2 → ∞, v = x, λ then (ak (t) , Ak (t)) → ∞ for at

least one mode-k coeffi cient for the basis Bk (z) and any other complete

orthonormal basis B′k (z) in L2 (Z) .

If (ak (t) , Ak (t)) → 0, as t → ∞ for all k ≥ 0, then the FOSS is stable

for the basis Bk (z) and any other complete orthonormal basis B′k (z) in

L2 (Z) , since ‖ξv (t, ·)‖2 → 0, v = x, λ. If ‖ξv (t, ·)‖2 → 0, v = x, λ then

(ak (t) , Ak (t)) → 0 for all mode-k coeffi cients for the basis Bk (z) and any

other complete orthonormal basis B′k (z) in L2 (Z).

Considering as Bk (z) the sine/cosine basis used in this paper, Parceval’s

formula, with appropriate orthonormalization, implies:

‖ξx (t, ·)‖2 =

∞∑
k=0

∣∣eσ1kta1∣∣2 (105)

∥∥ξλ (t, ·)
∥∥2 =

∞∑
k=0

∣∣eσ1ktA1∣∣2 (106)

where the mode-k coeffi cients of the sine/cosine basis are (ak (t) , Ak (t)) =

(eσ1kta1, e
σ1ktA1) and the square of the norm of the deviations are defined on

the tangent mode-k manifold which corresponds to the smallest eigenvalue

of J∗k ,
26 then:

26Note that the tangent manifold corresponding to the smallest eiegnvalue satisfies the
temporal transversality condition at infinity. To control the system on this manifold the
constants associated with the largest eigenvalue of J∗k are set equal to zero.
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If σ1k < 0 for all k ≥ 0, then all mode-k tangent manifolds are stable in

the sense that the deviations from the FOSS tend to zero for all modes k as

t→∞, and the FOSS is saddle point stable. The norms in (105) and (106)
go to zero in this case and because of (103) and (104) the norms will go to

zero as t→∞ for any other complete orthonormal basis too. If the FOSS is

saddle point stable along all the mode-k tangent manifolds corresponding to

the smallest eigenvalue, i.e. the norms in (105) and (106) go to zero, then all

mode-k eigenvalues σ1k, k = 0, 1, 2, ... should be negative. Because of (103)

and (104) all mode-k coeffi cients of any other complete orthonormal basis

will go to zero.

If σ1k > 0 for some mode k > 0, then the mode-k tangent manifold is

unstable in the sense that the deviations from the FOSS tend to infinity for

mode k as t → ∞. The norms in (105) and (106) go to infinity in this case
and because of (103) and (104) the norms will go to infinity as t → ∞ for

any other basis too. If the FOSS is unstable for a mode-k tangent manifold

corresponding to the smallest eigenvalue, i.e. the norms in (105) and (106)

go to infinity, then the mode-k eigenvalues σ1k should be positive. Because

of (103) and (104) at least one mode-k coeffi cient of any other complete

orthonormal basis will go to infinity. �
Appendix 5
Simple Exponential Kernels
We present the two simple exponential kernels with quadratic exponents

which are considered in the optimal growth example.
Kernel w1 (ζ) = b1 exp

[
− (ζ/d1)

2] , b1, d1 > 0, ζ = z − z′

z ∈ [−π, π] W (k) = i
√
π
2
b1d1 exp

(
− (d1k)

2

4

)
×

×
[
erf i

(
d1k
2
− iπ

d1

)
+ erf i

(
d1k
2

+ iπ
d1

)]
Kernel w2 (ζ) = b1 exp

[
− (ζ/d1)

2]− b2 exp
[
− (ζ/d2)

2]
b1 > b2, d1 < d2

z ∈ [−π, π] W (k) = i
√
π
2

(A1 − A2) , Aj = bjdj exp
(
− (djk)

2

4

)
×

×
[
erf i

(
djk

2
− iπ

dj

)
+ erf i

(
djk

2
+ iπ

dj

)]
, j = 1, 2

erfi(z) = erf (iz/i) : imaginary error function

erf (z) = 2√
π

∫ z
0
e−u

2
du : the error function
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Figure 2: Kernel w1 (z − z′)

Figures 2-5 present some typical shapes for w (z − z′) and the correspond-
ingW (k) in a discrete domain. Kernels of the type w1 (z − z′) imply that the
influence of neighboring state variables on a local state variable is a weighted

average of the state variable at neighboring locations, with weights decay-

ing exponentially, and with this influence being always nonnegative. This is

similar for example to Lucas’s (2001) assumption for the case of labor pro-

ductivity. Kernels of the type w2 (z − z′) imply similarly that the influence of
neighboring state on local state is a weighted average of the state at neigh-

boring locations, but that the influence from nearby locations is positive,

while the influence is negative from relatively more distant locations. This

is similar to Krugman’s (1996) modelling of a market potential function.

Appendix 6
Optimal Spillover Induced Spatial Instability: FSS vs FOSS
We examine the strength of agglomeration forces acting on the FSS ver-

sus the FOSS with the help of a numerical example using a Cobb-Douglas

production function. We assume α1 = 0.4, α2 = 0.2, ρ = 0.03, η = 0.04. We

assume that the kernel is of the form w2 (z − z′) shown in Appendix 5 with

b1 = 1, d1 = 0.75, b2 = 0.7, d2 = 1. The functions w (ζ) and W (k) are shown

in Figures 4 and 5 respectively. The relationship f̄xx + f̄xXW (k) = ϕ1 (k) is
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Figure 3: W (k) for kernel w1 (z − z′)

-3-2-1123z-z'-0.3-0.2-0.10.10.20.30.4wHz-z'L

Figure 4: Kernel w2 (z − z′)
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Figure 5: W (k) for kernel w2 (z − z′)

shown in Figure 6, while T1 (k) is shown in Figure 7.

Figure 6: The dispersion relationship ϕ (k)

43



Figure 7: The relationship T1 (k)

For mode k = 2, ϕ1 (2) > 0, thus the FSS becomes unstable under the

influence of spatial spillovers and economic agglomeration will start emerg-

ing. From Figure 5 we have that a1+ W (2)
W (0)

a2 = 1.07922, indicating increasing

social returns and instability at mode k = 2. The function T1 (k) shown in

Figure 7 is always negative, therefore that FOSS is not destabilized by spa-

tial spillovers and the optimal steady state of the social planner’s problem

is spatially homogeneous. The same results hold for a neighborhood of pa-

rameters around the ones used above. T1 (k) becomes positive, which is a

necessary though not a suffi cient condition for destabilization of the FOSS

when the returns to externality are low and the discount rate high.

In the Cobb-Douglas example the FSS and FOSS solve respectively

ρ+ η = a1x
a1−1 (W (0)x)a2 (107)

ρ+ η = a1x
a1−1 (W (0)x)a2 + a2x

a1
[
(W (0)x)a2−1

]
W (0) (108)

W (0) =
√
π

[
b1d1 erf

(
π

d1

)
− b2d2 erf

(
π

d2

)]
. (109)

The values corresponding to the numerical example are x̄ = 23.2383, x∗ =

64.0372. Since the FSS is destabilized by the spatial spillovers we seek a

numerical approximation of the steady state optimal agglomeration. As can

be seen by taking the optimality conditions for the rational expectations
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equilibrium, this agglomeration will be a function x̄ (z) which will solve the

steady state integral equation

0 = (ρ+ η)− a1 (x (z))a1−1
(∫ π

−π
w (z − z′)x (z′) dz

)a2
(110)

w (z − z′) = b1 exp

[
−
(
z − z′
d1

)2]
− b2 exp

[
−
(
z − z′
d2

)2]
. (111)

A search for a local numerical approximation can be conducted by choosing a

set of n equal sub-intervals with length δn = 2π/n given by −π = z1 < z2 <

... < zr < ... < zn+1 = π with zr = −π + rδn. Approximating the Riemann

integral in
∫ π
−π w (z − z′)x (z′) dz by a finite sum as

∫ π

−π
w (z − z′)x (z′) dz′ ' δn

n+1∑
m=1

w (zr − z′m)x (z′m) ,

the nonlinear integral equation (110) can be replaced by a system of nonlinear

algebraic equations27 which are written, taking logarithms, as:

ln

(
ρ+ η

a1

)
= (a1 − 1) lnxr + a2 ln

(
δn

n+1∑
m=1

w (zr − z′m)x (z′m)

)
(112)

r = 1, ..., n+ 1.

The system is solved in the neighborhood of the FSS for n = 6 and δn = π/3.

The results are shown in Figure 8. The flat line corresponds to the FSS which

is destabilized by the spatial spillovers.

27This is based on the method introduced by Fredholm where the integral equation is
treated as a limiting form of a finite system of linear algebraic equations.
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Figure 8: Equilibrium steady state agglomeration and FSS
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