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[1] We extend existing methodology for estimating shadow prices for exhaustible natural 
resources to renewable resources with common pool characteristics, using groundwater 
in irrigated agriculture as an example. The resource’s shadow price is defined in terms of 
a perfect foresight open loop Nash equilibrium. Furthermore, we introduce a new 
estimation approach and derive shadow groundwater scarcity rents by estimating a 
stochastic restricted distance function using duality results between distance and cost 
functions. This approach is appropriate when price information is not available or when 
cost, profit, or revenue functions representations are precluded because of violations of the 
required behavior assumptions. We use our results to study policy implications for 
groundwater management.  

1. Introduction 
[2] The accounting or shadow price (other terms used 

are in situ price or scarcity rent) of the stock of a natural 
resource reflects changes in the discounted value of the 
future flows in welfare associated with the use of the natural 
resource, resulting from changes in the resource’s stock. As 
such these accounting prices convey information which is of 
great importance in a number of areas. In resource manage- 
ment this accounting price, along with the extraction costs, 
determines the resource’s full cost. In the process of 
estimating the inclusive or total wealth of a nation, account- 
ing prices are used for the valuation of the stock of natural 
capital  [e.g.,  Dasgupta  and  Mäler,  2000].  In  resource 
regulation shadow prices are used as a basis for designing 
taxes on a harvested or extracted resource to prevent 
overexploitation of a common pool resource and direct 
the system toward a socially optimal path [e.g., Brock and 
Xepapadeas, 2004]. 

[3] In a dynamic optimization framework, the resource’s 
accounting price is determined by the derivative of the value 
function of the problem with respect to the resources stock, 
(this interpretation also holds in nonoptimizing frameworks 
[Arrow et al., 2003]) or equivalently, in the Hamiltonian 
formulation of the problem, by the costate variable associ- 
ated with the transition equation describing the evolution of 
the resource’s stock. Despite however the profound impor- 
tance of these prices and the ability to define them formally 
in terms of economic models, their estimation by using 

 

 

‘‘market observables’’ faces severe difficulties, because in 
cases such as stocks of common pool resources, or stocks in 
vertically integrated resource industries, the corresponding 
markets for in situ stocks are missing. 

[4] The purpose of this paper is to develop a methodo- 
logical approach leading to the estimation of the accounting 
price of groundwater with common pool characteristics. We 
consider the very often encountered situation in irrigated 
agriculture where groundwater is used by farmers located 
above the aquifer. In such a case an estimate of ground- 
water’s shadow price can be used to value the stock of water 
in green accounting calculations, to help design pumping 
taxes in order to mitigate externalities associated with 
groundwater use [Howe, 2002], or to test the empirical 
implications of Hotelling’s principle. See Berck [1995] and 
Koundouri [2003] for a survey of the relevant literature. 

[5] Shadow prices for the in situ stock of exhaustible 
natural resources have been estimated by Halvorsen and 
Smith (HS) [1984, 1991], for exhaustible natural resources 
without common pool characteristics, using a restricted cost 
function approach resulting from an optimization model 
associated with the firm’s wealth maximization problem. 
Our paper extends the HS methodology in two ways. First 
we generalize the methodology, using the groundwater in 
irrigated agriculture as an example, to renewable resources 
with common pool characteristics. In doing so the resource’s 
shadow price is defined in terms of a perfect foresight 
open loop Nash equilibrium. Second we introduce a new 
estimation approach and derive shadow groundwater scar- 
city rents and stock effects on groundwater extraction costs, 
by estimating a stochastic restricted distance function using 
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duality results between distance and cost functions. We 
chose this approach because when price information is 
not available, or alternatively when price information is 
available but cost, profit or revenue function representa- 
tions are precluded because of violations of the required 
behavior assumptions, distance functions provide an ex- 
cellent analytical tool for deriving efficient input shadow 
prices. Violations of conventional behavior assumptions 
are the norm rather than the exception in inefficiently 
managed and regulated industries like agriculture. The 
estimated technical firm-specific inefficiencies present in 
production technologies of agricultural firms in the sam- 
ple under consideration, suggest that cost minimization is 
not the relevant behavior objective in the industry under 
investigation. This empirical result therefore provides 

 

effects of cumulative groundwater extraction on total 
resource stock. R and f are constant aquifer-specific 
hydrological parameters representing deterministic ground- 
water recharge (m3/year) and the return flow of percolation 
back to the aquifer (pure number), respectively, while b 
reflects the natural rate of water losses. The aquifer’s 
area (m2) and water storage capacity as a function of its 
pore space volume (pure number) are represented by A 
and S, respectively. Without loss of generality we normalize 
AS = 1. 

[9] Assuming separability between quantities of inputs 
used in groundwater extraction and agricultural production, 
agricultural output is produced according to: 

 
Yi ¼ Yi

 
Xp; T ; Wi

 
Xw; H ; T

 
ð2Þ 

on extraction costs. 
[6] On the policy level we focus on the use of the 

estimated groundwater shadow price for regulating resource 
extraction under the assumption that farmers behave in a 
noncooperative way. Comparing this price with the optimal 
shadow price of groundwater (after internalization of all 
relevant externalities) allows the policy maker to identify 
the optimal tax to be imposed on extracting agents, as well 
as the welfare benefits that can be achieved via regulation. 
Finally, the proposed methodology allows estimation of 
farm-specific technical inefficiency measures that can be 
used by the regulator for competitive benchmarking (‘‘yard- 
stick competition’’) in which taxes or subsidies granted to 
each farm are based on the costs of a similar (in terms of 
input mix) but more efficient firm. 

[7] In section 2 we describe the relevant behavior model 
in the context of common pool groundwater extraction for 
irrigated agriculture. In section 3 we use the HS approach to 
derive the shadow price of a renewable common pool 
resource. In section 4, we build on HS and develop an 
information richer and potentially more efficient approach 
to estimating shadow prices. In general, our approach is 
relevant when cost, profit or revenue function representations 
are precluded due to existence of allocative inefficiency, or 

where Yi is firm-specific quantity of final output, X p is a 
vector of firm-specific agricultural inputs other than 
groundwater, T is time, indexing technological change 
effects, and Wi() is firm-specific output from the 
extraction subproduction function, that is, the firm- 
specific quantity of groundwater extracted. For notational 
simplicity, time (t) is suppressed hereafter. The extraction 
subproduction depends on inputs used in the extraction 

process Xw, H and T. The inclusion of aquifer H in the 
water extraction function reflects groundwater stock effect 
on water pumping. We assume that each farmer is 
sufficiently small, forms expectations about the time paths 
of the decision variables of the rest of the farmers and 
optimizes against them. The problem is an open loop 
dynamic game and its solution corresponds to a perfect 
foresight intertemporal Nash equilibrium. We doubt that 
the use of an alternative equilibrium concept such as the 
closed loop (feedback-subgame perfect) changes the 
substantive conclusions or the methodological advances 
that we are developing in this paper. With a positive 
market rate of interest r, the wealth maximization 
problem of the vertically integrated agricultural firm is 

 
Z 1 

—rt
 

p w 

 
when the regulator uses firm-specific efficiency measures for competitive benchmarking. In section 5, we summarize our 
main findings and discuss the policy implications of the 

max e 
Xp;Wi     0 

PY Yi — PpXi — C ðWi; Pw; H ; T Þ dt ð3Þ 

proposed methodology. 
 

2. Behavioral Model 

[8] We consider i = 1, . .  ., N agricultural firms (or farms) 
located above an aquifer, which are vertically integrated in 
that they engage both in the extraction (production) and use 
of common access groundwater as an input in their agri- 
cultural production. Let Wi(t) denote the quantity of water 

subject to equations (1), (2) and H(0) = Ho, where PY is 
the price of output, Pp is the vector of agricultural input 
prices, Pw is the vector of groundwater extraction input 
prices, and Cw is the minimal total cost function dual to 
the groundwater extraction subproduction function given 
by 

 

CwðWi; Pw; H ; T Þ ¼ min 
  

PwXw : Wi ≥ Wi

 
Xw; H ; T

 } 
ð4Þ 

extracted (pumped) by firm i at time t. The transition i 
equation describing the evolution of the groundwater stock 
in the aquifer is given by: 

xw i i 

H_ ðtÞ ¼ 
 1  

"

FðH Þ — ð1 — f Þ · 

 
N 

 

i¼1 

WiðtÞ

#

; FðH Þ ¼ R — bH  ð1Þ 

[10] The current value Hamiltonian for farm i is defined 
as: 

 
H ¼ PY Yi — PpXi — C ðWi; Pw; H ; T Þ 

 
Transition equation (1) represents a renewable resource 
model, where H is aquifer head (m) representing yearly 

þ m 

"

 R — ð1 — f Þ

 

Wi þ 
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support for the use of the distance function approach to 
deriving in situ resource shadow prices and stock effects 

X 

i 
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Assuming symmetry the optimality conditions characteriz- 
ing the perfect foresight open loop Nash equilibrium are: 

@Y 

maximizing quantities of output and rate of groundwater 
extraction, together with the quantities of agricultural inputs 
that minimize total costs. However, the optimal quantities of 

PY 
@X P 

for the jth input 

¼ Ppj agricultural inputs given by the solution to equation (6) will 
be identical to the quantities implied by equation (3), the 
wealth maximization problem [see Lau, 1976]. The solution 

@Y @Cw 
PY 

@W 
— 

@W 
¼ m

 
@Cw 

_ — r ¼ 
@H

 

of equation (6) results in the restricted minimum cost 
function 

 

CR ¼ CR
 
Y ; W ; H ; T ; Pp; Pw

 
 

along with equation (1) and the transversality condition at 
infinity. From the optimality conditions the costate variable 
m is the groundwater shadow price emerging from farmers’ 
noncooperative behavior with respect to water pumping, 

while @Cw 

reflects stock effects on the water extraction 
function. 

[11] If we consider the social welfare maximization 
problem, then a planner maximizes net surplus from irri- 
gated agriculture, or 

Following HS in using the first-order conditions for 
equations (5) and (6) the envelope theorem to take the 
derivatives of equations (5) and (6), with respect to W and 
H, and then combining the results, the following proposition 
can be stated. 

[14] Proposition 1 is as follows: The accounting price of 
the groundwater stock of a renewable common pool aquifer 
used for irrigated agriculture, corresponding to a symmetric 
perfect foresight open loop Nash equilibrium, is obtained as 

 

max 
Xp;W 

1 
—rt 

  Z Y
 

  
pðuÞdu — PpXp — Cw ðWi; Pw; H ; T Þ

 

dt 
 

@CR 
 

 

 
¼ —m ð7Þ 

where p(u) is the demand function for the agricultural 
product, subject to equation (1). The costate variable, say l, 
associated with equation (1), reflects the accounting price of 
the resource along the socially optimal path, and the 
difference l m can be used, as shown in the concluding 
section, to design regulatory schemes. It can be shown that 
under appropriate assumptions l > m at a steady state 
equilibrium, which is a result of common pool externalities. 

 

3. Restricted Cost Function Approach 
[12] If a competitive market existed for groundwater, its 

market price in each t would observable. Because ground- 
water is owned in common, no market arises and this price 
becomes unobservable. To derive this price, HS use duality 
theory and derive the relationship between gross and final 
(refined) resource indirect cost function (empirical applica- 
tion of HS was for unextracted ore used by the Canadian 
metal mining industry). Duality theory suggests that the 
maximization problem (3) corresponds to the following 
unrestricted cost minimization problem 

min PpXp þ PwXw þ m½W ðXw; H ; T Þ] s:t: Y ðXp; W ; T Þ ≥ Y ð5Þ 

where m is the costate variable in the Hamiltonian of 
problem (3), which is the in situ shadow price (scarcity rent) 
of groundwater. The solution of equation (5) requires 
information on m which cannot be obtained from market 
data. The problem has been addressed by HS by considering 
the auxiliary problem of minimizing the total cost of all 
inputs used in the production process (excluding ground- 
water) in each t, given H, Y, W in each t. In this restricted 
auxiliary problem, Y* and W* are the solutions to the firm’s 
wealth-maximizing problem 

min PpXp    PwXw 
Xp;Xw 

subject to Y  XP; W ; T   ≥ Y *   and   W ðXw; H ; T Þ ≥ W * ð6Þ 

[13] Each individual firm will not explicitly solve equa- 
tion (6). Instead it will solve simultaneously for the wealth- 

@W 
 

The stock effects associated with changes in the ground- 
water head are obtained as 

 
@CR 

@H 
¼ m_ — rm 

Thus the shadow price for groundwater can be derived by 
differentiating the estimated restricted cost function CR with 
respect to gross production of groundwater, while stock 
effects are estimated by differentiating the same function 
with respect to the aquifer’s head. Here, it is important to 
note that derivation of implicit shadow prices is possible for 
any values of m and Yi, not just those associated with wealth 

maximizing paths. That is, the restricted-cost function and 
Shephard’s lemma are valid for any values of output (Y) and 
unpriced input (W), while the dynamic optimality conditions 
that must be imposed in order to obtain an equation for (m) 

in the renewable resource context hold only at the optimum. 
Intuitively, although relation (7) is derived by assuming 
statically profit-maximizing agents, it holds for resource 
rents which are derived from both optimal and suboptimal 
dynamic resource management. For example, it holds where 
groundwater is suboptimally extracted over time, as is the 
case in general under common property. 

 

4. Distance Function Approach 
[15] The pioneering theoretical work on distance func- 

tions in production theory dates back to Shephard [1970], 
and recent extensions were made by Färe et al. [1994] and 
Färe and Primont [1995]. Empirical applications that com- 
pute shadow prices of either inputs or outputs in regulated 
industries are more recent and include, among others, 
Grosskopf and Hayes [1993] and Färe et al. [1993]. 

[16] In empirical applications, distance functions have a 
number of virtues: (1) they do not necessarily require price 
data to compute the relevant parameters, only quantity data 
is needed; (2) they do not impose any behavioral hypothesis 
(i.e., profit maximization or cost minimization); and (3) they 

0 0 

Z 
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(Lemma: Let v(p) = max {px: G(x) ≤ 1}, p, x 2 R m, 
where Xi denotes firm-specific vector of m input quantities 

i i i + i i i i + i l(p)   where   l(p)   is   the   optimal   Lagrangian   multiplier 

R 
i 

@DR @CR 
CbR 

Xp;X w 
i i i i i 

i i i 

        i   

@Wi 
Ci 

i i i i i i 

¼ 

    

 

allow the derivation of firm-specific inefficiencies. In re- The first-order conditions with respect to input quantities is: 
source management problems these are considerable advan- @CR @L @DR 
tages, given (1) absence of reliable price data for natural ¼ ¼ Pp — f ¼ 0 ð14Þ 

resource inputs, (2) diversity of firms’ objectives when they 
are heavily regulated, and (3) inefficiencies arising due to 
regulation or nonoptimal management of natural resource 

@X p 

 
@CR 

 
 

@X p 

 
@Li 

 
 

i @X p 

 
@DR 

 
 

@Xw ¼ 
@Xw  ¼ Pw — fi 

@X w ¼ 0 ð15Þ 
industries. 

[17] By using Shephard’s input distance function (an 
input orientation may be more appropriate in agriculture 

i i 
i i i 

The first-order conditions with respect to input prices is 
because the managers are likely to have more discretionary @CR @Li P 

control over inputs rather than outputs) to characterize 
technology rather than a cost function, we can employ a 
dual Shephard’s lemma to retrieve firm and input specific 

       i      

@Pp @Pp 

 
@CR @Li 

¼ Xi ð16Þ 

 
w        i      

shadow  prices  [Färe  and  Grosskopf,  1990].  The  restricted 
input distance function for the ith agricultural firm is 
defined as 

@Pw 

 

 @CR 

¼ 
@Pw ¼ Xi ð17Þ 

 
R 

DR
 

Y ; Xp; Xw; W ; H ; T 
 
 ¼ max

   

f > 0 :

 
Xi 

2 L ðY ; W ; H ; T Þ 
 

@fi 
¼ 1 — Di ð:Þ ¼ 0 ð18Þ 

i i i i i i i     i i 
i 

Following Shephard [1970], f = L = 
CbR ( ) at the 

 
ð8Þ optimum,  where  Cb

R
(  )  is  the  minimum  restricted  cost. 

(X  = (X p, Xw) 2 Rm), L (Y ; W , H, T) = {X  2 R  : X  can G(mx) = mG(x), for every x 2 R+ and m > 0. Then v(p) =  

produce Yi   R+} denotes the set of all input vectors which 
can produce the output vector (Yi R+); and fi measures the 

proportional (or radial) reduction in all (Xi Rm) that 
brings the ith firm to the frontier isoquant. The set L(Y) 
satisfies (1) 0 = L(Y), Y R 0, Y 0; (2) X R Y L(Y) 
X L(Y); (3) L(Y) is convex; (4) L(Y) is closed; (4) L(qY) 
L(Y), q R 1. In equation (8) we assume existence of a 
maximum, i.e., f = + not possible. Given the restricted 
cost function in equation (9), Shephard [1970] showed that 
the restricted input distance function may also be obtained 

associated with L(x, l )  = px + l[1      G(x)].) However, 

CR( ) depends on the shadow prices we seek. Therefore, in 
order to obtain CR( ) we adopt the assumption suggested by 
Färe  and  Grosskopf  [1990,  p.  125]  that  firms  satisfy  a 
balanced budget. Thus minimum restricted cost can be 
retrieved since costs must equal revenues and when the 
distance function (8) is known, we can estimate the 
derivatives of the restricted cost function from the restricted 
distance function using 

as a price minimal cost function as shown in equation (10).  
@DR

     
 

 

@CR 
 

Given the general axioms describing the production set, the 
restricted input distance function is (1) nondecreasing in 
(X 2 R+) and increasing in (Y 2 R+); (2) linearly homo- 

— 
@Wi CbR 

¼ 
@Wi 

ð19Þ 

geneous in (X 2 R+); (3) DR( ) R 1 if (X 2 R+) 2 LR( ); and               

      
 

CR Yi; Pp; Pw; Wi; H ; T 

¼ min  
  

PpXp þ PwXw : DR
 

Yi; Xp; Xw; Wi; H ; T 
  

R 1
} 

ð9Þ 

Going back to proposition 1 and using equations (19) and 
(20), proposition 2 can be stated as follows: The accounting 

 
i  i 

pool aquifer used for irrigated agriculture, corresponding to 
a symmetric perfect foresight open loop Nash equilibrium, 

DR Yi; Xp; Xw; Wi; H ; T 

¼ min 
  

PpXp þ PwXw : CR ¼ CRðYi; Pp; Pw; Wi; H ; T Þ
} 

ð10Þ 
is equal to the absolute shadow price of the resource 
derived from the restricted input distance function that 

Pp ;Pw i i i i 
describes firm-specific technology, or 

 
@DR

  
   

bR
  

 

Li ¼ PpXp þ PwXw þ f
 

1 — DR
 
Yi; Xp; Xw; Wi; H ; T

 
ð11Þ 

In the same context the stock effects associated with 
 

 

Applying the envelope theorem to equation (11) gives: 

 
 

 
 

 
@DR

   
    

bR
  

 

 
@CR 

 

 
 

@CR 
@Wi 

@Li 
¼ 

@Wi ¼ —fi @DR 
@Wi ð12Þ 

— 
@H 

Ci ¼ m_ i — rmi ¼ i : 22 
@H 

@ CR 

@H 
¼

 

@Li 

@H 

 @DR 
¼ — i 

@H
 ð13Þ 

5. Econometric Specification, Empirical 
Estimation, and Results 

[18] The assumption that Li( ) is a closed convex set, 
implies that the two approaches (8) and (10) yield the same 

ð Þ 
i 

i i 

changes in the groundwater head are obtained as 

price of the groundwater stock of a renewable common 

ð20Þ 
i 

@H 
¼ i 

i 

@H 
— 

i 
i 

i 

f 

i   

m 

2 

i   

x m 

(4) Di ( ) = 1 if (X R+) belongs to the frontier of the input 
set. 

The Lagrangian of the cost minimization problem postu- 
lated in equation 9) is 

— ¼ mi ð21Þ 

+ 
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k ¼ 1 dkm = 0 for m = 1, 2, . .  ., M; (2) the restrictions 
Irrigated Land LR test 22.87 

= 

U U V 

U V 

X X 

 

distance function [Shephard, 1970]. It follows that DR( ) can 
be calculated using the formulation in equation (8) which 

Table 1. Estimated Parameters for the Input Distance Functiona 
 

 

Variable Parameter ML Estimates T Ratiosb 

requires data on input and output quantities. We estimate    
equation (8) using a translog stochastic input distance 
function [Aigner et al., 1977] for the case of K inputs and 
M outputs. To obtain the frontier surface (i.e., the transfor- 
mation function) we set Di = 1. Moreover we impose 
(1) the restrictions required for homogeneity of degree +1 

Constant a0 0.48 0.60 

Output a1 0.30 5.68 
Nonirrigated land b1 0.28 9.44 
Labor b2 0.19 4.02 
Costs b3 0.04 0.81 
Water extraction b4 0.09 4.15 

in inputs, 

and 
P

K
 

k¼1 

k 
K 

= 1;   
K 

b 
l¼1 

= 0 for k = 1, 2, . .  ., K; 

 
 

Head b5 0.02 1.98 
Irrigated land by homogeneity 0.38 

Irrigated land log (likelihood) 378.14 

 
mn nm 

bkl blk 

for separability between inputs and outputs, dkm = 0 for k = 
1, 2, . .  ., K and m = 1, 2, . . ., M. 

M M M 

Irrigated land g = s2 /(s 0 + s2) 0.88 1.36 
Irrigated land h 1.40 2.02 

aThe dependent variable is irrigated land. Number of cross sections is 76; 
number of time periods is 3. bHypothesis tests are carried out at 95% confidence level. 

lnðD =x Þ¼ a þ 
X 

a ln y 
þ 

1 X X 
a

 ln y ln y 
i     Ki 0 m 

m¼1 

mi 
2
 mn 

m¼1 n¼1 

mi ni 

rejection of the null hypothesis of no technical inefficiency 
K—1 

þ 

K—1 K—1 

bk ln xk*i þ 
2
 bkl ln xk*i ln xl*i effects in the truncated-normal model. If the null hypothesis 

k¼1 

K—1   M 

þ 
k¼1  m¼1 

k¼1    l¼1 

dkm ln xk*i ln ymi 

is true, then the generalized LR statistic is asymptotically 
distributed as a mixture of chi-square distributions. The 
critical value for this mixed chi-square distribution is 5.138 
for a 5% level of significance (taken from Table 1 of Kodde 

i ¼ 1; 2; . . . ; N and xk* ¼ xk =xK ð23Þ 

where i   denotes the ith firm in the sample. (Note 

and Palm [1986]). Moreover, a zero value for g (g = s 2/ 
(s 2 + s2)) indicates that the deviations from the frontier are 

homogeneity implies D(y, wx) = wD(y, x) for any w > 0; 
we arbitrarily choose one of the inputs and set w = 1/xK. 
Hence D(y, x/xK) = D(y, x)/xK.) The frontier function has an 
error term with two components. The first component is a 
symmetric error term (Vi) that accounts for noise, which is 
assumed identically and independently distributed with zero 
mean and constant variance [iid N(0, s2)]. The second 
component is an asymmetric error term (Ui) that accounts 
for technical inefficiency, which is assumed to follow an iid 
distribution truncated at zero (N(n, s 2)). The two compo- 
nents of the error term, Vi and Ui, are independent. 
Predictions for Di = exp(Ui) are obtained using the 
conditional expectation Di = E[exp(Ui) Wi], where Wi = 
Vi Ui. Changing notation ln (Di) to Ui, equation (23) 
becomes 

— lnðx Þ ¼ TL

 

y
 xi 

; a; b

 

þ V — U i ¼ 1; 2; .. . ; N 

entirely due to noise, while a value of one indicates that all 
deviations are due to technical inefficiency. It should be 

stressed, however, that g is not equal to the ratio of the 
variance of the technical inefficiency effects to the total 
residual variance. This is because the variance of Ui is equal 

to [(p   2)/p]s2, not s2. Both hypotheses, g = 0 and g = 1, 
are rejected at the 95% level of significance, supporting the 
existence of technical inefficiency and the choice of a 
stochastic model, respectively. 

[20] Moreover, given the availability of panel data we are 
able to test for time-varying technical efficiencies. Follow- 
ing Battese and Coelli [1992], technical inefficiency effects 
in our model are assumed to be defined by: 

 

Uit ¼ ðUi expð—hðt — T ÞÞÞ ð25Þ 

where Uis are assumed to be iid as the generalized truncated- 
Ki i; 

xKi 
i i 

ð24Þ 

normal random variable defined above, and h is a parameter 
to be estimated. If the hypothesis that h = 0 is accepted, 
then we can conclude that firm-specific inefficiencies are 

[19] Data sources and variables’ definitions are provided 
in Appendix A. Equation (24) is estimated by maximum 
likelihood. Results are presented in Table 1. Estimated 
parameters have the anticipated signs (positive for inputs 
and negative for outputs). Gross products and squared 
coefficients are not reported because they were excluded 
from the empirical model after a preliminary estimation 
which indicated that their estimated effects were not signif- 
icantly different from zero. Hence the stochastic distance 
function estimated in this paper has a restricted translog 
form in which all second-order parameters associated with 
inputs are set to zero. This formulation imposes separability 
between inputs and outputs. The coefficient of v is not 
significantly different from zero, suggesting support for the 
half-normal distribution for inefficiency effects. The calcu- 
lated one-sided likelihood ratio (LR) test strongly suggests 

time invariant. In the specification of equation (24), if the 
ith firm is observed in the last period of the panel T, then 
UiT = Ui, because the exponential function exp( h(t  T)) 
has a value of one when t = T. Thus the random variable, Ui, 
can be considered as the technical inefficiency effect for the 
ith firm in the last period of the panel. For earlier periods in 
the panel, the technical efficiency effects are the product of 
the technical inefficiency effect for the ith firm in the last 
period of the panel and the value of the exponential function 
exp( h(t  T)), whose value depends on the parameter h, 
and the number of periods before the last period of the 
panel, (t   T)  t T. If the parameter h is positive, then 

h(t T)  h(t T) is nonnegative and so exp ( h(t T)) 
is no smaller than one, which implies that Uit R Ui. The 
calculated t-statistic for h reported in Table 1 indicates 
that the estimated coefficient for h is significantly different 

Irrigated Land n —6.11 —1.37 

required for symmetry, a 
= a 

for k, l = 1, 2, . .  ., K; and (3) the condition required 

kl 

X 

for m, n = 1, 2, .. ., M and 
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Table 2. Predicted Technical Efficiency Estimatesa 

 Year 1991    Year 1997    Year 1999  

Firm 1 – 26 Firm 27 – 52 Firm 53 – 76  Firm 1 – 26 Firm 27 – 52 Firm 53 – 76  Firm 1 – 26 Firm 27 – 52 Firm 53 – 76 

0.58 0.56 0.10  0.86 0.85 0.52  0.96 0.96 0.85 

0.54 0.61 0.35  0.84 0.87 0.74  0.96 0.97 0.92 
0.54 0.29 0.20  0.84 0.70 0.62  0.96 0.91 0.89 

0.53 0.29 0.10  0.83 0.69 0.53  0.95 0.91 0.85 
0.60 0.60 0.43  0.88 0.86 0.78  0.96 0.96 0.94 
0.54 0.68 0.17  0.84 0.90 0.60  0.96 0.97 0.87 
0.53 0.55 0.08  0.83 0.84 0.49  0.95 0.96 0.84 

0.54 0.61 0.17  0.84 0.87 0.60  0.96 0.97 0.88 
0.53 0.64 0.70  0.84 0.88 0.91  0.96 0.97 0.98 
0.66 0.27 0.66  0.89 0.68 0.89  0.97 0.91 0.97 

0.62 0.07 0.69  0.87 0.49 0.90  0.97 0.83 0.97 
0.30 0.20 0.73  0.70 0.62 0.92  0.91 0.88 0.98 
0.45 0.61 0.05  0.79 0.87 0.42  0.94 0.97 0.81 

0.43 0.13 0.08  0.78 0.55 0.49  0.94 0.86 0.84 
0.42 0.18 0.68  0.78 0.61 0.90  0.94 0.88 0.97 
0.44 0.66 0.71  0.79 0.90 0.91  0.94 0.97 0.98 
0.47 0.62 0.69  0.80 0.87 0.90  0.94 0.97 0.97 

0.63 0.30 0.61  0.88 0.70 0.87  0.97 0.91 0.97 
0.43 0.52 0.61  0.78 0.83 0.87  0.94 0.95 0.97 
0.39 0.53 0.60  0.76 0.83 0.87  0.93 0.95 0.96 

0.47 0.51 0.70  0.80 0.82 0.90  0.95 0.95 0.97 
0.36 0.58 0.67  0.74 0.86 0.90  0.93 0.96 0.97 
0.58 0.33 0.66  0.86 0.72 0.89  0.96 0.92 0.97 
0.52 0.64 0.72  0.83 0.88 0.91  0.95 0.97 0.98 

0.48 0.55   0.81 0.84   0.95 0.96  

0.25 0.05   0.67 0.44   0.90 0.81  

aMean efficiency in 1991 is 0.47. Mean efficiency in 1997 is 0.78. Mean efficiency in 1999 is 0.94. 

 

from zero and positive. This result suggests that firm- 
specific technical efficiencies are increasing over time. 

[21] Firm-specific technical efficiencies are reported in 
Table 2. Technical inefficiency implies use of an excessive 
amount of inputs to produce the fixed output levels and is 
clearly related to the lack of incentives faced by the 

[1984, 1991]. The change in the restricted distance function 
@ ln DR 

per unit change in groundwater extraction i , measured 
i 

in pounds per cubic meter, is the estimated parameter of the 
quantity of groundwater extraction from the stochastic 
distance function estimation, the results of which are 
presented in Table 1. Moreover, DR and W are respectively 

i i 

operators of the firm. Allocative inefficiency implies use 
of an economically suboptimal input mix when market 
prices are considered and could be caused by exterior 
environmental constraints under which managers operate. 
The existence of technical inefficiency alone does not 
necessarily imply biased cost function estimates (other than 
some bias in the intercept parameter, which will not affect 
the shadow price estimates). Unfortunately, relevant price 
data was not available and the existence of allocative 
inefficiency could not be tested, but if it exists our estimates 
of scarcity rents are unbiased. Technical inefficiency mea- 
sures, however, can be used by the regulator for competitive 
benchmarking (‘‘yardstick competition’’) in which taxes or 
subsidies granted to each farm are based on the costs of a 
similar (in terms of input mix) but more efficient firm. Such 
a regulatory framework can (1) increase the managers’ of 
the farms incentives toward efficiency and (2) reduce the 
informational asymmetry between the managers of the 
farms (agent) and the regulators or consumers of agricul- 
tural products (the principal). A problem that needs to be 
addressed is the risk of collusion among firms in a dynamic 
game. 

[22] In Table 3, mean per cubic meter shadow price 

the mean annual estimated distance function and mean 
groundwater extraction per farm, measured in £/m3 and m3. 
The mean shadow value of the per cubic meter in situ 
groundwater calculated in Table 3 is slightly increasing over 
the years, but is very small. These values are calculated by 
taking into account that our empirical results give estimates 
of the derivatives of the natural logarithm of the input 
distance function, which equal 

 
@ ln D W @D 

@ ln W 
¼ 

D @W 

where D = E[exp (U) W]. If a long enough time series of 
data were available, one could test the implications of the 
Hotelling principle by following exactly the same procedure 
that Halvorsen and Smith [1984, 1991] suggested. 

[23] It is also interesting to note from Table 1 that the 
estimate of the coefficient for the head of the aquifer is 
significantly different from zero. This implies the existence 
of stocks effects which can be estimated using Proposition 2 

 

Table 3. Mean Groundwater Scarcity Rents 
 

 

estimates are calculated  using Proposition  2. The  mean R Year Cb i R @ ln DR 
Di

R Wi mi 

annual  per  farm  minimum  restricted  cost  function  Cb i     is @ ln Wi 

approximated by the mean annual per farm revenue, which 
is measured in Cyprus pounds, 1999 constant prices. For the 

1999 £4312.33 £0.09/m3 1.06 m3/£ 42567.34 m3 £0.0097 m3 
1997 £5003.56 £0.09/m3 1.22 m3/£ 62000.76 m3 £0.0089 m3 
1991 £5687.39 £0.09/m3 1.53 m3/£ 88978.90 m3 £0.0088 m3 

justification of this approximation, see Halvorsen and Smith    
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Table 4. Mean Stock Effects on Groundwater Extraction Cost pay today for conserving in situ groundwater for future 
extraction. Myopic behavior is also supported by the low 

       estimated stock effects. Hence the need for optimal man- 
agement of this aquifer emerges, so that current users of the 
resource pay the social cost of their groundwater extraction 
and not just its private component. 

[27] Given an estimate of the optimal (unit) resource rents 

as  @C
w   

¼ —
 

@DR 
  

CbR
 

. The  results  are  shown  in  Table  4. 

and the distance function measure, the optimal pricing 
 

Stock effects are increasing with scarcity, as expected, but 
they are relatively small, which is another indication sup- 
porting the argument of myopic behavior of the extracting 
agents. 

 

6. Conclusions and Policy Implications 
[24] In this paper we develop a new methodology for 

estimating the in situ shadow price of a renewable natural 
resource with common pool characteristics. Our starting 
point is the observation that the restricted cost function that 
has been used recently for this purpose might not be 
appropriate in cases where profit maximization or cost 
minimization does not prevail. To estimate the in situ 
shadow prices in a framework independent of cost minimi- 
zation restrictions, we develop a methodology based on the 
input distance function, which does not impose any behav- 
ioral assumptions. The resulting evidence on failure of 
farmers to minimize costs, provides support for the use of 
the distance function and proves the potential for estimation 
inaccuracy should one wrongly choose to use the restricted 
distance function methodology. The proposed methodology 
can be used to estimate shadow prices for renewable 
resources such as groundwater, forest and fisheries. 

[25] The distance function methodology for estimating 
scarcity rents has been applied to the irrigated agricultural 
sector of the Kiti region of Cyprus. The existence of 
inefficiencies revealed by the estimation of the distance 
function supports the idea that the distance function ap- 
proach in estimating scarcity rents may be, in this case, 
more appropriate than the restricted cost function approach. 

[26] It is also interesting to compare the derived partial 
equilibrium shadow price of in situ groundwater (which as 
already argued, is an estimate of the individual farmer’s 
valuation of the marginal unit of groundwater in the aquifer) 
with the socially optimal shadow price of in situ ground- 
water derived for the Kiti aquifer in 1999 by Koundouri and 
Christou [2000]. In this paper an optimization model, which 
is simulated under conditions of optimal groundwater 
extraction, determines the in situ value of the resource to 
be £0.2017 per cubic meter of water. This is approximately 
21 times larger than the corresponding value derived in this 
paper for year 1999. What could rationalize this divergence? 
This can be rationalized in the presence of noncooperative 
behavior and common pool externalities. Current users of 
the resource are willing to pay only the private cost (the 
private cost of resource extraction is the cost of pumping 
one cubic meter of water per meter of lift and equals £0.02) 
and not the full social cost of their resource extraction. As a 
result the resource’s scarcity value goes unrecognized. This 
pattern of behavior is consistent with perfectly myopic (i.e., 
dynamically inefficient) resource extraction, which can be 
rationalized by the nonexistence of the appropriate institu- 
tional foundations that provide farmers with the incentive to 

significant improvement in welfare realized by simulating 
optimal extraction from the Kiti aquifer compared to the 
common property extraction [Koundouri and Christou, 
2000], implies that the noninternalized costs of the currently 
observed myopic groundwater extraction are significant. 
Thus benefits from optimally managing this resource could 
be nonnegligible, in contrast to the results from the ‘‘Gisser- 
Sanchez  effect’’  literature  [Gisser  and  Sánchez,  1980] 
reviewed by Koundouri [2004]. 

[28] Finally, in addition to the potential of this method- 
ology as a demand management tool via pricing, technical 
inefficiency measures can be used by the regulator for 
competitive benchmarking (‘‘yardstick competition’’) in 
which taxes or subsidies granted to each farm are based 
on the costs of a similar (in terms of input mix) but more 
efficient firm. As indicated in the previous section of the 
paper, such a regulatory framework can increase managers 
incentives toward efficiency, an admittedly difficult task 
when regulation of common-pool resources is at stake. 
Moreover, implementing competitive benchmarking can 
potentially reduce the informational asymmetry between 
the farmers and the regulators, which is another major issue 
for the implementation of agricultural policies. 

 
Appendix A: Data Sources and Definitions 

[29] Data are drawn from three Production Surveys con- 
ducted in the agricultural region of Kiti, located in the 
Mediterranean island of Cyprus, in 1991, 1997, and 1999. 
Parcel-specific data includes: area of holding, land use and 
tenure, area planted, production of temporary and perma- 
nent crops, production inputs (including extracted ground- 
water), administrative costs, hydrogeological characteristics 
(i.e., head of the underlying aquifer), personal character- 
istics of buyers and sellers, employment of holders and 
family members, labor costs, value of construction works 
and other investments, indirect taxes and other expenses. 
The quality of the data-set is limited by the usual difficulties 
that one encounters when attempting to document inputs 
and outputs of agricultural activities. Particular difficulties 
where encountered in the collection of accurate groundwater 
extraction rates. Although groundwater extraction is 
metered in the area, the farmers in the area have a history 
of trying to under-report their extraction by manipulating 
the meters of their wells. The Cyprus Water Development 
Department, however, claims that farmers behavior is 
strictly monitored and data inaccurancies with respect to 
groundwater extraction should be limited. (Moreover, 
reported extraction rates were compared with crop-specific 
water requirements for each farm and found compatible.) 
For the interested reader the questionnaire used in these 
surveys is given by Koundouri [2000], together with the 
description of the collected information and constructed 
variables, as well as their descriptive statistics. 

policy is the difference between the two. Moreover the 

Year @Ci
w/@H, £/m3/m of head 

1999 0.00215 

1997 0.00197 

1991 0.00196 
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[30] In particular, the data-set is a balanced panel of the 
same 76 cross sections over the three years: 1991, 1997, and 
1999. Output: y = firm-specific total value of output from 
production of agricultural crops, measured in Cyprus 
pounds (£1 Cyprus worth £1.14 UK) and deflated by the 
wholesale agricultural index. Inputs: x1 = farm-specific total 
area of nonirrigated land (0.1 hectares), x2 = farm-specific 
annual labor costs (Cyprus pounds), x3 = farm-specific total 
value of input costs, including fertilizers, manure, pesti- 
cides, fuel and electric power for groundwater extraction 
(Cyprus pounds deflated by the wholesale agriculture price 
index), x = farm-specific yearly groundwater extraction 

Färe, R., and S. Grosskopf (1990), A distance function approach to measur- 
ing price efficiency, J. Public Econ., 43, 123 – 126. 

Färe,  R.,  and  D.  Primont  (1995),  Multi-output  Production  and  Duality: 

Theory and Applications, Kluwer Acad., Norwell, Mass. 
Färe, R., S. Grosskopf, C. A. K. Lovell, and S. Yaisawarng (1993), Deriva- 

tion of shadow prices for undesirable outputs: A distance function 
approach, Rev. Econ. Stat., 75(2), 374 – 380. 

Färe, R., S. Grosskopf, and C. A. K. Lovell (1994), Production Frontiers, 
Cambridge Univ. Press, New York. 

Gisser, M., and D. A. Sánchez (1980), Competition versus optimal control 

in groundwater pumping, Water Resour. Res., 16, 638 – 642. 
Grosskopf, S., and K. Hayes (1993), Local public sector bureaucrats and 

their input choices, J. Urban Econ., 33, 151 – 166. 

Halvorsen, R., and T. R. Smith (1984), On measuring natural resource 
3 

4 scarcity, J. Polit. Econ., 92(51), 954 – 964. 
(m ), x5 = farm-specific water table head (m), x6 = farm- 
specific total area of irrigated land (0.1 hectares); the 
negative of x6 is the dependent variable of the estimated 
stochastic frontier. 

 

References 
Aigner, D., C. A. K. Lovell, and P. J. Schmidt (1977), Formulation and 

estimation of stochastic frontier production function models, J. Econ., 
6(1), 21 – 37. 

Arrow,  K.,  P.  Dasgupta,  and  K.-G.  Mäler  (2003),  Evaluating  projects 
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