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Time-varying GARCH-M models are commonly employed in econometrics
and �nancial economics. Yet the recursive nature of the conditional variance
makes exact likelihood analysis of these models computationally infeasible. This
paper outlines the issues and suggests to employ a Markov chain Monte Carlo
algorithm which allows the calculation of a classical estimator via the simulated
EM algorithm or a simulated Bayesian solution in only O(T ) computational oper-
ations, where T is the sample size. Furthermore, the theoretical dynamic proper-
ties of a time-varying-parameter EGARCH(1,1)-M are derived. We discuss them
and apply the suggested Bayesian estimation to three major stock markets.
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1. INTRODUCTION

Time series data, emerging from diverse �elds appear to possess time
varying second conditional moments. Furthermore, theoretical results seem
to postulate quite often, speci�c relationships between the second and �rst
conditional moment. For instance, in the stock market context, the �rst
conditional moment of stock market excess returns, given some information
set, is a possibly time-varying, function of volatility (see e.g. Merton [27];
Glosten, Jagannathan and Runkle [19]). These have led to modi�cations
and extensions of the initial ARCH model of Engle [11] and its generaliza-
tion by Bollerslev [5], giving rise to a plethora of dynamic heteroscedasticity
models. These models have been employed extensively to capture the time
variation in the conditional variance of economic series, in general, and of
�nancial time series, in particular (see Bollerslev et al. [6] for a survey).
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Although the vast majority of the research in conditional heteroscedas-
ticity is being processed aiming the stylized facts of �nancial stock returns
and of economic time series in general, Arvanitis and Demos [3], have shown
that a family of time varying GARCH-M models can in fact be consistent
with the sample characteristics of time series describing the temporal evo-
lution of velocity changes of turbulent �uid and gas molecules. Despite the
fact that the latter statistical characteristics match in a considerable degree
their �nancial analogues (for example leptokurtosis, volatility clustering
and quasi long range dependence in the squares are common), there are
also signi�cant di¤erences in the behavior of the above mentioned physical
systems as opposed to �nancial markets (examples are the anticorrelation
e¤ect and asymmetry of velocity changes in contrast to zero autocorrela-
tion and the leverage e¤ect of �nancial returns) (see Barndorf -Nielsen and
Shephard [4]; as well as Mantegna and Stanley [25] and [26]). It was shown
that the above mentioned family of models can even create anticorrelation
as far as an AR(1) time varying parameter process is introduced.
It is clear that from an econometric viewpoint it is important to study

how to e¢ ciently estimate models with partially unobserved GARCH processes.
In this context, our main contribution is to show how to employ the method
proposed in Fiorentini, Sentana and Shephard [13] to achieve MCMC like-
lihood based estimation of a time-varying GARCH-M model by means of
feasible O (T ) algorithms, where T is the sample size. The crucial idea is
to transform the GARCH model in a �rst order Markov model. However,
in our model the error term enters the in-mean equation multiplicatively
and not additively as it does in the latent factor models of Fiorentini et
al. [13]. Thus, we show that their method applies to more complicated
models, as well.
We prefer to employ an EGARCH speci�cation (Nelson [30]) for the

conditional variance. One common stylized fact in �nancial economics is
the leverage e¤ect, i.e. the fact that negative shocks often increase volatility
to a greater extent than positive shocks. Furthermore, the EGARCH model
does need positivity constraints, i.e. the conditional variance is positive
with probability 1 for all values of the parameter space. This is not the
case with most GARCH type models. Finally, the choice of the �rst-order
model here is motivated by the fact that it is the most widely applied
exponential GARCH model.
Moreover, many theories in �nance involve an explicit trade-o¤ between

risk and expected returns. For that matter, we employ an in mean model
which is ideally suited to handling such questions in a time series context
where the conditional variance may be time varying. However, a number
of studies question the existence of a positive mean/variance ratio directly
challenging the mean/variance paradigm. In Glosten et al. [19] when they
explicitly include the nominal risk free rate in the conditioning information
set they obtain a negative ARCH-M parameter. For the above, we allow
the conditional variance to a¤ect the mean with a possibly time varying
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coe¢ cient which we assume for simplicity that follows an AR(1) process.
Thus, our model is a Time-Varying Parameter AR(1) EGARCH-M model
(TVPAR(1)-EGARCH(1,1)-M).
As we shall see in Section 2.1 this model is able to capture the, so called,

stylized facts of excess stock returns. These are i) the sample mean is
positive and much smaller than the standard deviation, i.e. high coe¢ cient
of variation, ii) the autocorrelations of excess returns are insigni�cant with
a possible exception of the 1st one, iii) the distribution of returns is non-
normal mainly due to excess kurtosis and maybe asymmetry (negative), iv)
there is strong volatility clustering, i.e. signi�cant positive autocorrelation
of squared returns even for high lags, and v) the so called leverage e¤ect,
i.e. negative errors increase future volatility more than positive ones of the
same size.
The structure of the paper is as follows. In Section 2 we present the

model and derive the theoretical properties of our model. Next, we re-
view Bayesian and classical likelihood approaches to inference for the time-
varying EGARCH-M model. We show that the key task (in both cases) is
to be able to produce consistent simulators and that the estimation problem
arises from the existence of two unobserved processes, causing exact likeli-
hood based estimations computationally infeasible. Hence, we demonstrate
that the method proposed by Fiorentini et al. [13] is needed to achieve a
�rst order Markov transformation of the model and thus, reducing the com-
putations from O

�
T 2
�
to O (T ). An illustrative empirical application on

weekly returns from three major stock markets is presented in Section 4
and we conclude in Section 5.

2. THE MODEL

The de�nition of our model is:

Definition 1. The TVPAR(1)-EGARCH(1,1)-M model is:

rt = �tht + "t; "t = zth
1=2
t (1)

�t = (1� ') � + '�t�1 + 'uut (2)

lnht = �+ � lnht�1 + zt�1 + � jzt�1j (3)

zt v i:i:d:N(0; 1); ut v i:i:d:N(0; 1) and ut; zt independent for all t
0s
(4)

and where frtgTt=1 are the observed excess returns, T is the sample size,
f�tgTt=1 is an unobserved AR(1) process independent (with �0 = �) of f"tg

T
t=1,

and fhtgTt=1 is the conditional variance (with h0 equal to the unconditional
variance and "0 = 0) which is supposed to follow a EGARCH(1,1). It is
obvious that �t is the market price of risk (see e.g. Merton [27]; Glosten at
al. [19]). Let us call Ft�1 the sequence of natural �ltrations generated by
the past values of f"tg and frtg.
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Modelling the theoretical properties of this model has been quite an
important issue. Speci�cally, it would be interesting to investigate whether
this model can accommodate the main stylized facts of the �nancial mar-
kets. On other hand, the estimation of the model requires its transforma-
tion into a �rst-order Markov model to implement the method of Fiorentini
et al. [13]. Let us start with the theoretical properties.

3. THEORETICAL PROPERTIES

The theoretical properties of a model nesting the one under considera-
tion have been already studied in Demos [9]. Here we will just present his
results modi�ed for our case, i.e. here we have that his stochastic volatility,
��, is 0 and his �i = �

i.
Provided that j�j < 1 we can invert the conditional variance equation

as:

ln(ht) = �0+

1X
i=0

�if (zt�1�i) ; where �0 =
�

1� � and f (zt) = zt+� jztj :

Assuming normality and j�j < 1 we get the second order and strict
stationarity of f"tg and we can state the following proposition (for a proof
see Demos [9], and He, Terasvirta and Malmsten [22]).

Proposition 1. For zt v i:i:d:N(0; 1) and j�j < 1 we have that:
Cov[ht; ht�k] = exp ([2�0)

�
 
$��
k

k�1Y
i=0

exp

 
�2i��2

2

!
�(�i��) + exp

 
�2i�2

2

!
�(�i�)�$2

!
;

where �� = � + , � = � � ,

$ =

1Y
i=0

 
�(�i��) exp

 
�2i��2

2

!
+ exp

 
�2i�2

2

!
�(�i�)

!
and

$��
k =

1Y
i=0

24 exp
�
[(1+�k)�i��]2

2

�
�((1 + �k)�i��)

+ exp
�
[(1+�k)�i�]2

2

�
�((1 + �k)�i�)

35
Also,

E(ht"t�k) = �k�1 exp

�
3

2
�0

�
$�
k

�
k�2Y
i=0

"
exp

 
�2i��2

2

!
�(�i��) + exp

 
�2i�2

2

!
�(�i�)

#

�
"
���(�k�1��) exp

 
�2k�2��2

2

!
� ��(�k�1�) exp

 
�2k�2�2

2

!#
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where

$�
k =

1Y
i=0

24 exp
�
[( 12+�

k)�i��]2

2

�
�(( 12 + �

k)�i��)

+ exp
�
[( 12+�

k)�i�]2

2

�
�(( 12 + �

k)�i�)

35
Finally,

Cov["2t ; "
2
t�k] = Cov[ht; ht�k] + �

k�1E (htht�k)

24 exp
�
�2k�2(��)2

2

�
�(�k�1��)

+ exp
�
�2k�2(�)2

2

�
�(�k�1�)

35�1

�

24 �k�1��2�(�k�1��) exp
�
�2k�2��2

2

�
+�k�1�2�(�k�1�) exp

�
�2k�2�2

2

� 35
Furthermore, we have the following result (for a proof see Demos [9]).

Theorem 1. Under the assumptions in equation 4 and for j�j < 1 and
j'j < 1, we have that k = Cov(rt; rt�k) is a quadratic function in �:

k = �
2Cov(ht; ht�k) + �E (ht"t�k) + '

k '2u
1� '2E (htht�k)

It is obvious that provided that there is no time variation in �, if
E (ht"t�k) is zero, as in the GARCH-M model of Engle et al. [12], then the
k-order autocovariance of the series has the sign of the autocovariance of
the conditional variance, irrespective of the value of �. On the other hand,
for the �rst order EGARCH model, it is clear that the sign of E (ht"t�k) de-
pends on the relative values of �, ��, and �. However, notice that under
the assumptions of volatility clustering, leverage and asymmetry e¤ects,
i.e. � > 0, � > 0 and  < 0, we have that � > �� and � > 0. Hence

�� exp
�
(�k�1��)2

2

�
�(�k�1��) � � exp

�
(�k�1�)2

2

�
�(�k�1�) < 0 as the

exponential and the cumulative distribution functions are non-decreasing.
Consequently, E (ht"t�k) is negative for any k.
Ideally, one would like to employ a model which can be compatible with

either negative or positive mean autocorrelations, and potentially di¤erent
from the sign of the autocorrelation of the conditional variance. As an
example, consider the volatility clustering observed in �nancial data. This
implies that at least the �rst order autocorrelation of the returns�condi-
tional variance is positive. However, there are theoretical arguments which
support a positive autocorrelation of short horizon stock returns, whereas
long horizon ones are negatively autocorrelated (see Poterba and Summers,
1988 [32]).
Let us now turn to higher moments since for the dynamic asymmetry we

also need the covariance of squares-levels and levels-squares. Appropriate
modi�cations of Theorem 2 in Demos [9] give the following results.
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Theorem 2. Under the assumptions of Theorem 1, the covariance of
squares-levels and levels-squares is given by:

Cov
�
r2t ; rt�k

�
= 2'k�

'2u
1� '2E

�
h2tht�k

�
+ �Cov (ht; ht�k) + E

�
hth

1=2
t�k

�
D
(1)
k�1

�
�
(1)
k�1

��1
+

�
'2u

1� '2 + �
2

��
�Cov

�
h2t ; ht�k

�
+ E

�
h2th

1=2
t�k

�
D
(2)
k�1

�
�
(2)
k�1

��1�
and

Cov(rt; r
2
t�k) =

�
'2u

1� '2 + �
2

�
�Cov

�
ht; h

2
t�k
�

+�

�
E(htht�k)F

(1)
k�1

�
�
(1)
k�1

��1
+ Cov (ht; ht�k)

�
+2

�
'k

'2u
1� '2 + �

2

�
E
�
hth

3=2
t�k

�
D
(1)
k�1

�
�
(1)
k�1

��1
;

respectively, where D(s)
k�1 and �

(s)
k�1 are provided in the following Proposi-

tion.

Setting �� = 0 and �i = �
i in Proposition 1 and 2 of Demos [9] we get.

Proposition 2.

E
�
hsth

d
t�k
�
= exp [(s+ d)�0]$

(s;d)
k �

(s)
(k�1); E

�
hsth

d
t�kzt�k

�
= E

�
hsth

d
t�k
�
D
(s)
k�1

�
�
(s)
k�1

��1
;

E
�
hsth

d
t�kz

2
t�k
�
= E

�
hsth

d
t�k
� �
1 + F

(s)
k�1

�
�
(s)
k�1

��1�
where

�
(s)
k�1 = �

�
A
(0;s)
0;k�1

�
exp

�
�
(0;s)
0;k�1

�
+ exp

�
�
(0;s)
0;k�1

�
�
�
�B(0;s)0;k�1

�
;

D
(s)
k�1 = A

(0;s)
0;k�1 exp

�
�
(0;s)
0;k�1

�
�
�
A
(0;s)
0;k�1

�
+B

(0;s)
0;k�1 exp

�
�
(0;s)
0;k�1

�
�
�
�B(0;s)0;k�1

�
;

F
(s)
k�1 =

�
A
(0;s)
0;k�1

�2
exp

�
�
(0;s)
0;k�1

�
�
�
A
(0;s)
0;k�1

�
+
�
B
(0;s)
0;k�1

�2
exp

�
�
(0;s)
0;k�1

�
�
�
�B(0;s)0;k�1

�
;

A
(m;j)
k;i =

�
m�i+k + j�i

�
��; B

(m;j)
k;i = �

�
m�i+k + j�i+k

�
�;

�
(m;j)
k;i =

h�
m�i+k + j�i

�
��
i2

2
; �

(m;j)
k;i =

h�
m�i+k + j�i

�
�
i2

2
;

$
(m;j)
k =

1Y
i=0

h
�
�
A
(m;j)
k;i

�
exp

�
�
(m;j)
k;i

�
+ exp

�
�
(m;j)
k;i

�
�
�
�B(m;j)k;i

�i
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and

�
(s)
(k�1) =

k�1Y
i=0

h
�
�
A
(0;s)
0;i

�
exp

�
�
(0;s)
0;i

�
+ exp

�
�
(0;s)
0;i

�
�
�
�B(0;s)0;i

�i
with �(s)(�1) = 1.

Notice that for a time-invariant EGARCH model, i.e. when �t =
0 for all t0s, we have that Cov(rt; r2t�k) = 0 whereas Cov

�
r2t ; rt�k

�
=

E
�
hth

1=2
t�k

�
D
(1)
k�1

�
�
(1)
k�1

��1
6= 0 unless � = 0. On the other hand, if � = 0

but �t is time varying, Cov(rt; r2t�k) and Cov
�
r2t ; rt�k

�
can be nonzero

and thus, we do not need the asymmetric EGARCH e¤ect to get dynamic
asymmetry, even under the assumption of symmetric distribution of the
errors (normality). Furthermore, for large values of �; then Corr

�
rt; r

2
t�k
�

and Corr
�
r2t ; rt�k

�
behave like Corr

�
ht; h

2
t�k
�
and Corr

�
h2t ; ht�k

�
, re-

spectively.
Moreover, we also have the covariance of squares which is stated in the

theorem below (for a proof see Demos [9]).

Theorem 3. Under the assumptions of Theorem 1, the autocovariance
of squares is:

Cov
�
r2t ; r

2
t�k
�
=

2'k'2u
1� '2

�
2�2 +

'k'2u
1� '2

�
E
�
h2th

2
t�k
�
+ E2

�
�2t
�
Cov

�
h2t ; h

2
t�k
�

+E
�
�2t
��
Cov

�
ht; h

2
t�k
�
+ Cov

�
h2t ; ht�k

�
+ E

�
h2tht�k

�
F
(2)
k�1

�
�
(2)
k�1

��1�
+

�
E
�
�2t
�
+
2'k'2u
1� '2

�
�E
�
h2th

3=2
t�k

�
D
(2)
k�1

�
�
(2)
k�1

��1
+ Cov (ht; ht�k)

+
h
2�E

�
hth

3=2
t�k

�
D
(1)
k�1 + E (htht�k)F

(1)
k�1

i �
�
(1)
k�1

��1
Again for large values of �2, Corr

�
r2t ; r

2
t�k
�
behaves like Corr

�
h2t ; h

2
t�k
�
.

Finally, the skewness and kurtosis are now stated (for a proof see Demos
[9] ).

Theorem 4. Under the assumptions of Theorem 1, the third and fourth
central moments of frtg are :

E [rt � E (rt)]3 = �
�
�2 +

3'2u
1� '2

��
E
�
h3t
�
� E

�
h2t
�
E (ht)

�
+�V ar (ht)

�
3� 2�2E (ht)

�
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and

E [rt � E (rt)]4 = �4
�
E
�
h4t
�
� 4E

�
h3t
�
E (ht) + 6E

�
h2t
�
E2 (ht)� 3E4 (ht)

�
+6�2

'2u
1� '2

�
E
�
h4t
�
� 2E

�
h3t
�
E (ht) + E

�
h2t
�
E2 (ht)

�
+3

'2u
1� '2

�
'2u

1� '2E
�
h4t
�
+ 2E

�
h3t
��
+ 3E

�
h2t
�

+6�2
�
E
�
h3t
�
� 2E

�
h2t
�
E (ht) + E

3 (ht)
�

First, notice that if � = 0, E [rt � E (rt)]3 = 0. As mentioned in Demos
[9] the absolute value of the skewness of frtg, jskrj =

jE[rt�E(rt)]3j
[V ar(rt)]

3=2 , is a

decreasing function of '2u and '
2, whereas for � 2

�
�
q

E(ht)
2E(h2t )

;
q

E(ht)
2E(h2t )

�
,

skr is an increasing function in �. Although unconditional asymmetry is not
observed in stock market data, this is not the case for exchange rates (see
Gallant et al., 1997 [14]) and turbulence datasets (see Barndor¤-Nielsen

[4]). Furthermore, for � = 0 the kurtosis of rt, �r =
E[rt�E(rt)]4
V ar2(rt)

, is an

increasing function in '2u and '
2. However notice that in this case skr is

zero.
Let us turn our attention to the estimation of our model. We will

show that estimating our model is a hard task and the use of well-known
methods such as the EM-algorithm cannot handle the problem due to the
huge computational load that such methods require.

4. LIKELIHOOD-INFERENCE: EM AND BAYESIAN APPROACHES

The purpose of this section is the estimation of a TVPAR(1)-EGARCH(1,1)-
M model. Since our model involves two unobserved components (one from
the time-varying in mean parameter and one from the error term) the es-
timation method required is an EM and more speci�cally a simulated EM
(SEM) because of the fact that the expectation terms at the E-step cannot
be computed. The main modern way of carrying out likelihood inference
in such situations is via a Markov chain Monte Carlo (MCMC) algorithm
(see Chib [8] for an extensive review). This simulation procedure can be
used either to carry out Bayesian inference or to classically estimate the
parameters by means of a simulated EM algorithm.
The idea behind the MCMC methods is that in order to sample a given

probability distribution, that is referred to as the target distribution, a
suitable Markov chain is constructed (using a Metropolis-Hasting (M-H)
algorithm or a Gibbs-sampling method) with the property that its limit-
ing, invariant distribution is the target distribution. In most problems,
the target distribution is absolutely continuous and as a result the the-
ory of MCMC methods is based on that of Markov chains on continuous
state spaces (Meyn and Tweedie [29]). This means that by simulating the
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Markov chain a large number of times and recording its values a sample of
(correlated) draws from the target distribution can be obtained. It should
be noted that Markov chain samplers are invariant by construction and
therefore the existence of the invariant distribution does not have to be
checked in any particular application of MCMC method.
The Metropolis-Hasting algorithm (M-H) is a general MCMC method

to produce sample variates from a given multivariate distribution. It is
based on a candidate generating density that is used to supply a proposal
value that is accepted with probability given as the ratio of the target den-
sity times the ratio of the proposal density. There are a number of choices
of the proposal density (e.g. random walk M-H chain, independence M-
H chain, tailored M-H chain) and the components may be revised either
in one block or in several blocks. Another MCMC method, which is spe-
cial case of the multiple block M-H method with acceptance rate always
equal to one, is called the Gibbs sampling method and was brought into
statistical prominence by Gelfand and Smith [15]. In this algorithm the
parameters are grouped into blocks and each block is sampled according

to the full conditional distribution denoted as �
�
�t=�=t

�
. By Bayes�the-

orem we have �
�
�t=�=t

�
_ �

�
�t�=t

�
, the joint distribution of all blocks

and so full conditional distributions are usually quite simply derived. One
cycle of the Gibbs sampling algorithm is completed by simulating f�tg

p
t=1,

where p is the number of blocks, from the full conditional distributions,
recursively updating the conditioning variables as one moves through each
distribution. Under some general conditions, it is veri�ed that the Markov
chain generated by the M-H or the Gibbs sampling algorithm converges to
the target density as the number of iterations becomes large.
Within the Bayesian framework MCMC methods have proved very pop-

ular and the posterior distribution of the parameters is the target density
(see Tierney [38]). Another application of the MCMC is the analysis of
hidden Markov models where the approach relies on augmenting the pa-
rameter space to include the unobserved states and simulate the target
distribution via the conditional distributions (this procedure is called data
augmentation and was pioneered by Tanner and Wong [37]). Kim, Shep-
hard and Chib [24] discuss a MCMC algorithm of the Stochastic Volatility
(SV) model which is an example of a state space model in which the state
variable ht (log-volatility) appears non-linearly in the observation equa-
tion. The idea is to approximate the model by a conditionally Gaussian
state space model with the introduction of multinomial random variables
that follow a seven-point discrete distribution.
The analysis of a time-varying EGARCH-M model becomes substan-

tially complicated since the log-likelihood of the observed variables can
no longer be written in closed form. In this paper, we focus on both the
Bayesian and the classical estimation of the model. Unfortunately, the
non-Markovian nature of the GARCH process implies that each time we
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simulate one error we implicitly change all future conditional variances.
As pointed out by Shephard [35], a regrettable consequence of this path-
dependence in volatility is that standard MCMC algorithms will evolve in
O
�
T 2
�
computational load (see Giakoumatos, Dellaportas and Politis [18]).

Since this cost has to be borne for each parameter value, such procedures
are generally infeasible for large �nancial datasets that we see in practice.

4.1. Estimation problem: Simulated EM algorithm

As mentioned above the estimation problem is that we cannot write
down the likelihood function in closed form since we do not observe both
"t and �t. More speci�cally the conditional log-likelihood function of our
model assuming that �t were observed would be the following:

` (r; �j�;F0) = ln p (rj�; �;F0) + ln p (�j�;F0)

= �T ln 2� � 1
2

TX
t=1

lnht �
1

2

TX
t=1

("t)
2

ht

�T
2
ln
�
'2u
�
� 1
2

TX
t=1

(�t � � (1� ')� '�t�1)2

'2u

where r = (r1; ::; rT )
0, � =(�1; :::; �T )

0 and h = (h1; :::; hT )
0.

However, the �0ts are unobserved and thus, to classically estimate the
model, we have to rely on an EM algorithm (Dempster, Laird and Rudin
[10]) to obtain estimates as close to the optimum as desired. At each
iteration the EM algorithm obtains �(n+1) ,where � is the parameter vector,
by maximizing the expectation of the log-likelihood conditional on the data

and the current parameter values i.e. E
�
` (:) jr; �(n);F0

�
with respect to

� keeping �(n) �xed.
The E-step thus requires the expectation of the complete log-likelihood.

For our model this is given by:

E
�
` (:) jr; �(n);F0

�
= �T ln 2� � T

2
ln'2u �

1

2

TX
t=1

E
�
lnhtjr; �(n);F0

�
�1
2

TX
t=1

E

 
("t)

2

ht
jr; �(n);F0

!

�1
2

TX
t=1

E

 
(�t � � (1� ')� '�t�1)2

'2u
jr; �(n);F0

!

It is obvious that we cannot compute such quantities. For that matter,
we may rely on a simulated EM where the expectation terms are replaced
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by averages over simulations and so we will have a SEM or a simulated
score. The SEM log-likelihood is:

SEM` = �T ln 2� � T
2
ln'2u �

1

2

1

M

MX
i=1

TX
t=1

lnh
(i)
t

�1
2

1

M

MX
i=1

TX
t=1

�
"
(i)
t

�2
h
(i)
t

� T
2

�
1� '2

�
�2

'2u

�1
2

1

'2u

1

M

MX
i=1

TX
t=1

�
�
(i)
t

�2
+

�
1� '2

�
�

'2u

1

M

MX
i=1

TX
t=1

�
(i)
t

+
'

'2u

1

M

MX
i=1

TX
t=1

�
(i)
t �

(i)
t�1 +

(1� ')'�
'2u

1

M

MX
i=1

TX
t=1

�
(i)
t�1

� '2

2'2u

1

M

MX
i=1

TX
t=1

�
�
(i)
t�1

�2
Consequently, we need to obtain the following quantities: 1

M

PM
i=1

PT
t=1 lnh

(i)
t ,

1
M

PM
i=1

PT
t=1

�
"
(i)
t

�2
h
(i)
t

, 1
M

PM
i=1

PT
t=1 �

(i)
t ,

1
M

PM
i=1

PT
t=1 �

(i)

t�1;
1
M

PM
i=1

PT
t=1 �

(i)
t �

(i)
t�1

and 1
M

PM
i=1

PT
t=1

�
�
(i)
t

�2
, 1
M

PM
i=1

PT
t=1 �

2(i)
t�1, where M is the number of

simulations.
Thus, to classically estimate our model by using a SEM algorithm the

basic problem is to sample from hj�; r;F0 where � is the vector of the
unknown parameters and also sample from �j�; r;F0.
In terms of identi�cation, the model is not, up to second moment, iden-

ti�ed (see Corollary 1 in Sentana and Fiorentini [34]). The reason is that
we can transfer unconditional variance from the error, "t, to the price of
risk, �t, and vice versa. One possible solution is to �x � such that E (ht)
is 1, or to set 'u to a speci�c value. In fact in an earlier version of the
paper we �xed 'u to be 1 (see Anyfantaki and Demos [1]). Nevertheless,
from a Bayesian viewpoint the lack of identi�cation is not too much of a
problem, as the parameters are identi�ed through their proper priors (see
Poirier [31]).
Next, we will exploit the Bayesian estimation of the model and since

we need to resort to simulations we will show that the key task is again to
simulate from �j�; r;F0:

4.2. Simulation based Bayesian inference

In our problem the key issue is that the likelihood function of the sample
p (rj�;F0) is intractable which precludes the direct analysis of the posterior
density p (�jr;F0). This problem may be overcome by focusing instead on
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the posterior density of the model using Bayes�rule:

p (�; �jr) _ p (�; �) p (rj�; �) _ p (�) p (�j�) p (rj�; �)

where
� =

�
�; '; '2u; �; �; ; �

�0
Now,

p (�j�) =
TY
t=1

p
�
�t=�; '; '

2
u

�
=

TY
t=1

1p
2�'2u

exp

 
� (�t � � (1� ')� '�t�1)

2

2'2u

!

On the other hand,

p (rj�; �) =
TY
t=1

p (rt= frt�1g ; �; �) =
TY
t=1

1p
2�ht

exp

�
� "2t
2ht

�
is the full information likelihood. Once we have the posterior density we

get the parameters�marginal posterior density by integrating the posterior
density. MCMC is one way of numerical integration.
The Hammersley-Cli¤ord Theorem [20] says that a joint distribution

can be characterized by its complete conditional distribution. Hence, given

initial values f�tg(0) ; �(0)we draw f�tg(1) from p
�
f�tg(1) jr; �(0)

�
and then

�(1) from p
�
�(1)j f�tg(1) ; r

�
. Iterating these steps we �nally get

�
f�tg(i) ; �(i)

�M
i=1

and under mild conditions it is shown that the distribution of the sequence
converges to the joint posterior distribution p (�; �jr) :
The above simulation procedure may be carried out by �rst dividing

parameters into two blocks:

�1 =
�
�; '; '2u

�
�2 = (�; �; ; �)

Then the algorithm is described as follows.
(1) Initialize �
(2) Draw from p (�tj� 6=t; r; �)
(3) Draw from p (�j�; r) in the following blocks:

(i)Draw from p (�1j�; r) using Gibbs sampling. This is update in
one block.

(ii)Draw from p (�2jr) by M-H. This is updated in a second block.
(4) Go to (2)
We review the implementation of each step.
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4.2.1. Gibbs-Sampling

The task of simulating from an AR model has been already discussed.
Here, we will follow the approach of Chib [8] but we do not have any MA
terms which makes inference simpler.
Suppose that the prior distribution of

�
�; '2u; '

�
is given by:

p
�
�; '2u; '

�
= p

�
�j'2u

�
p
�
'2u
�
p (')

which means that �; '2u is a priory independent of '.
Also the following holds for the prior distributions of the parameter

subvector �1:

p
�
�j'2u

�
� N

�
�pr; '

2
u�

2
�pr

�
;

p
�
'2u
�
� IG

�
v0
2
;
d0
2

�
and

p (') � N
�
'0; �

2
'0

�
I'

where I' ensures that ' lies outside the unit circle, IG is the inverted
gamma distribution and the hyperparameters v0; d0; �pr; �2�pr ; '0; �

2
'0
have

to be de�ned.
Now, the joint posterior is proportional to

p
�
�; '; '2ujr; �

�
/

TY
t=1

1p
2�'2u

exp

(
� (�t � (1� ') � � '�t�1)

2

2'2u

)

�N
�
�pr; '

2
u�

2
�pr

�
� IG

�
v0
2
;
d0
2

�
�N

�
'0; �

2
'0

�
I':

From a Bayesian viewpoint the right hand side of the above equation is
equal to the "augmented" prior, i.e. the prior augmented by the latent �.
We proceed to the generation of these parameters..
First we see how to generate �. Following again Chib [7] we may write:

��t = �t � '�t�1; ��t jFt�1 � N
�
(1� ') �; '2u

�
or otherwise,

��t = (1� ') � + vt; vt � N
�
0; '2u

�
:

Under the above and using Chib�s [7] notation we have that the proposal
distribution is the following Gaussian distribution (see Chib [7] for a proof).

Proposition 3. The proposal distribution of � is:

�j�;�; '2u � N
�e�; '2ue�2��
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where e� = e�2�
 
�pr
�2�pr

+ (1� ')
TX
t=1

��t

!
and

e�2� =
 

1

�2�pr
+ (1� ')2

!�1
Hence, the generation of � is completed and we may turn on the gener-

ation of the other parameters.

Generation of '2u For the generation of '2u and using Chib�s [7] nota-
tion we have that:

Proposition 4. The proposal distribution of '2u is:

'2uj�;�; � � IG
�
T � v0
2

;
d0 +Q+ d

2

�
where

Q = (� � �pr)2 ��2�pr ; and d =

TX
t=2

[��t � � (1� ')]
2
:

Finally, we turn on the generation of ':

Generation of ' For the generation of ' we follow again Chib [7] and
write:

�t = (1� ') � � '�t�1 + vt; vt � N
�
0; '2u

�
We may now state the following Proposition (see Chib [7] for a proof).

Proposition 5. The proposal distribution of ' is:

'2j�;�; '2u � N
�e'; e�2'�

where

e' = e�2'
 
��2'0 '0 + '

�2
u

TX
t=1

(�t�1 � �) (�t � �)
!

and

e��2' = ��2'0 + '
�2
u

TX
t=1

(�t�1 � �)2

The Gibbs-sampling scheme has been completed and the next step of the
algorithm requires the generation of the conditional variance parameters via
a M-H algorithm which is now presented.
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4.2.2. Metropolis-Hasting

Step(3)(ii) is the task of simulating from the posterior of the parameters
of a EGARCH-M process. This has been already addressed by Vrontos et
al. [39]. We could use a simple M-H algorithm where each parameter is
updated one at a time (single-component update) by using independent
Metropolis steps where a random walk chain is adopted with an increment
normal density. However, as Vrontos et al. [39] mention the e¢ ciency of the
algorithm may improved if we simultaneously sample a chosen subvector of
the parameter vector using multivariate Metropolis steps (simultaneously
update). According to their method one should �rst estimate the sample
covariance matrix � of the correlated elements of the subvector from an
initial explanatory run (e.g. random walk chain) and then update using
a multivariate normal proposal density N (�r; c�) where �r denotes the
vector at the rth iteration and c is a constant to tune the acceptance
rate. Also it would be better to transform the subvector to take values on
(�1;+1).
To illustrate we suppose that �rst we adopt the random-walk MH as our

initial explanatory run. Thus, suppose that we have the general parameter
subvector �. Then the random walk MH requires the following two steps:
Step 1: At iteration j, generate a point �� from the random walk kernel,

�� = �[j�1] +"; " � N(0;
) where �[j�1] is the (j � 1)th MCMC iterate of
� .
Step 2: Accept �� as �[j] with probability � = min

�
1; f(��)=f

�
�[j�1]

��
We select 
 to be a diagonal matrix, whose elements are tuned by

monitoring the MH acceptance rate to lie between 25% and 50%, as in
Gelfand et al. [16]. The function f is the conditional posterior density.
Now, using these iterations the sample covariance matrix � is found.

We then update simultaneously the elements of the subvector using a mul-
tivariate normal proposal density N (�r; c�) :
Step 1: At iteration i, generate a point ��� from the multivariate nor-

mal proposal density N
�
�i�1; c�

�
where �i�1 denotes the vector at the

(i� 1)th iteration and c is a constant to tune the acceptance rate.

Step 2: Accept ��� as �[i] with probability � = min
�
1; f(���)

f(�[i�1])
g(�[i�1])
g((���)

�
Where g (�) / exp

�
� 1
2 (� � �)

>
(c�)

�1
(� � �)

�
is the Gaussian pro-

posal density.
The advantage of using � in the MH algorithm is that the posterior

correlations among the elements of � can be accounted for, increasing the
e¢ ciency of the Markov chain and thus speeding up convergence.
For the parameters of the EGARCH model we use U (�1; 1) prior for

� and normal priors for the other parameters �; ; � as N (0; 10). These
priors are practically noninformative.
The algorithm described above is a special case of a MCMC algorithm,
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which converges as it iterates, to draws from the required density p (�; �jr).
Posterior moments and marginal densities can be estimated (simulation
consistently) by averaging the relevant function of interest over the sample
variates. The posterior mean of � is simply estimated by the sample mean
of the simulated � values. These estimated values can be made arbitrarily
accurate by increasing the simulation sample size. However, it should be
remembered that sample variates from a MCMC algorithm are a high di-
mensional (correlated) sample from the target density and sometimes the
serial correlation can be quite high for badly behaved algorithms.
All that remains therefore is Step (2). Thus, from the above it is seen

that the main task is again as with the classical estimation of the model,
to simulate from �j�; r;F0.

4.2.3. MCMC Simulation of "j�; r;F0
For a given set of parameter values and initial conditions it is generally

simpler to simulate f"tg for t = 1; :::; T and then compute f�tgTt=1 than to
simulate f�tgTt=1 directly. For that matter, we concentrate on simulators
of "t given r and �. We set the mean and the variance of "0 equal to
their unconditional values and given that ht is a su¢ cient statistic for
Ft�1and the unconditional variance is a deterministic function of �, F0
can be eliminated from the information set without any information loss.
Now sampling from p ("jr; �) / p (rj"; �) p ("j�) is feasible by using a

M-H algorithm where we update each time only one "t leaving all the other
unchanged (Shephard, [35]). In particular, let us write the nth iteration of a
Markov chain as "n. Then we generate a potential new value of the Markov

chain "new by proposing from some candidate density g
�
"tj"nnt; r; �

�
where

"nnt =
�
"n+11 ; :::; "n+1t�1 ; "

n
t+1; :::; "

n
T

	
which we accept with probability

min

241; p
�
"newt j"nnt; r; �

�
g
�
"newt j"nnt; r; �

�
p
�
"nt j"nnt; r; �

�
g
�
"nt j"nnt; r; �

�
35

If it is accepted then we set "n+1t = "newt and otherwise we keep
"n+1t = "nt . Although the proposal is much better since it is only in a
single dimension, each time we consider modifying a single error we have
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to compute:

p
�
"newt j"nnt; r; �

�
p
�
"nt j"nnt; r; �

� =
p
�
rtj"newt ; hnew;tt ; �

�
p
�
"newt jhnew;tt ; �

�
p
�
rtjhn;tt ; �

�
p
�
rtjhnew;tt ; �

�
p
�
rtj"nt ; h

n;t
t ; �

�
p
�
"newt jhn;tt ; �

�
�

TY
s=t+1

p (rsj"rs; hnew;ts ; �) p ("rsjhnew;ts ; �) p (rsjhn;ts ; �)

p
�
rsjhnew;ts ; �

�
p
�
rsj"ns ; h

n;t
s ; �

�
p
�
"ns jh

n;t
s ; �

�
=

p
�
rtj"newt ; hnew;tt ; �

�
p
�
"newt jhnew;tt ; �

�
p
�
rtj"nt ; h

n;t
t ; �

�
p
�
"newt jhn;tt ; �

�
�

TY
s=t+1

p (rsj"ns ; hnew;ts ; �) p ("ns jhnew;ts ; �)

p
�
rsj"ns ; h

n;t
s ; �

�
p
�
"ns jh

n;t
s ; �

�
where for s = t+ 1; ::; T

hnew;ts = V
�
"sj"ns�1; "ns�2; :::; "nt+1; "newt ; "n+1t�1 ; ::; "

n+1
1

�
hn;ts = V

�
"sj"ns�1; "ns�2; ::; "nt+1; "nt ; "n+1t�1 ; ::; "

n+1
1

�
while

hnew;tt = hn;tt

Nevertheless, each time we revise one "t we have also to revise T � t
conditional variances because of the recursive nature of the GARCH model
which makes hnew;ts depend upon "newt for s = t + 1; ::; T . And since t =
1; ::; T it is obvious that we need to calculate T 2 normal densities and so
this algorithm is O

�
T 2
�
. And this should be done for every �: To avoid

this huge computational load we show how to use the method proposed by
Fiorentini et al. [13] and so do MCMC with only O (T ) calculations. The
method is described in the following subsection.

4.3. Estimation method proposed: Classical and Bayesian
estimation

The method proposed by Fiorentini et al. [13] is to transform the
GARCH model into a �rst order Markov model and so do MCMC with
only O (T ) calculations.
Following their transformation we augment the state vector with the

variables ht+1 and then sample the joint Markov process fht+1; stg jr; � 2
Ft where

st = sign (zt)

so that st = �1 with probability one. The mapping is one-to-one and has
no singularities. More speci�cally if we know fht+1g and � then we know
the value of

zt =
lnht+1 � �� � lnht

 � � 8t � 1
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where we have  + � for positive zt and  � � for negative zt.
Hence the additional knowledge of the signs of zt would reveal the entire

path of fztg so long as h0 (which equals the unconditional value in our case)
is known and thus we may now reveal also the unobserved random variable
f�tg jr; '; fht+1g :
Now we have to sample from:

p (fst; ht+1g jr; ') _
TY
t=1

p (stjht+1; ht; ') p (ht+1jst; ht; ') p (rtjst; ht; ht+1; ')

where the second and the third term come from the model and the �rst
comes from the fact that ztjFt�1 � N (0; 1) but ztj fht+1g ;Ft�1 takes
values:

zt =
lnht+1 � �� � lnht

 � �
where again we have  + � for positive zt and  � � for negative zt.
Although, we alter the volatility process when we �ip from st = �1

to st = 1 (implying that the signs cause the volatility process) and also
we alter zt; as it will become obvious below we do not have to simulate
the signs but only for t = T . Hence, we may ignore this and simulate
�rst fht+1g jr; � and then simulate fstg j fht+1g ; r; �. The second step is
a Gibbs sampling scheme whose acceptance rate is always one and also
conditional on fht+1g ; r; � the elements of fstg are independent which
further simpli�es the calculations. We prefer to review �rst the Gibbs
sampling scheme and then the simulation of the conditional variance.

4.3.1. Simulations of fstg j fht+1g ; r; �

First, we see how to sample from fstg j fht+1g ; r; �: To obtain the re-
quired conditionally Bernoulli distribution we establish �rst some notation.
We have the following (see Appendix A):

ct =
1

p
vtjrt;ht

"
'

 lnht+1���� lnht
+� � ztjrr;ht
p
vtjrt;ht

!
+ '

 lnht+1���� lnht
�� � ztjrr;ht
p
vtjrt;ht

!#

where

ztjrt;ht = E (ztjrt; ht) =
�
1� '2

�
(rt � �ht)

h
1=2
t ('2uht + 1� '2)

; vtjrt;ht = V ar (ztjrt; ht) =
'2uht

'2uht + 1� '2

Using the above notation, we see that the probability of drawing st = 1
conditional on fht+1g is equal to the probability of drawing zt = lnht+1���� lnht

+�
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conditional on ht+1; ht; rt; �, which is given by:

p (st = 1j fht+1g ; r; ') = p

�
zt =

lnht+1 � �� � lnht
 + �

jht+1; ht; rt; '
�

=
1

ct
p
vtjrt;ht

'

 lnht+1���� lnht
+� � ztjrr;ht
p
vtjrt;ht

!

Similarly for the probability of drawing st = �1. Both these quantities
are easy to compute e.g.

'

 lnht+1���� lnht
+� � ztjrr;ht
p
vtjrt;ht

!
=

1p
2�
exp

8<:�
 lnht+1���� lnht

+� � ztjrr;ht
p
vtjrt;ht

!29=;
and so we may simulate fstg j fht+1g ; r; � using a Gibbs sampling scheme.
More speci�cally, since conditional on fht+1g ; r; � the elements of fstg
are independent we actually draw from the marginal distribution and the
acceptance rate for this algorithm is always one.
The Gibbs sampling algorithm for drawing fstg j fht+1g ; r; � may be

described as below:
1) Specify an initial value s(0) =

�
s
(0)
1 ; :::; s

(0)
T

�
2) Repeat for n = 1; :::;M

(a) Repeat for t = 0; ::; T � 1
(i) Draw s(n) = 1 with probability

1

ct
p
vtjrt;ht

'

 lnht+1���� lnht
+� � ztjrr;ht
p
vtjrt;ht

!

and s(n) = �1 with probability

1� 1

ct
p
vtjrt;ht

'

 lnht+1���� lnht
+� � ztjrr;ht
p
vtjrt;ht

!

3) Return the values
�
s(1); :::; s(M)

	
4.3.2. Simulations of fht+1g =r; � (single move samplers)

On the other hand, the �rst step involves simulating from fht+1g jr; �.
To avoid large dependence in the chain we use a M-H algorithm where
we simulate one ht+1 at a time leaving the others unchanged (Shephard
[35] and Wei [40]). So if

�
ht+1

�n
is the current value of the nth itera-

tion of a Markov chain then we draw a candidate value of the Markov
chain h

new

t+1 by proposing it from a candidate density (proposal density)
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g
�
ht+1j (h)n=t+1 ; r; �

�
where (h)n=t+1 =

�
hn+11 ; hn+12 ; ::; hn+1t ; hnt+2; ::; h

n
T+1

	
.

We set (ht+1)
n+1

= (ht+1)
new with acceptance probability

min

241; p
�
h new
t+1 j (h)

n
=t+1 ; r; �

�
g
�
h n
t+1j (h)

n
=t+1 ; r; �

�
p
�
h n
t+1j (h)

n
=t+1 ; r; �

�
g
�
h

new

t+1 j (h)
n
=t+1 ; r; �

�
35

where we have used the fact that

p (hjr; �) = p
�
(h)=t jr; �

�
p
�
htj (h)=t ; r; �

�
However, we may simplify further the acceptance rate. More speci�-

cally, we have that:

p
�
ht+1j (h)=t+1 ; r; �

�
_ p (ht+2jht+1; �) p (ht+1jht; �) p (rt+1jht+2; ht+1; �) p (rtjht+1; ht; �)

Now, the following should hold:

lnht+1 � �+ � lnht

assuming that  + � � 0 and  � � � 0. This makes sense from an
economics view point. The squared volatility as a function of zt�1 should
be nondecreasing on the positive real line (i.e. +� � 0) and nonincreasing
on the negative real line (i.e. � �  � 0). Altogether z + � jzj � 0 for all
z 2 R or � � jj :
Similarly

lnht+1 � ��1 (lnht+2 � �)
and thus, we have that the support of the conditional distribution of ht+1
given ht is bounded from below and the same applies to the distribution of
ht+2 given ht+1. This means that the range of values of lnht+1 compatible
with lnht and lnht+2 in the EGARCH case is bounded from above and
below i.e.:

lnht+1�
�
�+ � lnht; �

�1 (lnht+2 � �)
�

From the above we understand that it makes sense to make the proposal
to obey the support of the density and so it is seen that we can simplify
the acceptance rate by setting

g
�
ht+1j (h)=t+1 ; r; �

�
= p (ht+1jht; �)

appropriately truncated from above (since the truncation from below will
automatically be satis�ed). But the above proposal density ignores the
information contained in rt+1 and so according to Fiorentini et al. [13] we
can achieve a substantially higher acceptance rate if we propose from

g
�
ht+1j (h)=t+1 ; r; �

�
= p (ht+1jrt; ht; �)
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A numerically e¢ cient way to simulate ht+1 from p (ht+1jrt; ht; �) is to
sample

ztjrt; ht; � � N
 �

1� '2
�
(rt � �ht)

h
1=2
t ('2uht + 1� '2)

;
'2uht

'2uht + 1� '2

!
(5)

so that the following upper bound is satis�ed:

z
new

t + �
���znewt

��� � lnht+2 � �� ��� �2 lnht
�

(6)

using an accept-reject method and then compute

lnh
new

t+1 = �+ � lnht + z
new

t + �
���znewt

���
which in turn guarantees that lnh

new

t+1 lies within the acceptance bounds.
For the accept-reject method we draw

znewt jrt; ht; � � N
 �

1� '2
�
(rt � �ht)

h
1=2
t ('2uht + 1� '2)

;
'2uht

'2uht + 1� '2

!

and accept the draw if z
new

t + �
��znewt

�� � lnht+2 � �� ��� �2 lnht
�

and

otherwise we repeat the drawing (this method is ine¢ cient if the truncation
lies in the tails of the distribution).
The conditional density of znewt will be given according to the de�nition

of a truncated normal distribution and by using the change of variable
formula we have that the density of h

new

t+1 will be:

p
�
h
new

t+1j lnh
new

t+1 2
�
�+ � lnht; �

�1 (lnht+2 � �)
�
; rt; ht; '

�

=
c
new

t

( � �)hnewt+1

26664�
0BBB@
lnht+2 � �� ��� �2 lnht

� ( � �) � ztjrr;ht
p
vt=rt;ht

1CCCA
37775
�1

where � (:) is the cdf of the standard normal.
Using Bayes�theorem we have that the acceptance probability will be

min

 
1;
p
�
ht+2jhnewt+1 ; rt+1; �

�
p
�
rt+1jh

new

t+1; �
�

p
�
rt+1jhnt+1; �

�
p
�
ht+2jhnt+1; rt+1; �

� !
Now, since the degree of truncation is same for old and new the accep-

tance probability will be:

min

 
1;
p
�
rt+1jh

new

t+1

�
p
�
rt+1jhnt+1

� cnewt+1h
n
t+1

cnt+1h
new

t+1

!
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where p (rt+1jht+1) is a mixture of two univariate normal densities and
hence:

p
�
rt+1jhnt+1

�
=

1r
2�
�

'2u
1�'2h

n
t+1 + 1

�
hnt+1

exp

0@� �
rt+1 � �hnt+1

�2
2
�

'2u
1�'2h

n
t+1 + 1

�
hnt+1

1A
So the acceptance probability becomes:

min

"
1;

�
h2nt+1
h2newt+1

�
�
�
hnewt+1

�
�
�
hnt+1

� # (7)

where

�
�
hit+1

�
=

266664
exp

(
� 1
2

('2uh
i
t+1+1�'

2)
'2uh

i
t+1

�
lnht+2���� lnhit+1

+� � (1�'2)(rt+1��hit+1)
h
1=2i
t+1 ('2uhit+1+1�'2)

�2)

+exp

(
� 1
2

('2uh
i
t+1+1�'

2)
'2uh

i
t+1

�
lnht+2���� lnhit+1

�� � (1�'2)(rt+1��hit+1)
h
1=2i
t+1 ('2uhit+1+1�'2)

�2)
377775

� exp

0@� �
rt+1 � �1hit+1

�2
2
�

'2u
1�'2h

i
t+1 + 1

�
hit+1

1A
Overall the MCMC of fht+1g jr; ' includes the following steps:
(1) Specify an initial value

�
h(0)

	
(2) Repeat for n = 1; :::;M

(a) Repeat for t = 0; ::; T � 1
(i) Use an accept-reject method to simulate

znewt jrt; ht; ' � N
 �

1� '2
�
(rt � �ht)

h
1=2
t ('2uht + 1� '2)

;
'2uht

'2uht + 1� '2

!

truncated from above

z
new

t + �
���znewt

��� � lnht+2 � �� ��� �2 lnht
�

(ii) Calculate

lnh
new

t+1 = �+ � lnht + z
new

t + �
���znewt

���
Steps (2)(a)(i) and (2)(a)(ii) are equivalent to draw

(ht+1)
new

� p
�
h
new

t+1jrt; ht; �
�
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appropriately truncated so that:

lnht+1�
�
�+ � lnht; �

�1 (lnht+2 � �)
�

(iii) Calculate

�n = min

"
1;

�
hnt+1
hnewt+1

�
�
�
hnewt+1

�
�
�
hnt+1

� #

(iii) Set

(ht+1)
n+1

=

�
(ht+1)

new

if Unif (0; 1) � �r
(ht+1)

n
otherwise

�
Remark 1. Every time we change ht+1 we calculate only one normal

density since the transformation is Markovian and since t = 0; :::; T � 1 we
need O (T ) calculations.

Notice that if we retain hnewt+1 , then "
new
t is retained and we will not

need to simulate st at a later stage. In fact we only need to simulate st at
t = T since we need to know "T : The �nal step involves computing:

�
(n)
t+1 =

rt+1 � "(n)t+1

h
(n)
t+1

; t = 0; ::; T � 1 and n = 1; ::;M

Using all the above simulated values we may now take average of simu-
lations and compute the quantities needed for the SEM algorithm. As for
the Bayesian inference, having completed Step (ii) we may now proceed to
the Gibbs-sampling and M-H steps to obtain draws from the required pos-
terior density. Thus, the �rst order Markov transformation of the model
made feasible a MCMC algorithm which allows the calculation of a classical
estimator via the simulated EM algorithm and a simulation-based Bayesian
inference in O (T ) computational operations.

5. EMPIRICAL APPLICATION: BAYESIAN ESTIMATION OF
WEEKLY EXCESS RETURNS FROM THREE MAJOR STOCK

MARKETS: DOW-JONES, FTSE AND NIKKEI

In this section we investigate the practical performance of the proce-
dures described above. To do this, we use weekly excess returns from three
major stock markets: Dow-Jones, FTSE and Nikkei for the period 1979:8
to 2008:5 (1500 observations). To guarantee j'j � 1 and to ensure that
0 � � � 1 and � � jj we also used some accept-reject method for the
Bayesian inference. This means that when drawing from the posterior (as
well as from the prior) we had to ensure that � � jj, � > 0; � < 1 and
j'j � 1.
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In order to implement our proposed Bayesian approach, we �rst have
to specify the hyperparameters that characterize the prior distributions of
the parameters. In this respect, our aim was to use informative priors that
would be in accordance with the �received wisdom�. In particular, for all
data sets we set the prior mean for a equal to �0:06 and for �;  and �
equal to 0:25;�0:09 and 0:78 respectively. These prior means imply an
annual excess return of around 3%, which is a typical value for annualized
stock excess returns. In order to diminish the impact of the prior on the
joint posterior, we use rather vague priors by setting the prior variance of
the skedastic function�s parameters a ,�;  and � to 10; 000 for all datasets.
Moreover, for prior mean of � we used 0:03 for all markets and again we set
its prior variance equal to 10; 000. Finally, we set the prior mean of ' equal
to 0:80 for all three datasets, of '2u equal to 0:01 and the hyperparameters
�0 and do equal to 1550 and 3 respectively for all three datasets, something
which is consistent with the "common wisdom" of high autocorrelation of
the price of risk. In any case, we performed a sensitivity analysis with
respect to the variance hyperparameters and con�rmed that our initial
choice is vague enough and does not introduce signi�cant information in
our estimation.
We run a chain for 200; 000 simulations for the three datasets and de-

cided to use every tenth point, instead of all points, in the sample path
to avoid strong serial correlation. The posterior statistics for the Dow-
Jones, FTSE and Nikkei are reported in Table 1. Ine¢ ciency factors are
calculated using a Parzen window equal to 0:1T (where, recall, T is the
number of observations) and indicate that the M-H sampling algorithm
has converged and well behaved.2 The parameter  which measures the
sign e¤ect is as expected negative for all datasets while the parameter � is
positive since it measures the size e¤ect of the shocks on the volatility. This
means that volatility reacts asymmetrically to the bad and good news. In
a nut shell, all estimated parameters have plausible values, which are in
accordance with previous results in the literature.
We have also performed a sensitivity analysis to our choice of priors.

In particular, we have halved and doubled the dispersion of the prior dis-
tributions around their respective means. Figures 1,2,3 show the kernel
density estimates for all parameters for all datasets for the posterior distri-
butions for the three cases: when the variances are 10; 000 (baseline pos-
terior), when the variances are halved (small variance posterior) and when
the variances are doubled (large variance posterior). We used a canonical
Epanechnikov kernel and the optimal bandwidth was determined automati-
cally by the data. The results which are reported in Figures 1,2,3 indicate
that the choice of priors does not unduly in�uence our conclusions. In par-
ticular, the negativity of the parameter  and the positivity of the price of

2This is also justi�ed by the ACFs of the draws. However, they are not presented for
space considerations and are available upon request.
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risk coe¢ cient � seem to be robust.
Finally, treating the posterior means as the "true" parameters and em-

ploying the results in Section 3, one can compare the theoretical moments
and correlations with the sample equivalents. This comparison is presented
in Table 2. In the second and third columns the sample and theoretical
moments and correlations are presented for the Dow Jones, whereas the
analogous results for the FTSE and Nikkei are presented in columns four
to seven. It is obvious that the theoretical standard deviations are uni-
formly, over the three markets, smaller than the sample ones and the same
is true for the kurtosises. On the other hand the model is delivering skew-
nesses that have opposite sign than the sample counterparts. The same
is true for the autocorrelations, i.e. the theoretical ones are only positive.
However, the theoretical and the sample dynamic asymmetries, what is
commonly called leverage e¤ect, are very close, and the same is true for
the theoretical and sample volatility clustering measures, i.e. �

�
r2t ; r

2
t�k
�
.

In short, treating the posterior means as the "true" parameters, the model
delivers positive autocorrelations, negative leverage e¤ects, volatility clus-
tering, and satisfactory approximations to the sample means. However,
it underestimates the variances and the kurtosises and overestimates the
skewnesses.

6. EXTENSIONS AND CONCLUSIONS

In this paper, we derive exact likelihood based estimators for our time
varying EGARCH(1,1)-M model. Since in general the expression for the
likelihood function is unknown, we resort to simulation methods. In this
context, we show that MCMC likelihood-based estimation of such a model
can in fact be handled by means of feasible O (T ) algorithms. Our sam-
plers involve two main steps. First we augment the state vector to achieve a
�rst-order Markovian process in an analogous manner to the way in which
GARCH models are simulated in practice. Then, we discuss how to simu-
late �rst the conditional variance and then the sign given these simulated
series so that the unobserved in mean process is revealed as a residual
term. We also develop simulation-based Bayesian inference procedures by
combining within a Gibbs sampler the MCMC simulators. Furthermore,
we derive the theoretical properties of this model, as far as moments and
dynamic moments is concerned.
In order to investigate the practical performance of the proposed proce-

dure, we estimate within a Bayesian context our TVPAR(1)-EGARCH(1,1)-
M model for weekly excess stock returns from the Dow-Jones, Nikkei and
FTSE index. We leave for further research the empirical application of the
classical estimation procedure.
Although we have developed the method within the context of an AR(1)

price of risk, it applies much more widely. For example, we could assume
that the market price of risk is a Bernoulli process or a Markov switching
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process. A Bernoulli distributed price of risk would allow a negative third
moment by appropriately choosing the two values of the in-mean process.
However, this would make all computations much more complicated. In
an earlier version of the paper, we assumed that the market price of risk
follows a normal distribution and we applied both the classical and the
Bayesian procedure to three stock markets (where we decided to set the
posterior means as initial values for the simulated EM algorithm). The
results suggested that the Bayesian and classical procedures are quite in
agreement (see Anyfantaki and Demos [1]).
Furthermore, one can extend the proposed method to other condition-

ally heteroskedastic models. Let us consider the model of Hentschel [23],
i.e. let us modify 3 so that now it reads

h�t � 1
�

= �+ �
h�t�1 � 1

�
+ h�t�1f

� (zt�1) ; where (8)

f(zt) = jzt � bj � c (zt � b) :

Notice that this model nests most popular symmetric and asymmetric
GARCH models, e.g. for � = b = 0, � = 1 and c free is the EGARCH
of Nelson (1991) [30], � = � = 2, and b = c = 0 is the GARCH of Boller-
slev [5], � = � = 2, b = 0, and c free is the GARCH of Glosten et al. [19],
etc. (see the paper of Hentschel [23] for detailed discussion on this).3

Again, we can augment the state vector with the variables ht+1 and
then sample the joint Markov process fht+1; stg jr; � 2 Ft, where now
st = sign (zt � b) so that st = �1 with probability one, as before. The
mapping is one-to-one and has no singularities, provide that c 6= �1. More
speci�cally if we know fht+1g and � then we know the value of

zt = b�

0@ h�t+1�1
� � �� � h

�
t �1
�

h�t

1A1=�

1

1� c 8t � 1

where we have 1 � c for zt � b and 1 + c for negative zt < b. Again, the
additional knowledge of the signs of (zt � b) would reveal the entire path
of fztg so long as h0 is known and thus the unobserved random variable
f�tg jr; '; fht+1g is also revealed. Of course, the formulae in sections 4.3.1
and 4.3.2 are modi�ed accordingly.
Finally, it is known that (e.g. Tanner [36], pp. 84-85) the EM algorithm

slows down signi�cantly in the neighborhood of the optimum. As a result,
after some initial EM iterations it is tempting to switch to a derivative
based optimization routine, which is more likely to quickly converge to the
maximum. EM type arguments can be used to facilitate this switch by

3Notice that the GQARCH model of Sentana [33] is not nested in this speci�cation.
However, the GQARCH model is analized in Fiorentini et al. [13] and in Anyfantaki
and Demos [2].
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allowing the computation of the score. In particular, it is easy to see that:

E

�
@ ln p (�jr; �;F0)

@�
jr; �(n);F0

�
= 0

so it is clear that the score can be obtained as the expected value given
r; �;F0 of the sum of the unobservable scores corresponding to ln p (rj�; �;F0)
and ln p (�j�;F0). This could be very useful for the classical estimation pro-
cedure, not presented here, as even though our algorithm is an O (T ) one,
it is still rather slow. We leave these issues for further research.
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APPENDIX A: PROOF OF (5) AND (7)

Proof. of 5
This is easily derived using the fact that:

rt = �tht + "t

where

rtjht � N
�
�ht;

�
'2u

1� '2ht + 1
�
ht

�
and consequently,�

"t
rt

�
jht � N

 �
0

�ht

�
;

 
ht ht

ht

�
'2u
1�'2ht + 1

�
ht

!!
and thus from the de�nition of the bivariate normal:

E ("tjrt; ht) =
�
1� '2

�
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'2uht + 1� '2
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'2uh

2
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'2uht + 1� '2
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 �
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Proof. of 7
We have that
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and thus,
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Also:
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where

ztjrt;ht = E (ztjrt; ht) =
�
1� '2

�
(rt � �ht)

h
1=2
t ('2uht + 1� '2)

; vtjrt;ht = V ar (ztjrt; ht) =
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and so,
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And the result comes straightforward.
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TABLE 1
Bayesian inference results

Dow Jones PM PSD �0:5 �min �max IF
� 0.030 0.018 0.030 0.025 0.039 2.289
' 0.822 0.068 0.803 0.513 0.999 1.199
'2u 0.010 0.008 0.007 0.003 0.012 2.956
� 0.287 0.076 0.265 -0.191 0.354 1.565
� -0.047 0.022 -0.043 -0.107 0.041 2.841
� 0.792 0.033 0.793 0.701 0.872 2.001
 -0.099 0.009 -0.098 -0.111 0.015 1.942
FTSE PM PSD �0:5 �min �max IF
� 0.034 0.014 0.033 0.016 0.039 1.611
' 0.812 0.059 0.802 0.508 0.999 3.786
'2u 0.010 0.009 0.010 0.008 0.011 1.979
� 0.226 0.078 0.205 -0.127 0.348 1.998
� -0.152 0.045 -0.152 -0.451 0.181 1.546
� 0.649 0.055 0.650 0.549 0.898 2.222
 -0.099 0.005 -0.098 -0.107 0.018 1.902
Nikkei PM PSD �0:5 �min �max IF
� 0.041 0.010 0.041 0.037 0.046 1.710
' 0.650 0.061 0.637 0.442 0.999 3.159
'2u 0.009 0.007 0.010 0.008 0.015 1.980
� 0.288 0.080 0.275 -0.187 0.360 2.001
� -0.253 0.022 -0.253 -0.464 0.103 2.996
� 0.789 0.019 0.789 0.762 0.880 1.999
 -0.099 0.008 -0.099 -0.110 0.010 1.997

Note:PM denotes posterior mean, PSD posterior standard deviation, �0:5 posterior
median, �min posterior minimum, �max posterior maximum and IF ine¢ ciency factor.
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FIG. 1 Dow-Jones: Posterior density estimates and sensitivity analysis
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FIG. 2 FTSE: Posterior density estimates and sensitivity analysis
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FIG. 3 Nikkei: Posterior density estimates and sensitivity analysis
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TABLE 2
Sample and Theoretical Moments Comparison

D-J-Sam. D-J-The. FTSE-Sam. FTSE-The. Nik.-Sam. Nik.-The.
Mean 0.0929 0.0740 0.0422 0.0360 0.0380 0.0389
St. Dev. 2.1762 1.6373 2.1231 1.0784 2.5674 0.9822
Skew. -0.4187 0.0211 -0.8913 0.0067 -0.1221 0.0174
Kurt. 6.2763 3.5278 11.4281 3.2121 5.1262 3.4525

� (rt; rt�1) -0.0631 0.0586 0.0330 0.0227 -0.0221 0.0056
� (rt; rt�2) 0.0523 0.0475 0.0835 0.0189 0.0447 0.0030
�
�
r2t ; rt�1

�
-0.1262 -0.0800 -0.0932 -0.0814 -0.1227 -0.0808

�
�
r2t ; rt�2

�
-0.0954 -0.0589 -0.1053 -0.0484 -0.0661 -0.0599

�
�
r2t ; rt�3

�
-0.0753 -0.0440 -0.0315 -0.0296 -0.1244 -0.0450

�
�
r2t ; r

2
t�1
�

0.2313 0.1741 0.0796 0.1189 0.1766 0.1679
�
�
r2t ; r

2
t�2
�

0.0940 0.1289 0.1321 0.0715 0.1050 0.1250
�
�
r2t ; r

2
t�3
�

0.0599 0.0971 0.0276 0.0442 0.1817 0.0944
�
�
r2t ; r

2
t�4
�

0.0396 0.0740 0.0283 0.0278 0.1183 0.0720
Note:D-J-Sam. stands for the sample moments of Dow Jones and D-J-The. stands for

the theoretical moments employing the forulae in section 3 and treating the parameter

postirior means as the "true" parameters. Analogously for FTSE and Nikkei.
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