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Abstract
This paper deals with higher order asymptotic properties for three

indirect inference estimators. We provide conditions that ensure the va-
lidity of locally uniform Edgeworth approximations. When these are of
suffi ciently high order they also form integrability conditions that validate
locally uniform moment approximations. We derive the relevant 2nd or-
der bias and MSE approximations for the three estimators as functions of
the respective approximations for the auxiliary estimator. We allow the
possibility of stochastic weighting in any of the steps of the estimation
procedure. We confirm that in the special case of deterministic weighting
and affi nity of the binding function, one of them is second order unbi-
ased. The other two estimators do not have this property under the same
conditions. Moreover, in this case, the second order approximate MSEs
imply the superiority of the first estimator. We generalize to multistep
procedures that provide recursive indirect estimators which are locally uni-
formly unbiased at any given order. Furthermore, in a particular case, we
manage to validate locally uniform Edgeworth expansions for one of the
estimators without any differentiability requirements for the estimating
equations.
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1 Introduction
Indirect Inference (II) is a set of inferential procedures that employ a possibly
misspecified auxiliary statistical model for estimation of the parameter represent-
ing the unknown probability measure with which the underlying measure space
is equipped. The original motivation for their introduction was largely computa-
tional (see e.g. Smith [46]) hence the choice of the auxiliary model is primarily
driven by numerical cost considerations. Despite this motivational characteristic,
it enriches the theory of (semi-) parametric statistical inference,1 since it relies on
the existence and the invertibility of functions between collections of probability
measures defined on the same σ-algebra. These constitute the core notion upon
which the estimators are built and are termed binding functions. The resulting
estimators are defined by the inversion of parametric representations of those
functions.
This paper is concerned with the establishment of higher order asymptotic

properties of three classes of II estimators (IIEs), introduced by Gallant and
Tauchen [19], Gourieroux, Monfort, and Renault [25], and Smith [46], with a
view towards their characterization in terms of their approximate bias and mean
squared error (MSE). For a detailed description of our motivation please see
subsection 1.2 below. In order to facilitate this description the next subsection
is concerned with the establishment of our general framework and the definition
of the estimators.

1.1 Definition of Estimators
In what follows, when A is a matrix ‖A‖ denotes a submultiplicative matrix norm,
such as the Frobenius one (i.e. ‖A‖ =

√
trA′A). We denote with PD (k,R)

the cone of positive definite matrices of dimension k × k. When x ∈ Rk, ‖x‖W
denotes

√
x′Wx with respect to the conformal positive definite matrixW . When

W is the identity we again use ‖x‖. Any subset of a metric space is (by abuse
of terminology) considered as a metric space when endowed with the obvious
restriction of the underlying metric. Analogously it is considered a measurable
space when endowed with the resulting Borel σ-algebra. Oε (θ) denotes the open
ε-ball around θ in a relevant metric space and Oε (θ) its closure. For s∗ and s
positive integers with s∗ ≥ s, let a∗ = s∗−1

2
and a = s−1

2
.

The notions employed in the paper essentially rely on the characteristics of
the statistical model at hand. The following assumption sets these up.

1For the discussion of the computational aspect of finite dimensional indirect inference in
a semiparametric framework, see Dridi and Renault [15].
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Assumption A.1 For a measurable space (Ω,F), the statistical model (SM) is
a family of probability distributions on F parameterized by F a function that is
onto a compact subset Θ ⊂ Rp for some p ∈ N. SM is considered endowed
with the topology of weak convergence and F−1 is continuous in the following
manner: for any θ ∈ Θ and θ̂n converging to θ then Pn an arbitrary member of
F−1

(
θ̂n

)
converges to a member of F−1 (θ).2

We abbreviate with θ0 = F (Pθ0) ∈ Int (Θ), for Pθ0 in SM , where θ0 the true
parameter vector. Pθ denotes an arbitrary member of F−1 (θ). All three IIEs,
considered here, essentially involve two step estimation procedures. In the first
step, an auxiliary criterion which is associated with part of the structure of an
auxiliary, possibly misspecified (semi-) parametric statistical model, is employed.
The auxiliary estimator, a random element with values in the auxiliary parameter
space, is obtained via the minimization of the auxiliary criterion. Under the
appropriate conditions, it will converge to the binding function evaluated at θ0,
under Pθ0 .
This motivates the second step. If the inversion of the function at this

parameter value is single valued, and an approximation of the binding function
is available, an IIE is defined as a measurable selection on the set constructed
from the inversion of this approximation at the auxiliary estimator. The auxiliary
estimator is denoted in the paper by β̂n whereas θ̂n is the collective notation
for the II ones. We also employ b (θ) to denote the binding function. Given
b (θ), differences between IIEs hinge on different approximations of the binding
function.
The following assumption defines the auxiliary parameter space and criterion

without any direct reference to the auxiliary model. It also describes properties
that enable the subsequent definitions. Notice that we are concerned with finite
dimensional inference both in SM and the associated auxiliary model. Obviously
the definitions can be extended to infinite dimensional cases.

Assumption A.2 For B a compact subset of Rq, Qn : Ω × B → R is jointly
measurable. Moreover Qn is continuous on B for Pθ−almost every ω ∈ Ω.

We suppress the dependence of the random elements involved on Ω, for
notational simplicity.

Definition D.1 The auxiliary estimator is defined as

β̂n ∈ arg min
β∈B

Qn (β) .

2This assumption enables the consideration of semi-parametric models for which the ex-
pectations involved in the following assumptions and results are independent of the infinite
dimensional parameter.
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Qn could be a likelihood function, a GMM or more generally, a distance type
criterion like the ones appearing in the following definitions. It can summarize
part of the structure of the auxiliary model. This definition allows the use of any
of the IIEs defined below as auxiliary estimators in multi step procedures, hence
enables the discussion in section 4.

Assumption A.3 The binding function b : Θ → B is injective and continuous
on Θ.

The binding function is usually retrieved by the following. Qn converges
uniformly w.r.t. β to a limit auxiliary criterion Q (θ, β) under Pθ for any θ. For
any θ, Q is uniquely minimized by b (θ). Hence β̂n converges in Pθ probability
to b (θ). In this framework the continuity of b follows from assumptions A.1 and
A.2. Injectivity is an indirect identification condition.
Given β̂n, the IIEs are defined as minimum distance ones. In our setup

the relevant distances are represented by norms with respect to positive definite
matrices. As in the context of GMM estimation, we allow these to be stochastic,
and/or depend on initial estimators, say θ̃∗n. We refer to this general framework
as stochastic weighting.

Assumption A.4 W ∗
n : Ω × Θ → PD (q,R) and θ̃∗n : Ω → B are jointly

measurable.

The first IIE considered here minimizes a distance function between the β̂n
and b (θ). It is termed GMR1 and was proposed by Gourieroux et al. [25] in
order to relax the numerical burden associated with the second estimator, defined
below.

Definition D.2 The GMR1 estimator is defined by

θ̂n ∈ arg min
θ∈Θ

∥∥∥β̂n − b (θ)
∥∥∥
W ∗n(θ̃∗n)

.

The second estimator is termed GMR2 and minimizes the previous distance
between β̂n and Eθβ̂n. First, due to assumptions A.1 and A.2 the following
lemma is trivially true.

Lemma 1.1 Under assumptions A.1 and A.2
∥∥∥Eθβ̂n∥∥∥ <∞ on Θ.

Given the above lemma, it is possible to define the GMR2 estimator by
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Definition D.3 The GMR2 estimator is defined as

θ̂n ∈ arg min
θ∈Θ

∥∥∥β̂n − Eθβ̂n∥∥∥
W ∗n(θ̃∗n)

.

The third IIE estimator, denoted here by GT, was originally proposed by
Gallant and Tauchen [19] in cases where the score of the auxiliary likelihood is
well defined. This estimator is also associated with smaller numerical costs, as
compared to the GMR2.

Assumption A.5 Let Qn be differentiable on B for Pθ−almost every ω ∈ Ω.
We denote with cn the derivative of Qn except for the case where Qn =
‖cn (β)‖

Wn(β̂∗n)
, where cn : Ω × B → Rl, Wn : Ω × B → PD (l,R), and

β̂∗n : Ω → B are jointly measurable. Moreover cn is continuous on B for
Pθ0−almost every ω ∈ Ω, cn (β) is Pθ−integrable on Θ × B and Eθ (cn (β))

is continuous on Θ × B. Also W ∗∗
n : Ω × Θ → PD (l,R) and θ̃∗n are jointly

measurable.

Notice that, given assumption A.1, the joint continuity of Eθ (cn (β)) would
follow by dominated convergence and a condition of the formEθ (supB ‖cn (β)‖) <
+∞ for any θ. The GT estimator minimizes the norm of the expectation
of the auxiliary estimating vector. We denote by Eθ

(
cn

(
β̂n

))
, the quantity

Eθ (cn (β)) |β=β̂n
for notational simplicity. Due to assumption A.5 we have that∥∥∥Eθ (cn (β̂n))∥∥∥ < ∞. Consequently, the following minimization procedure is

well defined.

Definition D.4 The GT estimator is defined by

θ̂n ∈ arg min
θ∈Θ

∥∥∥Eθ (cn (β̂n))∥∥∥
W ∗∗n (θ̃∗n)

.

The usual definition of the aforementioned estimator is given only when the
auxiliary estimator is the MLE of the auxiliary model. The current one is obvi-
ously an extension.
Given the form of SM described in the first part of assumption A.1, the

existence issue is based on assumption A.2 for β̂n, A.2, A.3, A.4 for the GMR1,
the continuity part of assumption A.1, and assumptions A.2, A.4 for the GMR2,
and A.2, A.5 for the GT estimator.

Remark R.1 Some simple cases of almost sure (or possibly asymptotic) coinci-
dence of the estimators are the following. Suppose, first, thatQn (β) = ‖cn (β)‖,
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cn (β) = qn − g (β) with the random element qn ∈ g (B) with Pθ probability 1
for any θ. Suppose that qn converges in probability to m (θ) under Pθ, and g (β)

and m (θ) are invertible. Then with Pθ probability 1, for any θ, β̂n = g−1 (qn),
b (θ) = g−1 (m (θ)), and GMR1 = m−1 (qn). Also, when m (θ) = Eθqn then
GMR1 = GT with Pθ probability 1. If moreover g is linear then the GMR2 is
also Pθ almost surely equal to the other two. Second, when q = l, m (θ) 6= Eθqn
yet Eθqn is injective, β̂n belongs to its range with Pθ probability 1−o (1) and g is
linear then GMR2 = GT with Pθ probability 1−o (1). In this case, the existence
of GMR2 would imply the existence of GT with Pθ probability 1− o (1).

The computation of all three estimators relies on the analytical tractability of
the binding function or the engaged expectations. Due to this fact in applications
the analytically intractable elements appearing in the definitions are usually ap-
proximated by some numerical integration method. Moreover the optimization in
every step is performed also numerically. In such a framework, it is easy to show
that the numerically approximated counterpart of the GMR2 estimator is the
one associated with the maximal computational burden among the three. Finally
notice that our definitions of the GMR1 and the GT estimators correspond (and
actually in the GT case generalize) to the definitions of the classical minimum
distance and the GMM estimators made by Calzolari et. al. [10]. The definition
of the GMR2 estimator is made analogously.

1.2 Higher Order Properties and Motivation
Gourieroux, Renault and Touzi [27] show that the GMR2 estimator has zero
second order bias, when i) p = q and ii) the binding function is affi ne. Notice
that both are automatically satisfied, when the auxiliary model coincides with
the SM and the binding function is approximated by a consistent estimator of
the auxiliary parameter. In this case the particular IIE is said to perform a
bias correction of the first step one, a result which was only derived using non
primitive conditions. First, we provide the validity of this result in a more general
framework3 via the use of more primitive assumptions than the ones used in
the aforementioned paper, and secondly, we define estimating procedures based
on recursions of the GMR2 estimator that are characterized by higher order
unbiasness.
Furthermore, the question of whether the above is also true for the remaining

two IIEs follows naturally. To our knowledge, the only result that could provide
such a connection is Proposition 4.1 of Gourieroux and Monfort [24], which is
not generally true (it is true under additional assumption see e.g. remark R.1).

3for example we allow that q > p.
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However, their result creates the impression that all three estimators coincide for
large enough n and therefore provides an affi rmative answer to this question. By
validating the expansions at any order and deriving the second order expansion
for them, we show that their Proposition does not apply in these cases. Hence we
essentially derive their higher order non-equivalence. We also provide comparisons
between the MSE approximations of the estimators.
In section 2 we establish the validity of locally uniform Edgeworth approxima-

tions for the examined estimators. We employ analogous methodologies of those
previously applied in Andrews [2], Andrews and Lieberman [3], Hall and Horowitz
[29], Götze and Hipp [22] and [23], Lieberman et al. [32], and Robinson [41].
At this point it is possibly useful to stress that in the construction of the

GMR2 estimator, see definition D.3 above, we employ the expected value of
the auxiliary estimator, β̂n. Consequently, to validate locally uniform Edgeworth
expansions of this estimator, employing the above mentioned methodologies,
we require the s∗ derivative of this expectation to be uniformly bounded, over
Oε (θ0) (see assumption A.10). However, in a particular case (see lemma 2.5.ii)
we manage to validate locally uniform Edgeworth expansions for the GMR2
estimator without any differentiability requirements for the equations that the
estimator satisfies asymptotically. We instead rely on the existence of asymptotic
polynomial approximations for these equations that hold for an appropriate class
of sequences and properties of the GMR1 which are suffi cient for the establish-
ment that the GMR2 estimator belongs to the aforementioned class. Hence we
essentially utilize higher order properties of one IIE that could be easily estab-
lishable, even if the estimator per se is computationally infeasible, in order to
verify analogous properties of another.
In section 3 we provide additional assumptions that validate the first and

second moment approximations and derive the second order ones as functions of
the analogous moment approximations for the auxiliary estimator. In section 4
we generalize the estimation procedures via multistep extensions of the GMR2
estimator that, under the scope of section 3, have desirable higher order prop-
erties. At this point we should remark that since their introduction IIEs are
becoming increasingly popular. Several applications have been carried out in the
context of stochastic volatility and equity return models (e.g. Gallant et al. [17],
Garcia et al. [20], Andersen et al. [1], and Sentana et al. [43]), exchange rate
models (e.g. Bansal et al. [7], and Chung and Tauchen [12]), commodity price
and storage models (e.g. Michaelides and Ng [36]), dynamic panel data (e.g.
Gourieroux et al. [26]), stochastic differential equation models (e.g. Gallant
and Long [18] and Gourieroux and Monfort [24]), and in ARMA models (e.g.
Chumacero [11], Ghysels et al. [21], Demos and Kyriakopoulou [14], and Phillips
[40]). Consequently, the results presented in these two sections could be useful
to applied work, as well.
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In section 5 we present two examples and engage into Monte Carlo experi-
ments. We conclude in section 6. As the paper is concentrated on the asymptotic
properties of IIEs we make high level assumptions for the auxiliary one, i.e. in
section 2 we assume that the auxiliary estimator has a valid Edgeworth expansion.
This could be justified by either adopting the weak dependence set up of Götze
and Hipp [23] or the strong dependence one in Lieberman, Rousseau and Zucker
[32]. Consequently, in this way we are as general as possible, as well. However,
in section 7 we discuss low level assumptions that suffi ce for the high level ones
to hold. We collect all proofs and cite some general results in the appendix.

2 Validity of Edgeworth Approximations
In this section we expand the assumption framework presented above, in order
to facilitate the validation of Edgeworth approximations.4 We initially assume
analogous expansions for β̂n, and require differentiability of the random elements
appearing in the definitions of θ̂n in a neighborhood of θ0. Given these, we prove
that the IIEs satisfy first order conditions with probability uniformly bounded by
1−o

(
n−a

∗)
, around θ0. Then, a justified application of the mean value theorem

implies asymptotic tightness for
√
n
(
θ̂n − θ

)
with probability uniformly bounded

by 1−o
(
n−a

∗)
, around θ0. Third, we obtain a local polynomial approximation of

√
n
(
θ̂n − θ

)
using the first order conditions and bound the relevant remainder

by an o
(
n−a

∗)
real sequence with probability uniformly bounded by 1−o

(
n−a

∗)
,

around θ0. Then, if valid,
√
n
(
θ̂n − θ

)
and the polynomial approximation have

the same Edgeworth expansion uniformly over the required neighborhood of θ0.
Finally, the validity of the aforementioned approximation is established by em-
ploying an argument analogous to Skovgaard [44], i.e. a Theorem of Invariance of
validity of Edgeworth approximations with respect to sequences of smooth trans-
formations (see also Bhattacharya and Ghosh [8] in an iid framework, where the
transformation examined is independent of n). This methodology is justified by
lemmas AL.4 and AL.5 in the second part of the appendix (for analytical proofs
of these results see Arvanitis and Demos [5]).

4The Edgeworth distributions discussed in the sequel, are not necessarily the formal ones.
They comply with the general definition of Magdalinos [34] (see equations 3.7-8).
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Assumptions Specific to the Validity of the Edgeworth Approximations

We denote with Dr, the r-derivative operator and with Dr (h (x0)) (xr) the rth-
linear function defined by the evaluation of Drh at x0 evaluated at (x, ..., x)︸ ︷︷ ︸

r times

. Let

M denote a universal positive constant, independent of n and θ, not necessarily
taking the same value across and inside assumptions proofs and results. pri,j (x)

denotes the transformation of an rth dimensional vector, say x = (x1, x2, ..., xr)
′,

to a vector containing only the elements of x from the ith to the jth coordinate,
i.e. pri,j (x) = (xi, xi+1, ..., xj)

′, where naturally 1 ≤ i ≤ j ≤ r. Finally
whenever the assertion "locally" appears in the sequel it implies "for all θ ∈
Oε (θ0)" unless otherwise specified.5

Assumption A.6 β̂n is uniformly consistent for b (θ) with rate o
(
n−a

∗)
, i.e.

sup
θ∈Θ

Pθ

(∥∥∥β̂n − b (θ)
∥∥∥ > ε

)
= o

(
n−a

∗)
,∀ε > 0.

Moreover θ̃∗n, see assumption A.4, is uniformly consistent for θ with rate o
(
n−a

∗)
.

This assumption along with the boundeness of B enables the uniform conver-
gence of Eθβ̂n to b (θ), hence the establishment of the analogous property for the
GMR2 estimator.6 Low level assumptions and ways of verifying this assumption
can be found in section 7.
The following concerns the asymptotic behavior of the weighting matrices

involved in the II estimation.

Assumption A.7 For W j
n (θ) be either W ∗

n (θ) or W ∗∗
n (θ) and

k =

{
q if W j

n (θ) = W ∗
n (θ)

l if W j
n (θ) = W ∗∗

n (θ)
,

suppose that there exists a sequence of random elements xn : Ω → Rm, such
that W j

n (θ) = 1
n

∑
W j (xi (ω) , θ) for measurable W j : Rm × Θ→ PD (k,R),

integrable with respect to Pθ∗, such that

a) sup
θ∗∈Θ

Pθ∗
(∥∥W j

n (θ)− Eθ∗W j (θ)
∥∥ > ε

)
= o

(
n−a

∗)
, ∀ε > 0

5Notice that due to the fact that the spaces Θ and B are separable and closed, suprema
of real random elements over these spaces are typically measurable (see van der Vaart and
Wellner [49], example 1.7.5 p. 47 due to the theorem of measurable projections, completeness
of the underlying probability space, the compactness of Θ and the continuity of b).

6see the first paragraph of the proof of lemma 2.3.
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Eθ∗W
j (θ) is Lipschitz w.r.t. θ, for any θ∗ and for the Lipschitz coeffi cient (say)

κj (θ∗) we have that supθ∗∈Θ κ
j (θ∗) < +∞.

b) For W j
n (θ) = W ∗

n (θ) if p 6= q, and W j
n (θ) = W ∗∗

n (θ) if p 6= l, W j (x, θ) is
s∗-differentiable on Oε0 (θ0) for ε0 > ε and

sup
θ∗∈Oε(θ0)

Pθ∗

(
sup

θ∈Oε(θ0)

∥∥Ds∗+1W j
n (θ)

∥∥ > M

)
= o

(
n−a

∗)
.

The first part of a) can be justified by conditions on the asymptotic behavior
of supθ∗ Eθ∗

(
‖W j

n (θ)− Eθ∗W j (θ)‖q
)
. The second part can be justified by

sup
θ∗∈Θ

Eθ∗ sup
θ∈Θ

∥∥DW j (xi (ω) , θ)
∥∥ < +∞.

Part b) can be justified analogously.
Obviously when W j (x, θ) is independent of x and θ the above assumption

is trivially satisfied. Let f (x, θ) denote the vector that contains stacked all the
distinct components of W ∗ (x, θ) and W ∗∗ (x, θ) as well as their derivatives up
to the order s∗ − 1. If f (x0, θ)−Eθf (x0, θ) contains zero elements then these
are discarded. Furthermore when p = q the elements corresponding to W ∗ (x, θ)
and its derivatives are also discarded. Analogously when p = l the elements
corresponding to W ∗∗ (x, θ) and its derivatives are discarded too. Obviously
when f (x0, θ) − Eθf (x0, θ) equals zero or p = q = l, f becomes irrelevant to
what follows. Let

mn (θ) = β̂n − b (θ)

when f (x0, θ)− Eθf (x0, θ) is zero or p = q = l,

mn (θ) =

(
β̂n − b (θ)

1
n

∑
f (xi)− Eθ 1

n

∑
f (xi)

)
when f (x0, θ) is independent of θ yet f (x0) − Eθf (x0) is not zero and the
involved dimensions do not coincide, and

mn (θ) =

 β̂n − b (θ)
θ∗n − θ

1
n

∑
f (xi, θ)− Eθ 1

n

∑
f (xi, θ)


in any other case. Ψn,s∗ (θ) denotes an Edgeworth measure of order s∗ (see
for example equations (3.7) and (3.8) of Magdalinos [34]) defined on the Borel
algebra of Rw for w = dim (mn). πi−1 (z, θ) denotes the polynomial (w.r.t. to
z) appearing in the density of Ψn,s∗ (θ) with coeffi cient 1

n
i−1
2
, for i = 1, . . . , s∗

(notice that π0 = 1).
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The random elements appearing in the paper assume their values in finite
dimensional Euclidean spaces. For notational simplicity and without any risk of
error, in what follows BC generically denotes the class of convex Borel subsets
of any of those spaces.

Definition D.5 We say that a sequence of random elements (Sn (θ))n∈N with
values in some finite dimensional Euclidean space has an Edgeworth expansion
of order s∗ if there exists an Edgeworth measure Ψn,s∗ (θ) of order s∗ such that

sup
A∈BC

|P (Sn (θ) ∈ A)−Ψn,s∗ (θ) (A)| = o
(
n−a

∗)
.

If there exists some ε > 0 and a θ0 such that the previous holds also uniformly
w.r.t. Oε (θ0) then we say that the expansion is locally uniform (around θ0).

In some of the cases examined in this paper the uniformity w.r.t. BC can
be enlarged to include the whole Borel algebra. For a discussion please see
section 7. Furthermore, in some cases we describe explicitly the neighborhoods
of θ0 for which we establish the validity of the definition. Given the definition,
the following is an extremely important-to what follows-high order assumption
concerning the asymptotic behavior of the auxiliary estimator.

Assumption A.8
√
nmn (θ) has a locally uniform Edgeworth expansion of order

s∗. Furthermore πi (z, θ) is equicontinuous onOε (θ0) ∀z ∈ Rq, for i = 1, . . . , a∗,
and if V (θ) denotes the variance matrix in the density of Ψn,s (θ) then it is
continuous on Oε (θ0) and positive definite.

We now briefly discuss the conditions that could validate the previous as-
sumption. We first reformulate Theorem 3.2 of Arvanitis and Demos [5] as
follows.

Theorem 2.1 Suppose that:
-A. The random element Mn (θ) satisfies

0p×1 =
s−1∑
i=0

1

ni/2

∑i+1

j=0
Ci,j,n (θ)

(
Mn (θ)j , Sn (θ)i+1−j

)
+Rn (θ)

with probability 1−o
(
n−

s−1
2

)
independent of θ where Ci,j,n : Oε (θ0)×Rqi+1 →

Rp is (i+ 1)-linear ∀θ ∈ Oε (θ0), C0,0,n (θ) , C0,1,n (θ) are independent of n and
have rank p ∀θ ∈ Oε (θ0), Ci,j,n are equicontinuous on Oε (θ0), ∀xi+1,
-B. Sn (θ) admits a locally uniform Edgeworth expansion with equicontinuous
on Oε (θ0) density polynomials πi (z, θ), and the variance matrix is continuous
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on Oε (θ0) and positive definite,

-C. supθ∈Θ P
(
‖Mn (θ)‖ > C ln1/2 n

)
= o

(
n−

s−1
2

)
for some C > 0 indepen-

dent of θ,
-D. supθ∈Θ P (‖Rn (θ)‖ > γn) = o

(
n−

s−1
2

)
for some real sequence γn =

o
(
n−

s−1
2

)
independent of θ.

ThenMn (θ) admits an order s locally uniform Edgeworth expansion with density
comprised of polynomials which are equicontinuous on Oε (θ0) and the variance
matrix is continuous on Oε (θ0) and positive definite.

When β̂n is an M-estimator the verification of the assumption A.8 proceeds
via the verification of the conditions of the above theorem. When, on the other
hand, β̂n is an MLE or a GMM estimator Sn is a random vector consisting of
the random elements appearing in the derivatives of the likelihood function or
the moment conditions and therefore is of the form of a normalized sum. For
further discussion as well as counterexamples please see section 7.

Existence of Edgeworth Expansions for the GMR-type Estimators

In this subsection we establish locally uniform Edgeworth expansions for the
GMR1 and GMR2 estimators. Without any direct reference to Qn we utilize
additional assumptions concerning the behavior of the coeffi cients in the asymp-
totic polynomial approximations of the estimators by the elements of the random
vector mn (θ) (see assumption A.8).

The GMR1 Case Here the local continuous differentiability of b (θ) is suffi cient.

Assumption A.9 b (θ) is s∗+1 continuously differentiable and rankDb (θ) = p,
for all θ in Oε0 (θ0) and ε0 > ε.

In a special case, i.e. when Qn = ‖cn (β)‖
Wn(β̂∗n)

and q = l, the previous

assumption can be justified when c (θ, β) (the uniform limit of cn (β) defined in
assumption A.12 below) is s∗ + 1 times differentiable on Oη (ϕ0) where ϕ0 =

(θ′0, b
′ (θ0))

′, for η large enough and rank ∂c(θ,b(θ))
∂β′ = q for all θ in Oε (θ0), via

the Implicit Function Theorem.
The next lemma provides the results.

Lemma 2.2 i) Under the assumptions A.1, A.2, A.3, A.4, A.6 and A.7.a the
GMR1 is uniformly consistent for θ with rate o

(
n−a

∗)
.

ii) If additionally assumptions A.7.b, A.8 and A.9 hold then,
√
n (GMR1−θ) has

a locally Edgeworth expansion of order s∗ w.r.t. Oε (θ0), for ε < ε0., where ε0

as in assumption A.9.
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The GMR2 Case The analogous to assumption A.9 is the following.

Assumption A.10 supθ∈Oε0 (θ0)

∥∥∥Ds∗Eθβ̂n

∥∥∥ < M .

Assumption A.9 along with assumption A.10 imply that for r = 1, . . . , s∗,
supθ∈Oε(θ0)

∥∥∥Dr
(
Eθβ̂n − b (θ)

)∥∥∥ < M , which in turn means thatDr−1
(
Eθβ̂n − b (θ)

)
are uniformly Lipschitz onOε (θ0), and therefore uniformly equicontinuous on the
same ball. This implies the commutativity of the limit, with respect to n and the
derivative operator, uniformly over Oε (θ0). This along with the second part of
assumption A.9 and continuity imply that rankDEθβ̂n = p, for all θ in Oε (θ0)
for n large enough. If the statistical model has an appropriately differentiable like-
lihood function then this assumption could be verified by existence of moments
of suprema of the likelihood derivatives along with restrictions on the asymptotic
properties of these derivatives.
The next lemma provides the results.

Lemma 2.3 i) Under the assumptions A.1, A.2, A.3, A.4, A.6 and A.7.a the
GMR2 is uniformly consistent for θ with rate o

(
n−a

∗)
.

ii) If additionally assumptions A.7.b, A.8, A.9 and A.10 hold then
√
n (GMR2−θ)

has a locally Edgeworth expansion of order s∗ − 1.

A Case of Validation of the Expansion Without Differentiability for Eθβ̂n. The fact
that the Edgeworth approximation of the auxiliary estimator is locally uniform
enables the possibility that the second part of the previous lemma holds with the
strength of assumption A.10 either diminished, or eliminated in particular cases.
We investigate such possibilities. We denote with kiβ (z, θ) = zπi−1 (z, θ) and
with I

V

(
kiβ (z, θ)

)
=
∫
Rq kiβ (z, θ)ϕV (θ) (z) dz where πi−1 (z, θ) and V (θ) are

as in assumption A.8.

Assumption A.11 I
V

(
kiβ (z, θ)

)
is s∗ (equi-) continuously differentiable for

i = 1, . . . , s∗ − 1 over Oε (θ0).

Due to dominated convergence, the form of the Edgeworth densities and the
properties of the normal distribution this assumption would hold if the coeffi cients
of the polynomials (w.r.t. z) πi−1 (z, θ) and the quadratic form in the density
approximation of the auxiliary estimator are s∗ (equi-) continuously differentiable
functions of θ (see section 7).
The following lemma enables the derivation of an analogous result to the

second part of lemma 2.3 in the special case where p = q.
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Lemma 2.4 If assumptions A.8, A.9 and A.11 hold for s∗ > s then for any
sequence θ+

n for which

sup
θ∈Oε(θ0)

Pθ

(√
n
∥∥θ+

n − θ
∥∥ > M ln1/2 n

)
= o

(
n−a

∗)
we have that for any ε∗ < ε

sup
θ∈Oε∗ (θ0)

Pθ

(∥∥∥√n(Eθ+n β̂n − Eθβ̂n)− An (θ)
∥∥∥ > γn

)
= o

(
n−a

∗)
,

where

An (θ) =
∑s

i=1

1

n
i−1
2 i!

Di

(
b (θ) +

∑s−i

j=1

I
V

(
kjβ (z, θ)

)
n
j
2

)(√
n
(
θ+
n − θ

)i)
,

γn = o (n−a) independent of θ and Eθ+n β̂n = Eθβ̂n

∣∣∣
θ=θ+n

, i.e. the composition

of Eθβ̂n with θ
+
n , employing the convention that when s − i = 0 then

∑s−i
j=1 is

empty.

Notice that under the provisions of the following lemma 2.5, the Edgeworth
expansion can be established either by restricting assumption A.10 to hold only
for the second order derivative so as to establish that EGMR2β̂n = β̂n with Pθ-
probability 1− o (n−a) that is independent of θ, or does not need to hold at all if
the latter is established in some other way. In this case the validity of the Edge-
worth approximation goes through without the need to assume differentiability
for Eθβ̂n. This becomes possible since due to the previous lemma the quotients
that would define the derivative need only converge for an appropriate class of
sequences. Hence lemma 2.5.ii below, enables the validation of an Edgeworth
expansion of the GMR2 estimator without the application of Taylor expansions
for the first order conditions.

Lemma 2.5 Suppose that p = q and assumptions A.1, A.2, A.3, A.4, A.6, A.7,
A.8, A.9 and A.11 hold for s∗ > s. i) If supθ∈Oε0 (θ0)

∥∥∥D2Eθβ̂n

∥∥∥ < M then
√
n (GMR2−θ) has a locally uniform Edgeworth expansion of order s w.r.t.
Oε∗ (θ0) for any ε∗ < ε.
ii) if β̂n = b (GMR1) with probability 1−o (n−a) uniformly on Oε (θ0) and β̂n =

EGMR2β̂n with probability 1−o (n−a) uniformly onOε (θ0) then
√
n (GMR2−θ)

has a locally uniform Edgeworth expansion of order s w.r.t. Oε∗ (θ0) for any
ε∗ < ε.
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The second case of the previous lemma implies that the results on the higher
order asymptotics for the GMR1 estimator can be analytically useful for the
determination of the higher order properties of the GMR2 estimator. Finally
notice that the Edgeworth distributions validated in all cases of lemmas 2.3 and
2.5 need not coincide. However due to the triangle inequality the uniform with
respect to on Oε (θ0), convex variational distance (see for example Andrews [2])
between any pair of them must be o (n−a). Let us now turn our attention to the
GT estimator.

Existence of Edgeworth Expansion for the GT Estimator

We first consider two particular cases which link the asymptotic behaviors of the
three estimators.

Lemma 2.6 A. Suppose that p = q = l, EGT

(
cn

(
β̂n

))
= 0l with probability

1 − o
(
n−a

∗)
independent of θ and Eθ (cn (β)) = 0l iff β = b (θ). i) If the

assumptions of lemma 2.2.i hold then the GT is uniformly consistent for θ with
rate o

(
n−a

∗)
. ii) If the assumptions of lemma 2.2.ii hold then

√
n (GT−θ) has

a locally uniform Edgeworth expansion of order s∗ which coincides with the one
of lemma 2.2.
B. Suppose that q = l, cn (β) = qn − β for qn an appropriate q-dimensional
random element and W ∗

n = W ∗∗
n (Pθ almost everywhere for all θ). i) If the

assumptions of lemma 2.3.i hold then the GT is uniformly consistent for θ with
rate o

(
n−a

∗)
. ii) If the assumptions of lemma 2.3.ii or the ones of lemma 2.5.i

or ii hold then
√
n (GT−θ) has a locally uniform Edgeworth expansion of order

s∗−1 w.r.t. Oε∗ (θ0), for ε∗ < ε, which coincides with the expansions of lemmas
2.3 or 2.5.i or ii, respectively.

In a more general case, due to the definition of the particular estimator, we
utilize the following two assumptions concerning the asymptotic behavior of cn.

Assumption A.12 Let Qn = ‖cn (β)‖
Wn(β̂∗n)

and

‖cn (β)− cn (β′)‖ ≤ κn ‖β − β′‖ , for all β, β′ (1)

supθ∈Θ Eθκn = O (1) and

sup
θ∈Θ

Pθ

(
sup
β∈B
‖cn (β)− c (θ, β)‖ > ε

)
= o

(
n−a

∗)
,∀ε > 0, (2)

where c (θ, β) is continuous on B and equals zero iff β = b (θ) for any θ.
Furthermore

sup
θ∗∈Θ

lim sup
n
Eθ∗ ‖cn (β)‖2 < +∞, for all β. (3)
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Assumption A.13 For ϕ = (θ′, β′)
′, ϕ0 as before and η large enough for

Oη (ϕ0) ⊃ Oε0 (θ0) × Oε′ (b (θ0)), rank
(

limn→∞
∂Eθcn(b(θ))

∂θ′

)
= p,

rank
(

limn→∞
∂Eθcn(b(θ))

∂β′

)
= q onOε0 (θ0), and supϕ∈Oη(ϕ0)

∥∥Ds∗+1Eθcn (β)
∥∥ <

M .

We are now ready to provide the analogous to lemmata 2.2 and 2.3 for the
GT estimator.

Lemma 2.7 i) Under the assumptions 2.2, A.2, A.3, A.4, A.6, A.7.a and A.12
the GT is uniformly consistent for θ with rate o (n−a).
ii) If additionally c (θ, β) = Eθcn (β) and assumptions A.7.b, A.8 and A.13 hold
then

√
n (GT−θ) has a locally uniform Edgeworth expansion of order s∗.

Notice that locally uniform (around ϕ0) expansions of
√
n (cn (β)− c (θ, β))

of appropriate order could enable the result of the second part of the previous
lemma without the employment of assumption A.13 in circumstances analogous
to the ones described in lemma 2.5. We do not pursue this kind of reasoning in
order to economize on space.7

3 Valid First and Second Moment Expansions
Having established the validity of Edgeworth expansions we are concerned with
the approximation of their first and second moment sequences with a view to-
wards bias-MSE comparisons. The methodology employed to derive the results is
similar to the so-called delta method of approximations of moments of estimator
sequences (see e.g. Linton [33] and McCullagh [35], Phillips [39], and Sargan
[42]). To evaluate the approximate biases and MSEs we employ the following,
general, lemma which establishes that, if the Edgeworth expansions involved are
of an appropriately large order, the needed moment approximations are provided
by the analogous moments of the Edgeworth distributions.8

7Similarly to the GMR2 case, the Edgeworth distributions validated in lemmas 2.6 and 2.7
need not coincide. Again their distance must be of order o

(
n−a

∗)
.

8Notice that separate methodologies concerning moment approximations (as for example
the one in Koenker et al. [30]) are not general enough to cover our framework due to the
following reasons. First, these methodologies concern only moment approximations, i.e. does
not utilize the Edgeworth expansions, secondly, our auxiliary criterion is more general since
our auxiliary model need not be a linear one, and thirdly these methodologies cannot provide
analogous results for the GMR2 estimator.
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Lemma 3.1 Suppose that K is a m-linear real function on Rw, the support of
an Rw valued random element (say) ζn is bounded by O√nρ (0) for some ρ > 0,
and ζn admits an Edgeworth expansion of order s

∗ = 2a+m+ 1, then∣∣∣∣∫
Rq
K (zm)

(
dPn −

(
1 +

∑s

i=1

πi (z)

n
i
2

)
ϕV (z) dz

)∣∣∣∣ = o
(
n−a
)
,

where Pn, and
(

1 +
∑s

i=1

πi(z)

n
i
2

)
ϕV (z) denote the distribution of ζn and the

density of the analogous Edgeworth measure of order s = 2a + 1 respectively.
Moreover if Pn depends on θ, and πi (z) are continuous on Oε (θ0) for any z,
V is continuous on Oε (θ0) and the expansion is uniformly valid on Oε (θ0), the
approximation holds uniformly on Oε (θ0).

Notice that in the case that the support of ζn is not bounded the previous
result would hold for s∗ = 2a + m + 2. This follows easily from the proof
of the previous lemma by letting ρ = lnε n (ε ≥ 1/2) and by the fact that the
Edgeworth approximation is uniform w.r.t. BC , and the fact that by construction
BC contains the class of closed balls centered at zero.
Due to the fact that in the previous results we do not derive the Edgeworth

approximations but only prove their valid existence, this lemma is not very prac-
tical for the derivation of the approximations of moments of the IIEs. This
diffi culty can be circumvented as follows. Notice first that the proof of the va-
lidity of the Edgeworth approximations in any of the examined cases includes the
verification of the condition EXPAND of lemma AL.5 in the second part of the
appendix. This implies the verification of condition 2.1−A. This is achieved by
properly truncating the polynomial approximations of the Lagrange inversion of
the first order conditions, that the estimators satisfy asymptotically (see also the
proof of Theorem 3.2 in Arvanitis and Demos [5]). Consequently, the resulting
functions are integrated with respect to the Edgeworth distribution appearing in
assumption A.8 (due to theorem 2.1) delivering, thus, the required moments.
We proceed with the computation of these functions and the analogous in-

tegration w.r.t. the Edgeworth distribution appearing in assumption A.8 for the
derivation of the first and second moment approximations for the estimators
considered above when s = 2. These are derived as functions of the analogous
approximations for β̂n. This in turn is suffi cient for the characterization of the
2nd order bias and MSE structure of the IIEs at hand.
In the following we suppress the dependence on θ and z where possible for

notational convenience. For the rest of this section we denote by b = b (θ), b,j
is the jth element of b, W ∗ = EθW

∗ (θ), W ∗
j,j′ is the (j, j′) element of W ∗,

and analogously for W ∗∗ and C = ∂b′

∂θ
W ∗ ∂b

∂θ′ . z denotes a variable with values in
the Euclidean space of dimension equal to the dimension of the random vector
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mn (θ) in assumption A.8. kiβ (z, θ) = πi−1 (z, θ) pr1,q (z), for any i = 1, . . . , s∗,
k1θ∗ (z, θ) = prq+1,p+q (z) if θ∗n − θ appears in the vector mn (θ), otherwise it
is 0q. kiw∗ (z, θ) is the symmetric q × q matrix, defined as follows: for j′ ≥ j,
(kiw∗ (z, θ))

j,j′ = zq where q is the position of (W ∗
n (θ)− EθW ∗ (θ))j,j′ inmn (θ),

if the latter appears there, otherwise it is zero. Analogously, kiw∗∗ (z, θ) is the
symmetric l × l matrix, defined as follows: for j′ ≥ j, (kiw∗∗ (z, θ))

j,j′ = zq
where q is the position of (W ∗∗

n (θ)− EθW ∗∗ (θ))j,j′ if the latter appears in
mn (θ) otherwise it is zero.

3.1 Valid 2nd order Bias approximation for the Indirect estimators
We are ready to provide the results for the second order bias approximation of
the IIEs. Notice that due to their form, the results in Newey and Smith [38]
imply that the bias will depend on the relation between p, q, l, the non linearities
of the relevant estimating vectors and the stochastic weighting.

GMR1 Estimator We obtain the following lemma.

Lemma 3.2 Let θ̂n denote the GMR1 estimator. If assumptions A.1, A.2, A.3,
A.4, A.6 and A.7, A.8, A.9 and A.10 hold with s∗ ≥ 3 then uniformly over
θ ∈ Oε (θ0) ∥∥∥∥Eθ√n(θ̂n − θ)− ξ1 (θ)√

n

∥∥∥∥ = o
(
n−

1
2

)
,

where

ξ1 (θ) = C−1∂b
′

∂θ
W ∗IϕV ∗

(
k2β

)
−1

2
C−1∂b

′

∂θ
W ∗IϕV ∗

([(
C−1∂b

′

∂θ
W ∗k1β

)′
∂bj
∂θ∂θ′

C−1∂b
′

∂θ
W ∗k1β

]
j=1,...,q

)

+C−1IϕV ∗


 [(

C−1 ∂b′

∂θ
W ∗k1β

)′ ∂2b′

∂θ∂θj

]
j=1,...,p

W ∗ (θ)

+∂b′

∂θ
k1w∗ + ∂b′

∂θ

[
∂
∂θ′W

∗
j,j′k1θ∗

]
j,j′=1,...,q


×
(
Idq − ∂b

∂θ′C
−1 ∂b′

∂θ
W ∗) k1β

 .

The following corollary is trivial and it essentially assumes that the random
element in assumption A.8 is only

√
n
(
β̂n − b (θ)

)
.

Corollary 1 When W ∗ is independent of x and θ and b (θ) is affi ne then

ξ1 (θ) = C−1∂b
′

∂θ
W ∗IV

(
k2β

)
.
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Hence ξ1 is zero iff IV
(
k2β

)
belongs to the kernel of C−1 ∂b′

∂θ
W ∗, which obvi-

ously is a q− p dimensional subspace of Rq for any θ. Suppose for instance that
b (θ) =

(
θ′, 0′q−p

)′
in a large enough neighborhood of θ0.9 Then partitioning W ∗

as
(
W ∗

1 W ∗
3

W ∗′
3 W ∗

2

)
where W ∗

1 is p× p, W ∗
2 is q− p× q− p, and W ∗

3 is p× q− p

we have that C−1 ∂b′

∂θ
W ∗IV

(
k2β

)
= (W ∗

1 )−1 ( W ∗
1 W ∗

3

)
IV
(
k2β

)
and thereby

ξ2 (θ) locally equals 0p iff W ∗
1

[
IV
(
k2β

)
i

]
i=1,...p

+W ∗
3

[
IV
(
k2β

)
i

]
i=p+1,...q−p is lo-

cally equal to 0p. In the case thatW ∗
3 is zero this is equivalent to

[
IV
(
k2β

)
i

]
i=1,...p

locally equals 0p. This discussion raises the issue of the optimal choice of W ∗ so
that ‖ξ2 (θ)‖ is minimal but this is out of the scope of the present paper.
We continue now with the GMR2 case.

GMR2 Estimator The approximation contains the term −C−1 ∂b′

∂θ
W ∗IV

(
k2β

)
something that is not present in the other two, a fact that is attributed to the
existence of Eθβ̂n in the definition of the particular estimator.

Lemma 3.3 Let θ̂n denote the GMR2 estimator. If assumptions A.1, A.2, A.3,
A.4, A.6 and A.7, A.8, A.9, A.10 and A.11 hold for s∗ ≥ 4 then uniformly over
Oε∗ (θ0) for any ε∗ < ε∥∥∥∥Eθ√n(θ̂n − θ)− ξ2 (θ)√

n

∥∥∥∥ = o
(
n−

1
2

)
,

where

ξ2 (θ) = ξ1 (θ)− C−1∂b
′

∂θ
W ∗IV

(
k2β

)
.

The following corollary is trivial and establishes general conditions under
which the GMR2 estimator is second order unbiased.

Corollary 2 WhenW ∗ is independent of x and θ and b (θ) is affi ne then ξ2 (θ) =
0p.

This result is already known for the case where p = q, β̂n is a consistent
estimator of θ, whence the GMR2 obviously performs a second order bias cor-
rection.10 Hence the previous generalizes the results in Gourieroux and Monfort
[24] and Gourieroux et al. [27]. Finally it is easy to see that lemma 2.5 for
s∗ ≥ 4 implies that the results in lemma 3.3 and corollary 2 also hold when the

9For a discussion on when the binding function admits this "canonical" form see section 4.
10If in addition Eθβ̂n is linear, then the estimator is exactly unbiased (see Gourieroux et al.

[27]).
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approximations appearing there are computed by taking into account that p = q,
thereby becoming independent of the weighting matrix.
We conclude the presentation of the expansions with the last of the three

estimators.

GT Estimator We present first a straightforward case implied by the previous
results. Denoting with D = ∂b′

∂θ
∂c(θ,b)
∂β′ W

∗∗ (θ) ∂c(θ,b)
∂β′

∂b
∂θ′ , E = ∂b′

∂θ
∂c(θ,b)
∂β′ W

∗∗ (θ),

Hj=
∂b′

∂θ

∂2cj(θ,b)

∂β∂β′
∂b
∂θ′−

[
∂cj(θ,b)

∂β′
∂2b

∂θ′∂θr

]
r=1,...,p

, J =k1w∗∗+
[

∂

∂θ/
W ∗∗ (θ)j,j′ k1θ∗

]
j,j′=1,...,l

,

J ∗ =
(
∂c(θ,b)
∂β′

∂b
∂θ′D

−1E− Idl

)
∂c(θ,b)
∂β′ and q1β = D−1E ∂c(θ,b)

∂β′ k1β we obtain the fol-
lowing lemma.

Lemma 3.4 Under A.12 suppose that Eθcn (β) = c (θ, β). Furthermore let A.1,
A.2, A.3, A.4, A.6, A.7, A.8, A.13 hold for s∗ ≥ 3, then uniformly on Oε (θ0)∥∥∥∥Eθ√n(θ̂n − θ)− ξ3 (θ)√

n

∥∥∥∥ = o
(
n−

1
2

)
,

where

ξ3 (θ) = D−1E ∂c (θ, b)

∂β′
IV
(
k2β

)
+

1

2
D−1E

[
IV
(
k′1β

∂2cj (θ, b)

∂β∂β′
k1β

)]
j=1,...,l

−D−1E
[
IV
(
q′1β

∂b′

∂θ

∂2cj (θ, b)

∂β∂β′
k1β

)]
j=1,...,l

+
1

2
D−1E

[
IV
(
q′1βHjq1β

)]
j=1,...,l

+D−1IV

([
Hjq1β −

∂b′

∂θ

∂2cj (θ, β)

∂β∂β′
|bk1β

]
j=1,...,l

W ∗∗ (θ)J ∗k1β

)

−D−1∂b
′

∂θ

∂c′ (θ, b)

∂β
IV
(
JJ ∗k1β

)
.

The following corollary proves that under the conditions in corollary 2 the
GT estimator is not 2nd order unbiased as opposed to the GMR2 one.

Corollary 3 When W ∗ is independent of x and θ and b (θ) is affi ne then

ξ3 (θ) = D−1E ∂c (θ, b)

∂β′
IV
(
k2β

)
+

1

2
D−1E

[
IV
(
k′1β

∂2cj (θ, b)

∂β∂β′
k1β

)]
j=1,...,l

+
1

2
D−1E

[
IV
(
q′1β

∂b′

∂θ

∂2cj (θ, b)

∂β∂β′

(
∂b

∂θ′
q1β − 2k1β

))]
j=1,...,l

+D−1IV

([(
q′1β − k

′
1β

) ∂b′
∂θ

∂2cj (θ, b)

∂β∂β′

]
j=1,...,l

W ∗∗ (θ)J ∗k1β

)
.
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Moreover, even under the scope of stochastic weighting, when p = q = l and
b (θ) is affi ne, then ξ3 (θ) =

(
∂b
∂θ′

)−1 IV
(
k2β

)
.

This essentially provides a counterexample concerning the hypothesis of sec-
ond order asymptotic equivalence between the three estimators. An analogous
result applies even when Eθcn (β) = c (θ, β) does not hold. There are cases
where the GT estimator has the same approximate bias with the GMR1, as well
as other cases where it has the same approximate bias with the GMR2. This is
the topic of the next lemma.

Lemma 3.5 i). Under the assumptions in lemma 2.6.A and for s∗ ≥ 3 we have
that ξ1 (θ) = ξ3 (θ) uniformly over Oε (θ0).
ii). Under the assumptions in lemma 2.6.B and for s∗ ≥ 4 we have that ξ2 (θ) =
ξ3 (θ) uniformly over Oε∗ (θ0), for ε∗ < ε.

Notice that lemma 3.5.ii traces a special case under which the GT estimator
can be second order unbiased. Finally this case can not be generally derived from
corollary 3 since the corollary assumes that Eθcn (b (θ)) = c (θ, b (θ)) = 0 which
is not, in general, true for lemma 3.5.ii as under its assumptions we have that
Eθcn (b (θ)) = Eθβ̂n− b (θ) 6= 0, unless β̂n is unbiased (see remark R.1, as well).
Let us now consider the MSE s.

3.2 MSE 2nd order Approximations for the Indirect Estimators
Given the results of the previous subsection, establishing the conditions under
which only the GMR2 estimator is second order unbiased, the question arising
concerns the comparison between the analogous MSE approximations between
the three.11 Employing these results we obtain the following lemmas.

Lemma 3.6 Let θ̂n denote either theGMR1, or theGMR2 estimator. IfW ∗ (x, θ)
is independent of x and θ, b is affi ne and assumptions A.1, A.2, A.3, A.4, A.6
and A.7, A.8, A.9 hold for s∗ ≥ 5, then uniformly on Oε∗ (θ0), for any ε∗ < ε,∥∥∥∥Eθ (n(θ̂n − θ)(θ̂n − θ)′)−H1 (θ)− H2 (θ)√

n

∥∥∥∥ = o
(
n−1/2

)
,

where

H1 (θ) = C−1∂b
′

∂θ
W ∗V (θ)W ∗ ∂b

∂θ′
C−1

H2 (θ) = C−1∂b
′

∂θ
W ∗IV

(
k2βk

′
1β

)
W ∗ ∂b

∂θ′
C−1.

11It is a matter of trivial calculation to show that the implied second order approximation
of the variance coincides with the analogous approximation of the MSE.

21



This along with corollary 2 establishes the second order superiority of the
GMR2 estimator in the particular case. It is also easy to see that lemma 2.5
for s∗ ≥ 5, implies again that the result in lemma 3.6 also holds when the
approximations appearing are computed by taking into account that p = q,
thereby becoming independent of the weighting matrix. For the GT we obtain
the following result.

Lemma 3.7 Let θ̂n denote the GT estimator. If W ∗∗ (x, θ) is independent of x
and θ, b is affi ne, Eθcn (β) = c (θ, β) and assumptions A.1, A.2, A.3, A.4, A.6,
A.7, A.8, and A.13 hold for s∗ ≥ 4 then, uniformly on Oε (θ0)∥∥∥∥Eθ (n(θ̂n − θ)(θ̂n − θ)′)−H1 (θ)− H2 (θ)√

n

∥∥∥∥ = o
(
n−1/2

)
,

where

H1 (θ) = D−1E ∂c (θ, b)

∂β′
V (θ)

∂c′ (θ, b)

∂β
E ′D−1

H2 (θ) = D−1E ∂c (θ, b)

∂β′
IV
(
k2βk

′
1β

) ∂c′ (θ, b)
∂β

E ′D−1.

Notice that even in the case of stochastic weighting, when W ∗ = ∂c(θ,b)
∂β′ W

∗∗

then H1 (θ) coincide for all three estimators. This is in accordance with the
conditions implying their first order equivalence (see for example chapter 4 of
Gourieroux and Monfort [24]). Moreover under the assumptions of both lemmas
and if p = q = l then, H2 (θ) coincide for all three estimators establishing the
superiority of the GMR2 estimator in the light of corollaries 1, 2, 3 and lemmas
3.6, 3.7 as it is second order unbiased while having the same second order MSE
with the other two. Finally it is easy to see that analogous results could also be
obtained in the light of assumptions validating lemma 2.7.A-B, if additionally
W ∗∗ (x, θ) is independent of x and θ, and b is affi ne. In any of these cases we
would have that the second order MSE s coincide for the three estimators. In
case A the GMR2 would be generally superior and in the case B the GMR2
would be equivalent to the GT and these would be superior to the GMR1.

4 Recursive GMR2
The previous section highlights the fact that the second order bias properties of
the GMR2 estimator depend among others on the local behavior of the binding
function. Due to its injectivity as prescribed by assumption A.3, it is easy to see
that B can always be chosen so that b (θ) is in the canonical form

(
θ′, 0′q−p

)′
.12

12Assumption A.9, and Theorem 10.2 of Spivak [47] (p. 44) imply a local version of this
result.
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In most cases this reparametrization of the auxiliary model is analytically
intractable. However there exists at least one II estimation procedure that can be
employed in order to approximate it. Given the GMR1, let β′n =

(
GMR1′, 0′q−p

)
and apply the GMR2 estimator to the latter. Then the resulting IIE is derived
from a three-step procedure, in the last step of which the binding function is
obviously in canonical form. An extension of the three step procedure of the
previous remark to an arbitrary number of steps, where the kth-step auxiliary
estimator is the the GMR2 of the previous step embedded to Rq, can provide
an unbiased IIE of arbitrary order when k is large enough. This extension is
the object of study of the present section. Obviously, the embedding of the
auxiliary estimator in any step after the first to Rq is irrelevant and therefore will
be dropped.

We define recursive II estimation procedures as follows. Let θ̂(0
n denote any

consistent estimator of θ.

Definition D.6 Let k ∈ N, the recursive k−GMR2 estimator (denoted by θ(k
n )

is defined in the following steps:

1. θ̂(1
n = arg minθ

∥∥∥∥θ̂(0
n − Eθθ̂(0

n

∥∥∥∥,
2. for k > 1 θ̂(k

n = arg minθ

∥∥∥∥θ̂(k−1
n − Eθθ̂(k−1

n

∥∥∥∥.
Using the results of the previous section, we are now able to prove the fol-

lowing lemma.13

Lemma 4.1 Suppose that assumptions A.6, A.8, A.11 hold for θ(0
n for s

∗ ≥ 2k+
4. Moreover suppose thatEθ supθ∈Oε(θ0) ‖nsn‖

2 < +∞ andEθ supθ∈Oε(θ0)

∥∥nHn

∥∥ <
+∞ for all θ ∈ Oε (θ0) and

√
nsn (θ) admits a locally uniform Edgeworth expan-

sion of order 6, where sn and Hn denote the average score and Hessian. Then
the k − GMR2 estimator is of order s = 2k + 1 unbiased and has the same
MSE with the (k − 1)−GMR2, up to 2k order, uniformly over Oε∗ (θ0) for any
ε∗ < ε.

The previous lemma implies the existence of IIEs that are higher order unbi-
ased when obtained in this recursive structure. The investigation of algorithms

13The proof of lemma 4.1 indicates that the conditions on the behavior of derivatives of the
likelihood function are solely employed for the establishment that at any step of the recursion

θ̂in satisfies θ̂
i−1
n = Eθin θ̂

i−1
n with probability 1 − o

(
n−a

∗)
independent of θ. If the latter is

adopted as an assumption a more general form of this lemma is easily deduced.
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concerning feasible numerical approximations of those estimators with similar
properties is delegated to future research. For now, consider again the case
where k = 1. Then 1 − GMR2 is actually 3rd order unbiased at θ0 hence the
previous results are essentially expanded under the conditions of the lemma. Fur-
thermore, the 1−GMR2 has the same second order MSE as the GMR2 (and/or
GMR1) one.
Further, notice that the conclusions of corollary 2 and lemma 4.1 are valid pro-

vided that the expectation involved in the definitions of theGMR2 and k−GMR2
estimator can be evaluated explicitly. However, as we have already mentioned,
these are approximated by a Monte Carlo method, based on, say, H replica-
tions. Of course, unless H is infinite the aforementioned conclusions hold only
approximately. Nevertheless, although the expectations’approximations are out-
side the scope of the present paper, the results in Gourieroux and Monfort [24]
and Gourieroux et al. [27] can be employed to evaluate the minimum number of
H so that the bias of the second step estimators have a lower absolute approxi-
mate bias than the first ones (see the examples section for more on this). In any
case, our results can be viewed as a benchmark for the finite H cases, as well as
directions for the design of IIEs that possess those properties while avoiding the
shortcomings of the ones defined by "crude" approximations of the intractable
expectations via resampling (see last paragraph of conclusions section, as well).
Let us now turn our attention to two examples.

5 Examples and Monte Carlo Experiments
In this section we verify our conditions to ensure the validity of locally uniform
Edgeworth expansions concerning the estimators presented here. We do this
by considering two classes of models, i.e. invertible MA(1) and GARCH(1, 1).
Given the fact that in both examples p = q = l we can assume that the weighting
matrices are identities without loss of generality. Furthermore, we investigate the
finite n effect on our asymptotic results of the bias and MSE. Hence, our Monte
Carlo exercise is by no means exhaustive.

5.1 The MA(1) Case
Consider the set of invertible MA (1) processes defined by

yj = εj + θεj−1,

where the (εj) are iid, with Eε0 = 0, Eε2
0 = 1, E

(
ε2s+4

0

)
< +∞ the distribution

of ε0 admits a positive continuous density and θ ∈ Int Θ for Θ =
[
η

MA
, ηMA

]
where η

MA
> −1, ηMA < 1.
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Let

b (θ) =
θ

1 + θ2

and for some compact B ⊇ b (Θ) define

β̂n ∈ arg min
β∈B

1

2
‖ρn − β‖

2

where ρn =
∑n
j=1 yjyj−1∑n
j=1 y

2
j
. Notice that βn is also the QMLE of the coeffi cient of an

AR(1) auxiliary model (see Gourieroux et al. [25], and Demos and Kyriakopoulou
[14]) and the binding function is b (θ) = θ

1+θ2
. Furthermore define

GMR1 ∈ arg min
θ∈Θ

1

2

∥∥∥β̂n − b (θ)
∥∥∥2

and cn (β) = ρn− β. To evaluate the GMR2 estimator we have to evaluate the
Eθβ̂n (see definition D.3).
Applying now GMR2 on the GMR1 we get the 1−GMR2 (or equivalently

θ(1
n employing the notation of section 4). The existence of any of the GMR2
type estimators can be easily deduced via the continuity part of assumption A.1
when ε0 ∼ N (0, 1). Given the form of cn (β) the existence of the GT estimator
also follows with probability that converges to 1 suffi ciently fast.

Proposition 4 If Eε14
i < ∞ and if D (0, 1) has a positive continuous density,

then the β̂n, and GMR1 admit 4th order valid Edgeworth expansions, uniformly
over Θ. Furthermore if ε0 ∼ N (0, 1) the GT, GMR2 and the 1−GMR2 admit
4th order valid Edgeworth expansions, uniformly over any compact subset of Θ.

Given the results of the above proposition and those in section 3, the 2nd

order first and second moment approximations are valid, for all estimators (see
lemma 3.1). Furthermore, since the binding function is not linear, neither the
GMR1 nor the GMR2 and the GT are 2nd order unbiased (see results in section
3.1). However, the 1−GMR2 is 3rd order unbiased by lemma 4.1. Also lemmas
3.6 and 3.7 imply the second order superiority of 1−GMR2 w.r.t. the GMR1,
GMR2 and the GT uniformly over Θ.14

14Notice that the expansions of the β̂n and GMR1 estimators are available from the work
of Demos and Kyriakopoulou [14]. These formulae imply that both estimators, GMR1 and
GMR2, are biased, unless θ = 0.
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Monte Carlo Experiment To evaluate the GMR2 estimator we need Eθβ̂n (see
definition D.3) which is analytically intractable. We approximate this expectation
numerically by

1

H

H∑
i=1

∑n
t=2 y

(i
t y

(i
t−1∑n

t=2

(
y

(i
t−1

)2 ,

where H = 1600. The same applies for Eθ (GMR1) needed for the 1−GMR2
estimator. In this respect we obtain approximate GMR2 and 1 − GMR2 esti-
mators. The choice of H rests on two facts with opposite effects. First, higher
H delivers a better approximation to the expectations. On the opposite, the
higher H is, the higher is the time cost of obtaining the GMR2 and 1−GMR2
estimators, especially in a Monte Carlo exercise. Furthermore, equation (4.29)
in Gourieroux and Monfort [24] (equation (28) in Gourieroux et al. [27]) pro-
vides the minimum value of H so that the absolute value of 2nd order bias of
1 − GMR2 is smaller than the one of GMR1. Employing this equation and
taking the asymptotic variance formula of the GMR1 from Demos and Kyri-
akopoulou [14] we get that, for θ = 0.4, if H ≥ 4 the absolute 2nd order bias
of 1 − GMR2 is smaller than the one of GMR1. However, notice that as the
estimator is univariate and consequently the evaluation of 1−GMR2 is not too
expensive, in terms of computing time, we have chosen a quite high value of H,
i.e. H = 1600.
To assess the impact of these numerical approximations on our results as

well as the performance of the resulting estimators for finite n, we engage to
the following Monte Carlo experiment. We draw a sample of n ∈ {30, 50, 100,
250, 500, 750, 1000} observations from a standard normal. For each random
sample, we generate the MA(1) process yt for θ ∈ {−0.5, 0.4}. We evaluate β̂n
and if the estimate is in the [−0.499999, 0.499999] interval we retain the sample,
otherwise we throw it away and draw another one. For each retained sample we
evaluate the three estimators, i.e. the GMR1, GMR2, and 1−GMR2.
In figure 1 the absolute biases, multiplied by n, of all three estimators are

presented, for θ = 0.4. According to the results of Demos and Kyriakopoulou
[14], for this value of θ, we should have that n |Eθ (GMR1)− θ|−1.252 = o (1),
n |Eθ (GMR2)− θ| − 2.094 = o (1) and the 1−GMR2 estimator should be 2nd

order unbiased. It is obvious that, for θ = 0.4, the theoretical results are validated
for n ≥ 500. In terms of MSE s, in figure 2, it seems again that for n ≥ 500 the
MSE of all three estimators are close to their theoretical value, which is 1.796.
Consequently, the 1 − GMR2 estimator appears second order superior to the
GMR1 and GMR2 ones. Similar results emerge for θ = −0.5, not presented
here for reasons of economy of space.
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5.2 The GARCH(1,1) Case
Consider the set of stationary ergodic and covariance stationary GARCH (1, 1)
processes (Bollerslev [9]) defined by the recursion

yj = εjh
1/2
j ,

hj = θ1 (1− θ2 − θ3) +
(
θ2ε

2
j−1 + θ3

)
hj−1,

where the (εj) are iid, Eε0 = 0, Eε2
0 = 1, Eε28

0 < +∞ the distribution of

ε0 admits a positive continuous density and θ = (θ1, θ2, θ3)′ ∈ Θ =
[
η
ω
, ηω

]
×[

η
α
, ηα

]
×
[
η
β
, ηβ

]
where η

ω
, η

α
, η

β
> 0 and for any θ ∈ Θ, E (θ2ε

2
0 + θ3)

14
< 1.

Let

b (θ) =

(
θ1,

θ2 (1− (θ2 + θ3) θ3)

1− 2θ2θ3 − θ2
3

, θ2 + θ3

)′
,

and for some compact B ⊇ b (Θ) and cn (β) =
((
y2, ρ̂1,

ρ̂2
ρ̂1

)
− β

)′
define

β̂n ∈ arg min
β∈B

1

2
‖cn (β)‖2 ,

where y2 = 1
n

∑n
j=1 y

2
j , ρ̂i =

1
n

∑n
t=1(y2t y2t−i)−(y2)

2

1
n

∑n
t=1(y4t )−(y2)

2 . Furthermore define

GMR1 ∈ arg min
θ∈Θ

1

2

∥∥∥β̂n − b (θ)
∥∥∥2

.

Notice that β̂n is the estimator of the constant, the first order autocorrelation
and the autoregressive parameter of the ARMA (1, 1) reparametrization of the
GARCH (1, 1) (commonly called the Pantula reparametrization, see Bollerslev
[9]), i.e. the auxiliary model is:

y2
j = θ1 (1− θ2 − θ3) + (θ2 + θ3) y2

j−1 + vj − θ3vj−1,

where vj = y2
j − hj, a martingale difference sequence. Further, the GMR1 esti-

mator is the one introduced and its asymptotic properties analyzed in Kristensen
and Linton [31].
Now employing the GMR2 estimator, treating the GMR1 as an auxiliary one,

we get the 1 − GMR2 estimator. The issue of existence of any of the GMR2
type and the GT estimators follows exactly as in the previous example when
ε0 ∼ N (0, 1).
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Proposition 5 If the distribution of ε0 admits a positive and continuous density
then β̂n and GMR1 admit 4th order valid Edgeworth expansions, uniformly over
Θ. Furthermore if the distribution of ε0 is standard normal, then GMR2, 1 −
GMR2 and GT admit 4th order valid Edgeworth expansions, uniformly over any
compact subset of Θ.

Given the results of the previous proposition and those in section 3 the 2nd

order first and second moment approximations are valid, for all estimators. Fur-
thermore, since the binding function is not linear, neither the GMR1 nor the
GMR2 nor the GT are 2nd order unbiased (see results in section 3.1). However,
the 1−GMR2 is 3rd order unbiased and has the same second order MSE with
the other three (see lemma 4.1), due to lemmas 3.6, and 3.7 indicating the sec-
ond order superiority of 1−GMR2 w.r.t. to GMR1, GMR2 and GT uniformly
over Θ∗.

Monte Carlo Experiment As we have already mentioned, we have to evaluate
Eθβ̂n and Eθ (GMR1) which are analytically intractable. Consequently, we ap-
proximate these expectations numerically, i.e. we approximate Eθβ̂n by

1

H

H∑
i=1

(
y2

(i
, ρ̂1

(i,
ρ̂2

(i

ρ̂1
(i

)′
,

where H = 60, ρ̂i
(i =

∑n
t=i+1

((
y
(i
t

)2
−y2(i

)((
y
(i
t−i

)2
−y2(i

)
∑n
t=i+1

((
y
(i
t

)2
−y2(i

)2 , y2
(i

= 1
n

∑n
t=1

(
y

(i
t

)2

,

and similarly for the Eθ (GMR1). The choice of H = 60 is much lower than
the one employed in the previous MA (1) example. However, notice that in
this case 1 − GMR2 is a three dimensional vector and consequently its evalu-
ation is very costly, in terms of computing resources, within the context of the
Monte Carlo experiment. Furthermore, the calculations of the asymptotic vari-
ance of the GMR1 estimator, presented in Kristensen and Linton [31], and its
partial derivatives are extremely diffi cult to derive. Nevertheless, these quantities
can be approximated by simulations. In fact, we approximated them by setting
n = 100000, (θ1, θ2, θ3) = (1.0, 0.05, 0.7) and performing 5000 Monte Carlo
replications. Consequently, employing these approximations and equation (4.29)
in Gourieroux and Monfort [24] (or equation (28) in Gourieroux et al. [27]) we
estimate that if H ≥ 10 the absolute 2nd order bias of 1 − GMR2 is smaller
than the one of GMR1. Hence, taking into consideration the computational
cost associated with the evaluation of the 1−GMR2 estimator, we decided that
a value of H as high as six times the Gourieroux and Monfort [24] lower limit
would offer a satisfactory approximation of Eθ (GMR1).
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Again, we perform the following Monte Carlo experiment to assess the impact
of these approximations on our results as well as the finite sample behavior of the
resulting estimators. However, notice that the analytic results of sections 3 and
4 cannot be applied since there are no Edgeworth expansions’analytic results for
the first step estimator β̂n. Of course this is not a problem for the simulations.
We generate, with n ∈ {250, 500, 1000, 5000, 10000, 20000, 50000, 100000},
the GARCH (1, 1) model, plus 250 observations to initialize the process. We
choose (θ1, θ2, θ3) = (1.0, 0.05, 0.7) and perform 5000 Monte Carlo replications.
Notice that under the following conditions the β̂n estimator is always defined:

ρ̂1, ρ̂2 > 0,
ρ̂2

ρ̂1

< 1, and ρ̂1 −
ρ̂2

ρ̂1

< 0.

In case that any of these conditions is not satisfied the random drawing is thrown
away and we draw a new one.
In figure 3 the norms of the biases of the three estimators, multiplied by n, are

presented. It is obvious that for this model the asymptotic results are validated
for large n. Notice that for any n the bias of the 1−GMR2 estimator is almost
zero. Furthermore, the norms of, the MSE s of the three estimators are almost
equal, for large sample values (see figure 4). Hence we can say that first, the
results of this paper are validated, for the chosen GARCH(1, 1) process, and
second, that the approximations to the expectations are satisfactory. As in the
previous example the 1−GMR2 estimator appears second order superior to the
other three estimators.

6 Conclusions
Our results can be summarized as follows: we provide conditions that ensure
the validity of locally uniform Edgeworth approximations for the three IIEs, of
arbitrary order. Notice that the conditions validate a fortiori the first order the-
ory providing a rigorous framework for the derivation of the GMR2 properties.
Then, we provide integrability conditions that validate moment approximations
of the aforementioned estimators. We derive the relevant 2nd order bias and
MSE approximations for the three IIEs under quite general conditions. These
enable differences in the dimensions of the auxiliary estimating equations and/or
the parameter spaces employed, and consequently the possibility of stochastic
weighting in any of the steps of the estimation procedure. We confirm that un-
der our assumption framework and in the special case of deterministic weighting
and affi nity of the binding function, the GMR2 estimator is second order unbi-
ased. This result can be easily generalized when the auxiliary model is properly
reparametrized. The GMR1 and GT estimators do not have this property under
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the same conditions. Moreover the second order approximations of the MSE
in this case imply the superiority of the GMR2 estimators. Hence we establish
conditions that ensure the existence of IIEs that are second order unbiased and
have the same second order MSE with second order biased estimators of the
same class.
Furthermore, by generalizing to multistep procedures we are able to provide

recursive IIEs that are locally uniformly unbiased at any given order when anal-
ogous conditions hold. However, the practical implementation of these seems
numerically involved. Nevertheless, the construction of algorithms to implement
these estimators, possibly employing results in Andrews [2], could be the object
of further research.
Possible further extensions are the following: First, the derivation of the anal-

ogous approximations when the true parameter value and/or its image w.r.t. the
binding function lie at the boundary of the parameter spaces (see Calzolari et al.
[10]). This could also imply the first order asymptotic non-equivalence between
the three IIEs. Second, an application of the Edgeworth approximations could
lay in the derivation of higher order properties of II testing procedures. Third,
as stated before the IIEs studied are usually analytically intractable, and in ap-
plications they are approximated via the approximations of the binding function
and/or the employed expectations by simulators. Our results can be also con-
sidered as guidelines for the construction of appropriate simulators that could
lead to estimators that share the same properties with the GMR2 estimator.
One example could be the definition of IIEs via the actual use of the Edgeworth
approximations for the auxiliary one. For example, an IIE could be defined by
substituting Eθβ̂n with IϕV (θ)

(
k2β

)
in definition D.3 or some numerical approx-

imation of it (see Arvanitis and Demos [6]). We leave all these questions for
future work.

7 Discussion on Assumptions
In this section, by employing primitive assumptions, we discuss ways of verifying
the high level assumptions made mainly for the auxiliary estimator is section 2.

Discussion on Assumption A.6 Given assumption A.2, assumption A.6 can be
justified as in lemma AL.1 in the second part of the appendix. When Qn =
‖cn (β)‖

Wn(β̂∗n)
as in assumption A.5, the requirements of this lemma would be

satisfied if
‖cn (β)− cn (β′)‖ ≤ κn ‖β − β′‖ , for all β, β′
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with supθ∗∈Θ Pθ∗ (κn > M) = o
(
n−a

∗)
and

sup
θ∗∈Θ

Pθ∗ (‖cn (β)− c (θ∗, β)‖ > ε) = o
(
n−a

∗)
,∀ε > 0,

where c (θ, β) is jointly continuous on Θ× B and equals zero iff β = b (θ), Wn

satisfies a similar assumption to A.7 below and β̂∗n satisfies the current assumption
due to lemmas AL.2 and AL.3 in the second part of the appendix. In this case it is
obvious that β̂∗n can be defined similarly to β̂n. Finally when κn is in the form of an
arithmetic mean the asymptotic boundness with uniform probability 1−o

(
n−a

∗)
can be obtained by conditions on the asymptotic behavior of supθ∗∈ΘEθ∗κ

q
n where

q is a function of a∗ implied by the form of dependence between the elements of
κn (consider for example the Yokoyama-Doukhan inequality in the case of weak
dependence-see Andrews [2],7.3.3). Alternatively, under the Assumptions A1-A3
in Newey [37] for Qn (β) assumption A.6 holds. θ̃∗n could be any of the three
IIEs.

Discussion on Assumption A.8 We now briefly discuss conditions that could val-
idate assumption A.8 as well as provide some references for counterexamples.
When β̂n is an M-estimator the verification of the assumption A.8 proceeds via
the verification of conditions 2.1−A, 2.1−B, 2.1−C and 2.1−D (for a de-
scriptive justification of the procedure see the initial paragraph of this section and
for a general application see also lemma AL.5 in the appendix). The first two
imply the existence of a random vector Sn (θ) for which an analogous Edgeworth
expansion exists. The first is usually derived by asymptotic polynomial approx-
imations of the first order conditions (f.o.c.) that the estimator asymptotically
satisfies with high probability.
In the case that β̂n is an MLE or a GMM estimator Sn is a random vector

consisting of the random elements appearing in the derivatives of the likelihood
function or the moment conditions and therefore is of the form of a normalized
sum. In this case the establishment of the condition 2.1.B relies on the properties
of those random elements. For example in the context of weakly dependent
time series models, as described in Götze and Hipp [23], Assumptions A.1-3,
Theorem 2.1 and Lemma 2.6 of Arvanitis and Demos [5] provide conditions that
imply 2.1−B. For a more general set of suffi cient conditions see also Durbin
[16]. These conditions along with corollary 3.3 of Skovgaard [45] actually imply
that the Edgeworth expansion holds uniformly over the whole Borel algebra.
The approach of Durbin [16] was utilized for the establishment of 2.1−B in
Lieberman et al. [32] and Andrews and Lieberman [3] in the context of linear,
Gaussian, strongly dependent time series models, when b is the identity and β̂n is
the MLE or the Whittle MLE. When β̂n is itself an IIE then the verification of
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2.1−B renders relevant the results in the subsequent section of the paper (see
also the examples section).
Condition 2.1−C can be verified via the employment of 2.1−B and a mean

value expansion of the f.o.c. in many cases (for a different approach see the
proof of lemma 2.4.ii in the case of the GMR2 estimator). Finally condition
2.1−D can be verified due to the form of the remainder in the approximation
of 2.1−A, which is usually a remainder emerging from the employment of the
Mean Value Theorem, and it is bounded in norm by C ‖Sn‖d for d large enough
and C > 0 and 2.1−B.
Assumption A.8 might fail if

√
n
(
β̂n − b (θ)

)
is not asymptotically normal.

This in turn can happen either because Sn is not asymptotically normal, in which
case 2.1−B cannot hold (a plethora of examples can be obviously constructed
in the context of non stationary time series models), or in cases where b (θ)
lies in the boundary of B and thereby 2.1−A cannot hold (notice that b (θ)
can be a boundary point even if θ is an interior point). Finally notice that this
assumption might fail to hold (essentially due to failure of 2.1−B) even in cases
where Sn is asymptotically normal and b (θ) is an interior point. Consider for
example the case where the necessary conditions of Theorem 1 (see the final
pair of paragraphs of the proof in page 508) of Corradi and Iglesias [13] fail to
hold for the QMLE in the context of a semi-parametric GARCH (1, 1) model.
Assumption A.8 would follow for the entire

√
nmn (θ) by analogous arguments.

For the equicontinuity part of 2.1.B see the paragraph entitled as "Discussion on
Assumption A.11" below and consider the case where the differentiability order
is zero.

Discussion on Assumptions A.9 and A.10 For an appropriately differentiable like-

lihood function, a condition such as supθ∈Θ

∥∥∥D2Eθβ̂n

∥∥∥ < M could be justified

according to the following. Conditions such as Eθ supθ∈Oε(θ0) ‖nsn‖
2 < +∞

and Eθ supθ∈Oε(θ0)

∥∥nHn

∥∥ < +∞ for all θ would enable the commutativity of
differentiation with integration by dominated convergence and the fact that B is

bounded. Then if supθ∈Oε(θ0) Eθ

∥∥∥β̂n − b (θ)
∥∥∥2

= O
(

1
n

)
something that in the

light of the results in section 3 holds when s∗ ≥ 3 in assumption A.8, it would
suffi ce that

sup
θ∈Θ

E
∥∥nsn (θ) s′n (θ) + EHn (θ)

∥∥2
= O (1) ,

sup
θ∈Θ′

E
∥∥Hn (θ)− EHn (θ)

∥∥2
= O (1) ,

where sn and Hn denote the average score and Hessian. It is easy to see that
these would hold if assumptions A.1, A.2-M, A.2-WD in Arvanitis and Demos
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[4] hold for the random vector consisting of the log-likelihood derivatives. For
an implementation of this in the scope of a GARCH (1, 1) example see Lemma
AL.9 in Arvanitis and Demos [4].

Discussion on Assumption A.11. Tracing the proof of Theorem 3.2 in Arvanitis
and Demos [5], we obtain that for the quadratic form in the density approxima-
tion of the auxiliary estimator it would suffi ce that Ci,j,n (θ) and the analogous
polynomials in the Edgeworth densities of Sn (θ) are s∗ (equi-) continuously dif-
ferentiable functions of θ. When, for example, Sn is a random vector consisting
of the random elements appearing in the derivatives of the likelihood function or
the moment conditions then it is of the form of a normalized sum that satisfies
Assumption A.2 of Arvanitis and Demos [5]. In this case, as it can be seen from
the proof of Theorem 2.1 in the same paper, remark (2.12) and paragraph 4 of
Gotze and Hipp [22], it would suffi ce that the cumulant spectral densities up to
order s∗ − 1 and their derivatives w.r.t. to the angular frequencies be s∗ times
continuously differentiable over Oε (θ0).
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Appendix

Proofs
Proof of Lemma 2.2. i) Due to the triangle inequality and assumption A.6
we have that for ε > 0

sup
θ∗∈Θ

Pθ∗

(
sup
θ∈Θ

∣∣∣∥∥∥β̂n − b (θ)
∥∥∥− ‖b (θ∗)− b (θ)‖

∣∣∣ > ε

)
≤ sup

θ∗∈Θ

Pθ∗
(∥∥∥β̂n − b (θ∗)

∥∥∥ > ε
)

= o
(
n−a

∗)
Hence for qn (θ) = β̂n− b (θ), q (θ∗, θ) = b (θ∗)− b (θ) and by assumption A.7.a)
lemma AL.3 applies. Hence for γ (θ) = θ due to assumption A.3 lemma AL.1
also applies implying the result.
ii) Given i), we have that θ̂n ∈ Oε (θ) with Pθ-probability 1 − o

(
n−a

∗)
that is

locally independent of θ for any ε > 0. For some ε small enough, such that
Oε (θ) ⊂ Oε0 (θ0) (which exists due to the fact that ε0 > ε) due to assumption
A.9, we have that condition FOC of the appendix lemmas AL.4 and AL.5 is
satisfied by the GMR1 estimator with Qn + ∂b′

∂θ
. Furthermore assumption A.9

implies conditions HUB (γ (θ) = θ hence set δ = ε0) and RANK of the same
lemma. Condition TIGHT follows from A.8, as under this assumption there is
C∗ > 0 locally independent of θ such that

sup
θ∈Oε(θ0)

Pθ

(√
n
∥∥∥β̂n − b (θ)

∥∥∥ > C∗ ln1/2 n
)

= o
(
n−a

∗)
(4)

(see Lemma AL.2 of Arvanitis and Demos [5]). Hence lemma AL.4 applies
ensuring that

sup
θ∈Oε(θ0)

Pθ

(√
n ‖GMR1−θ‖ > C ln1/2 n

)
for some C > 0 locally independent of θ. Hence condition UTIGHT of lemma
AL.5 holds. Moreover assumption A.8 implies condition UEDGE of the same
lemma forMn (θ) =

√
nmn (θ). Due to assumption A.9 for any θ ∈ Oε (θ0) and

any θ∗ suffi ciently close to θ, ∂b
′

∂θ
(θ∗) admits a Taylor expansion of order s∗ − 1

around θ of the form

∂b′

∂θ
(θ∗) =

∑s∗−1

i=0

1

i!
Di∂b

′

∂θ
(θ)
(

(θ∗ − θ)i
)

+
1

(s∗ − 1)!

(
Ds∗−1∂b

′

∂θ

(
θ+
)
−Ds∗−1∂b

′

∂θ
(θ)

)(
(θ∗ − θ)s

∗−1
)
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where θ+ lies between θ∗ and θ. This implies that for any θ̂n = GMR1 due
to condition UTIGHT we have that with Pθ-probability 1 − o

(
n−a

∗)
locally

independent of θ

∂b′

∂θ

(
θ̂n

)
=
∑s∗−1

i=0

1

i!

1

ni/2
Di∂b

′

∂θ
(θ)

((√
n
(
θ̂n − θ

))i)
+R∗n

(
θ̂n, θ

)
whereR∗n

(
θ̂n, θ

)
= 1

(s∗−1)!
1

n(s
∗−1)/2

(
Ds∗−1 ∂b′

∂θ

(
θ+
n

)
−Ds∗−1 ∂b′

∂θ
(θ)
)((√

n
(
θ̂n − θ

))s∗−1
)
,

and θ+
n lies between θ̂n and θ. Now by assumption A.9

∂b′

∂θ
(θ) has full rank for

any θ ∈ Oε (θ0) and by submultiplicativity, the relation of θ+
n to θ̂n and condition

UTIGHT

sup
θ∈Oε(θ0)

Pθ

∥∥∥∥∥∥
1

(s∗−1)!
1

n(s
∗−1)/2

(
Ds∗−1 ∂b′

∂θ

(
θ+
n

)
−Ds∗−1 ∂b′

∂θ
(θ)
)
×((√

n
(
θ̂n − θ

))s∗−1
) ∥∥∥∥∥∥ > γ∗n


≤ sup

θ∈Oε(θ0)

Pθ

(
1

(s∗ − 1)!

1

n(s∗−1)/2
sup

θ∈Oε0 (θ0)

∥∥∥∥Ds∗ ∂b
′

∂θ
(θ)

∥∥∥∥∥∥θ+
n − θ

∥∥∥∥∥√n(θ̂n − θ)∥∥∥s∗−1

> γ∗n

)

≤ sup
θ∈Oε(θ0)

Pθ

(
M

(s∗ − 1)!

Cs∗

ns∗/2
lns
∗/2 n > γ∗n

)
+ o

(
n−a

∗)
which is of order o

(
n−a

∗)
for γ∗n = M

(s∗−1)!
Cs
∗

ns
∗/2 lns

∗/2 n = o
(
n−a

∗)
and locally

independent of θ. Analogously, due to assumption A.9 for any θ ∈ Oε (θ0) and
any θ∗ suffi ciently close to θ, b (θ∗) admits a Taylor expansion of order s∗ − 1
around θ of the form

qn = β̂n − b (θ∗) = β̂n − b (θ∗)−
∑s∗

i=1

1

i!
Dib (θ)

(
(θ∗ − θ)i

)
− 1

s∗!

(
Ds∗b

(
θ+
)
−Ds∗b (θ)

) (
(θ∗ − θ)s

∗
)

where θ+ lies between θ∗ and θ. This implies that for θ̂n we have that with
Pθ-probability 1− o

(
n−a

∗)
√
n
(
β̂n − b

(
θ̂n

))
=
√
n
(
β̂n − b (θ)

)
+
∑s∗−1

i=0

1

(i+ 1)!

1

ni/2
Di+1b (θ)

((√
n
(
θ̂n − θ

))i+1
)

+R#
n

(
θ̂n, θ

)
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where R#
n

(
θ̂n, θ

)
= 1

s∗!
1

n(s
∗−1)/2

(
Ds∗b

(
θ+
n

)
−Ds∗b (θ)

)((√
n
(
θ̂n − θ

))s∗)
,

and θ+
n lies between θ̂n and θ. Now by assumption A.9

∂b′

∂θ
(θ) has full rank for

any θ ∈ Oε (θ0) and so does the identity matrix in front of
√
n
(
β̂n − b (θ)

)
,

and thereby due to submultiplicativity, the relation of θ+
n to θ̂n and condition

UTIGHT

sup
θ∈Oε(θ0)

Pθ

∥∥∥∥∥∥
1
s∗!

1
n(s
∗−1)/2

(
Ds∗b

(
θ+
n

)
−Ds∗b (θ)

)
×((√

n
(
θ̂n − θ

))s∗) ∥∥∥∥∥∥ > γ#
n


≤ sup

θ∈Oε(θ0)

Pθ

 1
s∗!

1
n(s
∗−1)/2 supθ∈Oε0 (θ0)

∥∥Ds∗+1b (θ)
∥∥∥∥θ+

n − θ
∥∥

×
∥∥∥√n(θ̂n − θ)∥∥∥s∗ > γ#

n


≤ sup

θ∈Oε(θ0)

Pθ

(
M

s∗!

Cs∗+1

ns∗/2
ln(s∗+1)/2 n > γ#

n

)
+ o

(
n−a

∗)
which is of order o

(
n−a

∗)
for γ#

n = M
s∗!

Cs
∗+1

ns
∗/2 ln(s∗+1)/2 n = o

(
n−a

∗)
and locally

independent of θ. Finally due to lemma AL.6 which applies by assumptions A.8
and A.7 condition EXPAND holds and the result follows by the same lemma.
Proof of Lemma 2.3. The proof is in the same spirit as the proof of lemma
2.2. For ε > 0, let E (ε, θ) =

{
ω ∈ Ω :

∥∥∥β̂n − b (θ)
∥∥∥ > ε

2

}
∈ F , then

sup
θ∈Θ

∥∥∥Eθβ̂n − b (θ)
∥∥∥ ≤ sup

θ∈Θ
Eθ

∥∥∥β̂n − b (θ)
∥∥∥ 1E(ε,θ) +

ε

2
.

As B is bounded, due to assumption A.2 and by assumption A.6 there exists
an n∗ such that supθ∈Θ Pθ

(∥∥∥β̂n − b (θ)
∥∥∥ > ε

3

)
≤ ε

2M
where M denotes the

diameter of B. Hence

sup
θ∈Θ

∥∥∥Eθβ̂n − b (θ)
∥∥∥ ≤ ε for all n ≥ n∗

and since ε is arbitrary

sup
θ∈Θ

∥∥∥Eθβ̂n − b (θ)
∥∥∥ = o (1) (5)

Due to the triangle inequality and assumption A.6 we have that for ε > 0

sup
θ∗∈Θ

Pθ∗

(
sup
θ∈Θ

∣∣∣∥∥∥β̂n − Eθβ̂n∥∥∥− ‖b (θ∗)− b (θ)‖
∣∣∣ > ε

)
≤ sup

θ∗∈Θ

Pθ∗

(∥∥∥β̂n − b (θ∗)
∥∥∥+ sup

θ∈Θ

∥∥∥Eθβ̂n − b (θ)
∥∥∥ > ε

)
= o

(
n−a

∗)
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For qn (θ) = β̂n − Eθβ̂n, q (θ∗, θ) = b (θ∗) − b (θ) and by assumption A.7.a)
lemma AL.3 applies. Hence for γ (θ) = θ due to assumption A.3 lemma AL.1
also applies implying the result.
ii) Given i), we have that θ̂n ∈ Oε (θ) with Pθ-probability 1 − o

(
n−a

∗)
that is

locally independent of θ for any ε > 0. For some ε small enough, such that
Oε (θ) ⊂ Oε0 (θ0) (which exists due to the fact that ε0 > ε) due to assumption
A.10, we have that condition FOC of the appendix lemmas AL.4 and AL.5 is

satisfied by the GMR2 estimator with Qn +
∂Eθ(β̂n)

′

∂θ
. Furthermore assumption

A.10 and A.9 imply conditions HUB (γ (θ) = θ hence set δ = ε0) and RANK

of the same lemma due to the fact that since D2Eθβ̂n is uniformly bounded
on Oε0 (θ0), DEθβ̂n converges uniformly to Db (θ) due to lemma AL.7 and
therefore the rank condition is implied by A.10 for large enough n. Condition
TIGHT follows from A.8 and Lemma AL.2 of Arvanitis and Demos [5] and the
fact that as a∗ > a ≥ 0 we have that a∗ > 0 and there exists a C2 > 0 locally
independent of θ and for E∗ =

{
ω ∈ Ω :

∥∥∥β̂n − b (θ)
∥∥∥ > C2

ln1/2 n
n1/2

}
∈ F

sup
θ∈Oε(θ0)

∥∥∥Eθβ̂n − b (θ)
∥∥∥

≤ sup
θ∈Oε(θ0)

Eθ

[∥∥∥β̂n − b (θ)
∥∥∥ 1E∗

]
+ sup

θ∈Oε(θ0)

Eθ

[∥∥∥β̂n − b (θ)
∥∥∥ 1E∗

]
≤ M sup

θ∈Oε(θ0)

Pθ

(∥∥∥β̂n − b (θ)
∥∥∥ > C2

ln1/2 n

n1/2

)

+C2
ln1/2 n

n1/2
sup

θ∈Oε(θ0)

Pθ

(∥∥∥β̂n − b (θ)
∥∥∥ ≤ C2

ln1/2 n

n1/2

)

= o
(
n−a

∗)
+ C2

ln1/2 n

n1/2

(
1− o

(
n−a

∗))
= O

(
ln1/2 n

n1/2

)
,

where the last line comes from equation 4, above, and therefore

sup
θ∈Oε(θ0)

Pθ

(∥∥∥β̂n − Eθβ̂n∥∥∥ > C1
ln1/2 n

n1/2

)

≤ sup
θ∈Oε(θ0)

Pθ

(∥∥∥β̂n − b (θ)
∥∥∥+

∥∥∥Eθβ̂n − b (θ)
∥∥∥ > C1

ln1/2 n

n1/2

)

≤ sup
θ∈Oε(θ0)

Pθ

(∥∥∥β̂n − b (θ)
∥∥∥+O

(
ln1/2 n

n1/2

)
> C1

ln1/2 n

n1/2

)
= o

(
n−a

∗)
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Hence lemma AL.4 applies ensuring that

sup
θ∈Oε(θ0)

Pθ

(√
n ‖GMR2−θ‖ > C ln1/2 n

)
= o

(
n−a

∗)
for some C > 0 locally independent of θ, hence condition UTIGHT of lemma
AL.5 holds. Moreover assumption A.8 along with the fact that the support
of β̂n − b (θ) is uniformly bounded by O3η (0) for any η greater or equal than

the diameter of B, and the fact that
√
n
(
β̂n − Eθβ̂n

)
admits a locally uniform

Edgeworth expansion of order s∗−1 (see Lemma 4.1 of Arvanitis and Demos [5])

imply condition UEDGE of lemma AL.5 forMn (θ) =
√
n

(
mn (θ)

β̂n − Eθβ̂n

)
with

order s∗−1. Due to assumption A.10 for any θ ∈ Oε (θ0) and any θ∗ suffi ciently

close to θ,
∂Eθ(β̂n)

′

∂θ
(θ∗) admits a Taylor expansion of order s∗ − 1 around θ

and the rest follows as in the proof of lemma 2.2 above with the difference that

here
∂Eθ∗(β̂n)

′

∂θ
is considered instead of ∂b

′

∂θ
(θ∗) and assumption A.10 is employed

instead of A.9 (see Arvanitis and Demos [4] for details).
Proof of Lemma 2.4. By assumption A.8, lemma 3.1, below, adding
subtracting
√
n

(
b (θ) +

∑s
i=1

IV (kiβ (z,θ))
n
i
2

)
and
√
n

(
b
(
θ+
n

)
+
∑s

i=1

IV (kiβ(z,θ+n ))
n
i
2

)
, we get

√
n
(
Eθ∗n β̂n − Eθβ̂n

)
− An (θ) =

√
n

(
Eθ∗n β̂n − b

(
θ+
n

)
−
∑s

i=1

IV (kjβ(z,θ+n ))
n
i
2

)
−
√
n

(
Eθβ̂n − b (θ)−

∑s
i=1

IV (kiβ (z,θ))
n
i
2

)
+

√
n
(
b
(
θ+
n

)
− b (θ)−

∑s
i=1

1
i!
Dib (θ)

((
θ+
n − θ

)i))
+Bn where

Bn =
∑s

i=1

IV (kiβ(z,θ+n ))

n
i−1
2

−
∑s

i=1

IV (kiβ (z,θ))

n
i−1
2

−
∑s

i=1
1
i!

∑s−i
j=1 D

i IV (kjβ (z,θ))

n
j−1
2

((
θ+
n − θ

)i)
.

Employing the mean value Theorem for IV
(
kiβ
(
z, θ+

n

))
, and for θ++

n such that∥∥θ++
n − θ

∥∥ < ∥∥θ+
n − θ

∥∥, and collecting terms we get:
Bn =

∑s
i=1

1

n
i−1
2

1

(s− i+ 1)!
Ds−i+1IV

(
kiβ (z, θ)

) ((
θ++
n − θ

)s−i+1
)
.

Taking into account that θ+
n ∈ Oε (θ0) with probability 1 − o

(
n−a

∗)
and em-
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ploying the triangular inequality we have that, for s < s∗,

sup
θ∈Oε(θ0)

Pθ

(∥∥∥√n(Eθ+n β̂n − Eθβ̂n)− An (θ)
∥∥∥ > γn

)
≤ sup

θ∈Oε(θ0)

Pθ

(
sup

θ∈Oε(θ0)

√
n

∥∥∥∥∥Eθβ̂n − b (θ)−
∑s

i=1

IV
(
kiβ (z, θ)

)
n
i
2

∥∥∥∥∥ > γn
6

)

+
∑s

i=1 sup
θ∈Oε(θ0)

Pθ

(
1

n
i−1
2

‖Bn‖ >
γn
3s

)
+ sup

θ∈Oε(θ0)

Pθ

(√
n

∥∥∥∥b (θ+
n

)
− b (θ)−

∑s
i=1

1

i!
Dib (θ)

((
θ+
n − θ

)i)∥∥∥∥ > γn
3

)
+ o

(
n−a

∗)
.

Now we have that

an =
√
n

∥∥∥∥∥Eθβ̂n − b (θ)−
∑s

i=1

IV
(
kiβ (z, θ)

)
n
i
2

∥∥∥∥∥ = o
(
n−a
)

independent of θ, due to lemma 3.1.
Further, due to the continuity of Ds−i+1IV

(
kiβ (z, θ)

)
, assumption A.11, and

the assumption of the asymptotic behavior of θ+
n we get

sup
θ∈Oε(θ0)

Pθ

(
1

n
i−1
2

‖Bn‖ >
γn
3s

)
≤ o

(
n−a

∗)
provided that γn ≥ γ

(1)
n = ln

s−i+1
2 n

n
s
2

3s supθ∈Oε(θ0)‖Ds−i+1IV (kiβ (z,θ))‖
(s−i+1)!

.

Furthermore using the same reasoning as above

sup
θ∈Oε(θ0)

Pθ

(√
n

∥∥∥∥b (θ+
n

)
− b (θ)−

∑s
i=1

1

i!
Dib (θ)

(
(θ∗n − θ)

i
)∥∥∥∥ > γn

3

)
≤ o

(
n−a

∗)
when γn ≥ γ

(2)
n =

3 supθ∈Oε(θ0)‖Ds+1b(θ)‖
(s+1)!

ln
s+1
2 n

n
s
2
. Hence for

γn = max
(
γ

(2)
n , 6an, γ

(1)
n , i = 1, . . . , s

)
the result follows for large enough n.

Proof of Lemma 2.5. i) Notice that the uniform consistency follow for GMR1
and GMR2 as in the first parts of lemmas 2.2, 2.3. Assumption A.9 along with
i) imply that for r = 1, 2, supθ∈Oε(θ0)

∥∥∥Dr
(
Eθβ̂n − b (θ)

)∥∥∥ < M , which in turn

means that Dr−1
(
Eθβ̂n − b (θ)

)
are uniformly Lipschitz on Oε (θ0), and there-

fore uniformly equicontinuous on the same ball. This implies the commutativity
of the limit, with respect to n and the derivative operator, uniformly overOε (θ0).
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This along with the second part of assumption A.9, i.e. rankDb (θ) = p for all
θ in Oε0 (θ0), and continuity imply that rankDEθβ̂n = p, for all θ in Oε0 (θ0)
for n large enough. As now p = q, by the definition of GMR2 we get that
β̂n = EGMR2β̂n with probability 1− o

(
n−a

∗)
uniformly on Oε (θ0). This implies

condition FOC of lemma AL.5. Furthermore by the second part of lemma 2.2 we
have that the GMR1 is locally uniformly tight with probability 1− o

(
n−a

∗)
lo-

cally independent of θ. By the mean value Theorem of b (GMR1) around GMR2
we have that with Pθ-probability 1− o

(
n−a

∗)
locally independent of θ

GMR1−GMR2 =

(
∂b/
(
θ+
n

)
∂θ

)−1

(b (GMR1)− b (GMR2)) ,

where θ+
n is such that

∥∥θ+
n −GMR2

∥∥ < ‖GMR1−GMR2‖. As now p = q, by

the definition ofGMR1 we get that b (GMR1) = β̂n with probability 1−o
(
n−a

∗)
uniformly on Oε (θ0). Hence with probability 1− o

(
n−a

∗)
uniformly on Oε (θ0)

‖GMR1−GMR2‖ ≤M
∥∥∥EGMR2β̂n − b (GMR2)

∥∥∥ = O

(
1

n

)
and the last equality is true (as β̂n has a uniform Edgeworth expansion onOε (θ0),
assumption A.8, and apply lemma 3.1). Taking into account that the GMR1 is
locally uniformly tight we get that, for some C > 0, locally independent of θ

sup
θ∈Oε(θ0)

Pθ

(√
n ‖GMR2−θ‖ > C ln1/2 n

)
= o

(
n−a

∗)
.

This implies condition UTIGHT of lemma AL.5. It also, along with lemmas 2.4
and 3.1, implies that for any ε∗ < ε

sup
θ∈Oε∗ (θ0)

Pθ

(∥∥∥√n(β̂n − EGMR2β̂n

)
− Γn (θ)

∥∥∥ > γn

)
= o

(
n−a
)

where γn = o (n−a) independent of θ and

Γn (θ) =
√
n
(
β̂n − Eθβ̂n

)
−
∑s−1

i=1

1

n
i
2

IV
(
kiβ (z, θ)

)
−
∑s

i=1

1

n
i−1
2 i!

Di

(
b (θ) +

∑s−i

j=1

IV
(
kjβ (z, θ)

)
n
j
2

)(√
n (GMR2−θ)i

)
which validates condition EXPAND lemma AL.5 of for Qn = W j

n = Idp×p.
Moreover assumption A.8 along with the fact that the support of β̂n − b (θ)
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is uniformly bounded by O3η (0) for any η greater or equal than the diameter
of B, and Lemma 4.1 of Arvanitis and Demos [5] imply condition UEDGE of

the same Lemma for Mn (θ) =
√
n

(
mn (θ)

β̂n − Eθβ̂n

)
with order s∗ − 1. Hence

the conditions of lemma AL.5 are satisfied and the result follows. ii) follows the

same way as i) except now
∥∥∥β̂n − EGMR2β̂n

∥∥∥ is zero with probability 1−o
(
n−a

∗)
independent of θ.
Proof of Lemma 2.6. A. It is easy to see that this special assumption implies
that GMR1 = GT with probability 1− o

(
n−a

∗)
independent of θ. The rest are

trivial consequences of lemma 2.2. B. Similarly this special assumption implies
that GMR2 = GT (Pθ almost surely for all θ). The rest are trivial consequences
of lemmas 2.3 or 2.5 i) or ii).
Proof of Lemma 2.7. i) By assumption A.12.1-3.,uniform integrability and
via the triangle inequality we get that

sup
θ∗∈Θ

Pθ∗

(
sup
θ∈Θ

∥∥∥Eθcn (β̂n)− c (θ, b (θ∗))
∥∥∥ > ε

)
= o

(
n−a

∗)
Hence for qn (θ) = Eθcn

(
β̂n

)
, q (θ∗, θ) = c (θ, b (θ∗)) and by assumptions A.7.a)

lemma AL.3 applies. Hence for γ (θ) = θ due to assumptions A.3, A.12 lemma
AL.1 also applies proving the result.
ii) Given i), we have that θ̂n ∈ Oε (θ) with Pθ-probability 1 − o

(
n−a

∗)
that is

locally independent of θ for any ε > 0. For some ε small enough, such that
Oε (θ) ⊂ Oε0 (θ0) (which exists due to the fact that ε0 > ε) due to assumption
A.13, we have that condition FOC of lemma AL.4 (in the Appendix) is satisfied by

the GT estimator for Qn =
∂Eθ(cn(β̂n))

′

∂θ
. Furthermore assumption A.13 implies

conditions HUB (γ (θ) = θ hence set δ = ε0) and RANK of the same lemma.
Condition TIGHT follows from A.8 Lemma AL.2 of Arvanitis and Demos [5] and
as Eθcn (b (θ)) = 0 the fact that

supθ∈Oε(θ0) Pθ

(∥∥∥Eθcn (β̂n)∥∥∥ > C1
ln1/2 n
n1/2

)
≤ supθ∈Oε(θ0) Pθ

(∥∥∥β̂n − b (θ)
∥∥∥ > C1

supθ∈Oε(θ0)
Eθ(κn)

ln1/2 n
n1/2

)
we get that there exist

C1 > 0 large enough locally independent of θ for which the last term in the display
is of order o

(
n−a

∗)
. Hence lemma AL.4 applies ensuring that

sup
θ∈Oε(θ0)

Pθ

(√
n ‖GT−θ‖ > C ln1/2 n

)
= o

(
n−a

∗)
for some C > 0 independent of θ. Hence condition UTIGHT of lemma AL.5
holds. Moreover assumption A.8 implies condition UEDGE of the same lemma
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for Mn (θ) =
√
nmn (θ). Due to assumption A.13 for any ϕ =

(
θ

b (θ)

)
for

any θ ∈ Oε0 (θ0) and as GT = θ̂n is suffi ciently close to ϕ,
∂Eθnc

′
n(β̂n)
∂θ

admits
with Pθ-probability 1− o

(
n−a

∗)
that is independent of θ a Taylor expansion of

order s∗ − 1 around ϕ, with remainder

R∗n

(
θ̂n, θ

)
=

1

(s∗ − 1)!

(
Ds∗−1

(
∂Eθ+n cn

(
β+
n

)′
∂θ

)
−Ds∗−1

(
∂Eθcn (b (θ))′

∂θ

))(
(ϕn − ϕ)s

∗−1
)
,

and θ+
n , β

+
n lie between θ̂n and θ and β̂n and b (θ) respectively (see Arvanitis and

Demos [4] for details). Due to assumptions A.13, A.8, Lemma AL.2 of Arvanitis
and Demos [5] and by submultiplicativity, the relation of θ+

n to θ̂n and condition
UTIGHT

sup
θ∈Oε(θ0)

Pθ

(∥∥∥∥ 1

n(s∗−1)/2
R∗n

(
θ̂n, θ

)∥∥∥∥ > γ∗n

)
≤ sup

θ∈Oε(θ0)

Pθ

(
2s
∗−1M

(s∗ − 1)!

maxs
∗

(C,C+)

ns∗/2
lns
∗/2 n > γ∗n

)
+ o

(
n−a

∗)
which is of order o

(
n−a

∗)
for γ∗n = 2s

∗−1M
(s∗−1)!

maxs
∗
(C,C+)

ns
∗/2 lns

∗/2 n = o
(
n−a

∗)
and

independent of θ. Furthermore, due to the same assumption and the fact that
c (θ, b (θ)) = 0 we have that with Pθ-probability 1−o

(
n−a

∗)
locally independent

of θ the s∗ − 1 Taylor expansion of
√
nEθncn

(
β̂n

)
around ϕ has remainder

R#
n

(
θ̂n, θ

)
=

1

s∗!

1

n(s∗−1)/2

(
Ds∗Eθ+n cn

(
β+
n

)
−Ds∗Eθcn (b (θ))

) ((√
n (ϕn − ϕ)

)s∗)
,

and θ+
n lies between θ̂n and θ. Hence analogously to the previous

sup
θ∈Oε(θ0)

Pθ

(∥∥∥R#
n

(
θ̂n, θ

)∥∥∥ > γ#
n

)
≤ sup

θ∈Oε(θ0)

Pθ

(
2s
∗
M

s∗!

maxs
∗+1 (C,C+)

ns∗/2
ln(s∗+1)/2 n > γ#

n

)
+ o

(
n−a

∗)
which is of order o

(
n−a

∗)
for γ#

n = 2s
∗
M

s∗!

maxs
∗+1(C,C+)
ns
∗/2 ln(s∗+1)/2 n = o

(
n−a

∗)
and independent of θ (see Arvanitis and Demos [4] for details). Then due to
assumption A.13 and the fact that Eθcn (β) = c (θ, β), ∂Eθc

′
n(b(θ))
∂θ

, ∂Eθc
′
n(b(θ))
∂β

are

of full rank for any θ ∈ Oε (θ0). Finally due to lemma AL.6 which applies by
assumptions A.8 and A.7 condition EXPAND holds and the result follows by the
same lemma.
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Proof of Lemma 3.1. LetQn denote the measure with density
(

1 +
∑s

i=1

πi(z)

n
i
2

)
ϕV (z).

Since 2a+m+1 > 2a+1, we have that supA∈BC |Pn (A)−Qn (A)| = O (n−a−η),
where η > 0. Hence

na
∣∣∣∣∫
Rq
K (xm) (dPn − dQn)

∣∣∣∣ ≤ na

∣∣∣∣∣
∫
Oc(lnn)ε (0)

K (xm) (dPn − dQn)

∣∣∣∣∣
+na

∣∣∣∣∣
∫
Rq\Oc(lnn)ε (0)

K (xm) dPn

∣∣∣∣∣+ na

∣∣∣∣∣
∫
Rq\Oc(lnn)ε (0)

K (xm) dQn

∣∣∣∣∣
≤ naM (lnn)mε

∫
Oc(lnn)ε (0)

|dPn − dQn|+ na
∫
Rq\Oc(lnn)ε (0)

|K (xm)| (dPn + |dQn|)

≤ M (lnn)mε sup
A∈BC

na |Pn (A)−Qn (A)|+ na
∫
Rq\Oc(lnn)ε (0)

|K (xm)| (dPn + |dQn|)

Due to the hypothesis for the support of Pn

na
∫
Rq\Oc(lnn)ε (0)

|K (xm)| dPn

= na
∫

[Rq\Oc(lnn)ε (0)]∩O√nρ(0)

|K (xm)| dPn ≤ na+mβρmqm
∫
Rq

1‖x‖>c(lnn)εdPn

Hence

na
∣∣∣∣∫
Rq
xm (dPn − dQn)

∣∣∣∣ ≤M (lnn)mε sup
A∈BC

na |Pn (A)−Qn (A)|

+na+mβρmqmP (‖ζn‖ > c (lnn)ε) + na
∫
Rq\Oc(lnn)ε (0)

|K (xm)| |dQn| .

As supA∈BC n
a |Pn (A)−Qn (A)| = O (n−η) for η > 0, we have that

(lnn)2ε sup
A∈BC

na |Pn (A)−Qn (A)| = o (1)

and na+m
2 ρmqmP (‖ζn‖ > c (lnn)ε) = o (1) if ε ≥ 1

2
and c ≥

√
2a+m+ 1 by

Lemma 2 of Magdalinos [34]. Finally na
∫
Rq\Oc(lnn)ε (0)

|K (xm)| |dQn| = o (1)

due to Gradshteyn and Ryzhik [28] formula 8.357. For the uniform case first
notice that

sup
θ∈Oε(θ0)

Pθ

(
‖ζn‖ > M ln1/2 n

)
= o

(
n−a

∗)
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This is due to the fact that the set
{
x ∈ Rq : ‖x‖ ≤M ln1/2 n

}
has boundary

of Lebesgue measure zero and

sup
θ∈Oε(θ0)

∫
‖x‖>M ln1/2 n

(
1 +

∑s∗

i=1

1

n
i
2

|πi (x, θ)|
)
ϕV (θ) (x) dx

≤
∫
‖z‖> M

λmax(θ∗) ln1/2 n

(
1 +

∑s∗

i=1

1

n
i
2

∣∣πi (V 1/2 (θ∗i ) z, θ
∗
i

)∣∣)ϕ (x) dx

where λmax (θ) denotes the maximum absolute eigenvalue of V 1/2 (θ) and θ∗i ∈
Oε (θ0) exist for all i = 1, . . . , s∗ due to the continuity and are independent of z
due to the positivity and the fact that πi are polynomials in x, and θ

∗ exists due
to continuity of V and the compactness of Oε (θ0). For M ≥ s∗λmax (θ∗) the
result follows from Lemma 2 of Magdalinos [34]. The rest follows in the same
spirit of the first part.
Proof of Lemma 3.2. Our assumptions and lemmas 2.2, 3.1 ensure the
validity of the mean approximation. Then from Theorem 3.1 of Arvanitis and
Demos [5] we have that the relevant moment approximation can be obtained if

we employ the appropriate approximations of
√
n
(
β̂n − b

(
θ̂n

))
, W ∗

n (θ∗n), and
∂b′(θ̂n)
∂θ

in terms of
√
n
(
θ̂n − θ

)
and
√
n (θ∗n − θ). Therefore an appropriate

approximation for
√
n
(
θ̂n − θ

)
is obtained by inverting the product of these

terms. Finally, integrating with respect to
(

1 + π1(z,θ)√
n

)
ϕV ∗(θ) (z), noting that

k1β (z, θ) = z, k2β (z, θ) = zπ1 (z, θ) we obtain result (see Arvanitis and Demos
[4] for details).
Proof of Lemma 3.3. The assumptions and lemmas 2.2, 3.1 ensure the validity
of the mean approximation uniformly over Oε∗ (θ0). Furthermore from lemma

AL.7 we have that supθ∈Oε∗ (θ0)

∥∥∥DEθβ̂n −Db (θ)− 1
n
DIϕV ∗

(
k2β

)
(θ)
∥∥∥ = o (1)

(recall that IϕV ∗
(
k1β

)
= 0). Then the proof proceeds as in the proof of lemma

3.2 (see Arvanitis and Demos [4] for details).
Proof of Lemma 3.4. First, notice that our assumptions and lemmas 2.2,
3.1 ensure the validity of the mean approximation. Then employing the implicit
function Theorem, as c (θ, b (θ)) = 0l and

∂c(θ,b(θ))
∂θ′ = 0lxp, appropriate order

Taylor expansions of
√
nc
(
θ̂n, β̂n

)
, W ∗∗

n (θ∗n) and
∂c′(θ̂n,β̂n)

∂θ
, and inverting the

product of these terms we get an appropriate approximation of
√
n
(
θ̂n − θ

)
.

Integrating this approximation w.r.t.
(

1 + π1(z,θ)√
n

)
ϕV (θ) (z) and employing The-

orem 3.1 of Arvanitis and Demos [5] we get the result (see Arvanitis and Demos
[4] for details).
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Proof of Corollary 3. When W ∗∗ is independent of x and θ and b (θ)

is affi ne then J =0 and Hj=
∂b′

∂θ

∂2cj(θ,b)

∂β∂β′
∂b
∂θ′ . Substituting these expressions in

the expansion of
√
n
(
θ̂n − θ

)
and integrating w.r.t.

(
1 + π1(z,θ)√

n

)
ϕV (θ) (z) we

get the result. On the other hand, when p = q = l and b (θ) is affi ne then

D−1E =
(
∂c(θ,b)
∂β′

∂b
∂θ′

)−1

, J ∗ = 0, q1β =
(
∂b
∂θ′

)−1
k1β , q1β =

(
∂b
∂θ′

)−1
k1β , and

Hj=
∂b′

∂θ

∂2cj(θ,b)

∂β∂β′
∂b
∂θ′ . The result follows by integrating, again, w.r.t.

(
1 + π1(z,θ)√

n

)
ϕV (θ) (z)

(see Arvanitis and Demos [4] for details).
Proof of Lemma 3.5. i). The result follows from lemmas 2.6.A and 3.2.
Notice that as p = q = l, we have that C−1 ∂b′

∂θ
W ∗ =

(
∂b
∂θ′

)−1
. ii). The result

follows from lemmas 2.6.B and 3.3.
Proof of Lemma 3.6. For both estimators we have that due to lemma 3.1,
Theorem 3.1 of Arvanitis and Demos [5] along with the approximations employed

in lemmas 3.2, 3.3 we have Eθ

(
n
(
θ̂n − θ

)(
θ̂n − θ

)′)
=∫

Rq C
−1 ∂b′

∂θ
W ∗

(
k1β (z, θ) +

k2β (z,θ)
√
n

)(
k1β (z, θ) +

k2β (z,θ)
√
n

)′
W ∗ ∂b

∂θ′C
−1ϕV (θ) (z) dz,

where k1β (z, θ) = z, k2β (z, θ) = zπ1 (z, θ). Keeping the relevant order terms,
the result follows.
Proof of Lemma 3.7. Again we have that due to lemma 3.1, Theorem
3.1 of Arvanitis and Demos [5] along with the approximations used in lemma 3
when W ∗∗ is independent of x and θ and b (θ) is affi ne, we get the appropriate

expression from the proof of lemma 3. Integrating w.r.t.
(

1 + π1(z,θ)√
n

)
ϕV (θ) (z)

we get the result (see Arvanitis and Demos [4] for details).
Proof of Lemma 4.1. First notice that in any step of the procedure the binding
function is the identity. Next the o

(
n−a

∗)
uniform consistency of θ̂(0

n ensures the
analogous for any step of the recursion. Then validity of the Edgeworth expansion
for
√
nsn (θ) along with lemma 3.1 and the discussion in the paragraph imme-

diately after lemma 3.1 imply that supθ∈Oε(θ0) E
∥∥nsn (θ) s′n (θ) + EHn (θ)

∥∥2
=

O (1) and since by the same lemma supθ∈Oε(θ0) E

∥∥∥∥(θ̂(0
n − θ

)∥∥∥∥2

= O
(

1
n

)
and

Eθ supθ∈Oε(θ0) ‖nsn‖
2 < +∞ and Eθ supθ∈Oε(θ0)

∥∥nHn

∥∥ < +∞ we have that

supθ∈Oε(θ0)

∥∥∥∥D2Eθθ̂
(1
n

∥∥∥∥ < M . Hence lemma 2.5 applies and accordingly θ̂(1
n ad-

mits a locally uniform Edgeworth expansion of order s∗. Given this the exact

same reasoning implies the same result for θ̂(k
n for any k. Moreover assumption

A.11 follows for the expansions in every step of the procedure due to the previ-
ous. The proof for the moment approximations for the case k = 1 follows easily.
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Using induction, let us assume that the result holds for some k = h, i.e. assume

that the appropriate expression for
√
n

(
θ̂(h
n − θ

)
is given by:

Eθ
√
n

(
θ̂(h
n − θ

)
=

1

n
2h+1
2

IV (k2h+2) +
1

n
2h+2
2

IV (k2h+3) + o
(
n−

2h+2
2

)
.

uniformly over Oε (θ0). Hence for θ ∈ Oε (θ0), by lemma 2.4 it follows that
√
n

(
E
θ̂
(h+1
n

θ̂(h
n − Eθθ̂(h

n

)
−
(

Idp + 1

n
2h+2
2

∂IV (k′2h+2)
∂θ

)√
n

(
θ̂(h+1
n − θ

)
is bounded

by a real sequence of order o
(
n−

2h+3
2

)
that is independent of θ, with Pθ-

probability 1− o
(
n−

2h+3
2

)
independent of θ. The h+ 1st-step GMR2 estimator

satisfies with Pθ-probability 1 − o
(
n−

2h+3
2

)
independent of θ, θ̂(h

n = E
θ̂
(h+1
n

θ̂(h
n .

Hence lemma 3.1 and Theorem 3.1 of Arvanitis and Demos [5] imply that the re-
quired approximation would be given by the integration of the Edgeworth density
in the hth step of the following approximation

√
n

(
θ̂(h
n − θ

)
−
(

1

n
2h+1
2

IV (k2h+2) +
1

n
2h+2
2

IV (k2h+3)

)
.

This integration gives an error of o
(
n−

2h+2
2

)
as
∫
Rp

(
1 +

∑2h+2
i=1

πi(z,θ)

ni/2

)
ϕV (θ) (z) dz =

1 + o
(
n−

2h+2
2

)
due to the validity of the Edgeworth approximation of the distri-

bution of
√
n

(
θ̂(h
n − θ

)
and the result follows. For the MSE approximation the

result follows analogously, by simply noticing that
(

Idp + 1

n
2h+2
2

∂IV
(
k
/
2h+2

)
∂θ

)−1

=

Idp +o (1).
Proof of Proposition 4. Let s∗ = 5, y2

0 is observed and for t = 1, . . . , n,

xt = (y2
t , ytyt−1) and c (xt, β) =

(
yiyi−1 − β1

y2
i−1 − β2

)
.

We have that cn (β) =

(
1
n

∑
i yiyi−1 − β1

1
n

∑
i y

2
i−1 − β2

)
and W ∗ = Id2. Notice that

b (θ) = Eθ

(
ytyt−1

y2
t−1

)
=

(
θ

1 + θ2

)
, B = b (Θ) compact and assumption A.9.

Now as E (ε14
i ) <∞, the continuity of D (0, 1) and the 1−Dependence of the

MA (1) model all assumptions of section 2 in Arvanitis and Demos [5] are fulfilled

(see also Götze and Hipp [23]). Consequently Sn =
√
n

(
1
n

∑
i yiyi−1 − θ

1
n

∑
i y

2
i−1 − 1− θ2

)
has a valid 5th order Edgeworth expansion uniformly over Θ. Furthermore, as
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supθ Eθ (y2
t )

7
< ∞ and as Eθ (ymt ), for any m = 1, ..., 14, are continuous func-

tion w.r.t. θ, we have that the polynomials of the Edgeworth density are equicon-
tinuous functions of these moments, onΘ (i.e. Assumption A.4.EEQ in Arvanitis
and Demos [5] is satisfied). For the auxiliary estimator, β̂n =

∑n
t=1 ytyt−1∑n
t=1 y

2
t−1
, con-

sider the function f (x, y) = x
y
. All derivatives, up to 5th order, of f evaluated

at x = θ and y = 1 + θ2 are of the form either θ

(1+θ2)
k or 1

(1+θ2)
k . Hence, due to

the continuity of D5f on Θ, from Theorem 3.1 in Arvanitis and Demos [5] we

get that
√
n
(
β̂n − θ

1+θ2

)
has a valid Edgeworth expansion uniformly on Θ with

polynomials which are equicontinuous function on Θ, implying also assumption
A.6. Notice that assumption A.11 also follows from analogous differentiability
of moments of powers of products of elements of X0 implied by dominated con-
vergence the E (ε14

i ) <∞ and the compactness of Θ, and furthermore form the
differentiability of f (x, y) and dominated convergence.
This implies that GMR1, and GMR2 are uniformly consistent with rate o (n−2).
Assumption A.9 applies for the function b (θ) = θ

1+θ2
and therefore due to lemma

2.2
√
n (GMR1−θ) has a 5th order Edgeworth expansion, uniformly overΘ. This

implies also that the 1 − GMR2 is uniformly consistent with rate o (n−2). An
invocation of dominated convergence along with the same moment condition im-
plies that

√
nln (θ) (where ln (θ) is the average log-likelihood) has an Edgeworth

expansion of third order uniformly over Θ and thereforeDEθβ̂n is non degenerate
for all θ for large enough n. Hence due to lemma 2.5.i) GMR2 has a 5th order
Edgeworth expansion, uniformly over Θ which is also true for 1−GMR2 due to
lemma 4.1. Notice that as cn (β) = ρn − β, then Eθ

(
cn

(
β̂n

))
= Eθρn − β̂n,

i.e. lemma 2.6.B holds.
Proof of Proposition 5. (for analytic proof see Arvanitis and Demos [4]) For
any θ ∈ Θ let Xj (θ) =

(
y2
j y4

j y2
j y

2
j−1 y2

j y
2
j−2

)′
, and

Sn (θ) = 1√
n

∑n
i=1 (Xi (θ)− EX0 (θ)). The results for β̂n and GMR1 follow

from Propositions 1 and 2 in Arvanitis and Demos [5]. The results for GMR2
and 1 − GMR2 follow from Proposition 3 in Arvanitis and Demos [5], as well.
Finally, notice that by the definition of cn (β) we have that cn (β) = Eθβ̂n− β̂n,
i.e. lemma 2.6.B holds.

General Results
The following results essentially justify the methodologies used for the estab-
lishment of the validity of the locally uniform Edgeworth expansions in all the
previous cases. They are cited without proofs. Their analytical proofs can be
found in Arvanitis and Demos [4].
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Lemma AL.1 Suppose that:
-UUC

sup
θ∈Θ

Pθ

(
sup
β∈B
|cn (β)− c (θ, β)| > ε

)
= o

(
n−a
)
, ∀ε > 0

-AB c (θ, β) is jointly continuous and γ (θ) = arg minβ∈B c (θ, β), then

sup
θ∈Θ

Pθ

(∥∥∥β̂n − γ (θ)
∥∥∥ > ε

)
= o

(
n−a
)
, ∀ε > 0

where β̂n ∈ arg minβ∈B cn (β).

Lemma AL.2 Let assumptions A.7.a) and A.6 hold. Then for j = ∗, ∗∗

sup
θ∈Θ

Pθ
(∥∥W j

n (θ∗n)− EθW j (θ)
∥∥ > ε

)
= o

(
n−a

∗)
,∀ε > 0

Furthermore, there exists K > 0 for which

sup
θ∈Θ

Pθ
(∥∥W j

n (θ∗n)
∥∥ > K

)
= o

(
n−a

∗)
Lemma AL.3 Suppose that

cn (β) =

√
q′n (β)W j

n (θ∗n) qn (β)

for some appropriate random element qn where W j
n, θ

∗
n satisfy assumptions

A.7.a), A.6 and for q an appropriate jointly continuous function on Θ×B

sup
θ∈Θ

Pθ
(
supβ∈B ‖qn (β)− q (θ, β)‖ > ε

)
= o

(
n−a

∗)
,∀ε > 0

Then AL.1.UUC holds for c (θ, β) =
√
q′ (θ, β)EθW j (θ) q (θ, β) which is jointly

continuous.

Lemma AL.4 Suppose W j
n, θ̃

∗
n satisfy assumptions A.7, A.6, β̂n and γ (θ) are

as in lemma AL.1, γ is continuous on Oε (θ0) and that:
-FOC β̂n satisfies

∂q′n

(
β̂n

)
∂β

W j
n

(
θ̃∗n

)
qn

(
β̂n

)
= 0

with Pθ-probability 1− o
(
n−a

∗)
that is independent of θ,

-HUB for some δ,M > 0 independent of θ such that γ
(
Oε (θ0)

)
⊂ Oδ (γ (θ0))

and for all i, supθ∈Oε(θ0) Pθ

(
supβ∈Oδ(γ(θ0))

∥∥∥∥∂2q′n(β̂n)
∂β∂βi

∥∥∥∥ > M

)
= o

(
n−a

∗)
,
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-RANK for any β ∈ Oδ (γ (θ0)), ∂qn(β)
∂β′ is of full rank with Pθ-probability

1− o
(
n−a

∗)
that is independent of θ and,

-TIGHT for someC > 0 independent of θ, supθ∈Oε(θ0) Pθ

(√
n ‖qn (γ (θ))‖ > C ln1/2 n

)
=

o
(
n−a

∗)
, then

sup
θ∈Oε(θ0)

Pθ

(√
n
∥∥∥β̂n − γ (θ)

∥∥∥ > C+ ln1/2 n
)

= o
(
n−a

∗)
for some C+ > 0 independent of θ.

Lemma AL.5 Suppose that:
-FOC β̂n satisfies

Qn

(
β̂n

)
W j
n

(
θ̃∗n

)
qn

(
β̂n

)
= 0

with Pθ-probability 1− o
(
n−a

∗)
that is independent of θ,

-UTIGHT There exists a C+ > 0 independent of θ for which

sup
θ∈Oε(θ0)

Pθ

(√
n
∥∥∥β̂n − γ (θ)

∥∥∥ > C+ ln1/2 n
)

= o
(
n−a

∗)
-UEDGE There exists a random element Mn (θ) with values in an Euclidean

space, containing the elements of
√
n
(
θ̃∗n − θ

)
, the distribution of which admits

a uniform over Oε (θ0) Edgeworth expansion Ψn,s (θ). The ith polynomial, say,
πi (z, θ) of Ψn,s (θ) is equicontinuous on Oε (θ0) ∀z ∈ Rq, for i = 1, . . . , s− 2,
and if Σ (θ) denotes the variance matrix in the density of Ψn,s (θ) then it is con-
tinuous on Oε (θ0) and positive definite.
-EXPAND The following hold with Pθ-probability 1− o

(
n−a

∗)
that is indepen-

dent of θ

Qn

(
β̂n

)
=

s∗−1∑
i=0

1

ni/2

∑i

j=0
C∗i,j,n (θ)

(
Mn (θ)j , Sn (θ)i−j

)
+R∗n

(
β̂n, θ

)

W j
n

(
θ̃∗n

)
=

s∗−1∑
i=0

1

ni/2
C∗∗i,n (θ)

(
Mn (θ)i

)
+R∗∗n

(
θ̃∗n, θ

)
√
nqn

(
β̂n

)
=

s∗−1∑
i=0

1

ni/2

∑i+1

j=0
C#
i,j,n (θ)

(
Mn (θ)j , Sn (θ)i+1−j

)
+R#

n

(
β̃n, θ

)
where Sn (θ) =

√
n
(
β̂n − γ (θ)

)
, C∗i,j,n : Oε (θ0)× Rqi → Rp, C∗∗i,n : Oε (θ0)×

Rqi → Rp are i-linear, Ci,j,n : Θ × Rqi+1 → Rp is (i+ 1)-linear ∀θ ∈ Oε (θ0),
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C∗0,0,n, C
∗∗
0,n, C

#
0,0,n (θ) , C#

0,1,n (θ) are independent of n and have full rank ∀θ ∈
Oε (θ0), C∗i,n, C

∗∗
i,n, C

#
i,j,n are equicontinuous on Oε (θ0), and

sup
θ∈Oε(θ0)

Pθ
(∥∥Rl

n

∥∥ > γln
)

= o
(
n−a

∗)
, l = ∗, ∗∗,#

for real sequence γln = o
(
n−a

∗)
independent of θ, for , l = ∗, ∗∗,#.

Then
√
n
(
β̂n − γ (θ)

)
admits a locally uniform Edgeworth expansion, Ψ∗n,s (θ),

over Oε (θ0). The ith polynomial, say, π∗i (z, θ) of the density of Ψ∗n,s (θ) is
equicontinuous on Oε (θ0) ∀z ∈ Rq, for i = 1, . . . , s − 2, and if Σ∗ (θ) denotes
the variance matrix in the density of Ψ∗n,s (θ) then it is continuous on Oε (θ0)
and positive definite.

Lemma AL.6 Under assumptions A.7 and A.8 condition EXPAND hold for
W j
n

(
θ̃∗n

)
where Mn (θ) =

√
nmn (θ).

Lemma AL.7 For real valued functions fn, f defined on Θ′ ⊇ Θ, suppose
that: supθ∈Θ |fn − f | = o (1), and supθ∈Θ ‖D2fn‖ , supθ∈Θ ‖D2f‖ < M . Then
supθ∈Θ ‖Dfn −Df‖ = o (1).
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Figures
The MA (1) Model, θ = 0.4.

Figure 1: n×
∣∣∣B̂ias

∣∣∣.

Figure 2: n× M̂SE.
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The GARCH (1, 1) Case, (θ1, θ2, θ3) = (1.0, 0.05, 0.7).

Figure 3: n×
∥∥∥B̂ias

∥∥∥.

Figure 4: n×
∥∥∥M̂SE

∥∥∥.
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