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Abstract

This is an extended appendix for the revision of the paper Sto-
chastic Expansions and Moment Approximations for Three Indirect
Estimators.

1 Definition of Estimators
In what follows, when A is a matrix kAk denotes a submultiplicative matrix
norm, such as the Frobenius one (i.e. kAk =

p
trA0A). O" (�) denotes

the open "-ball around � in a relevant metric space and O" (�) its closure.
We denote with PD (k;R) the vector space of positive de�nite matrices of
dimension k�k endowed with the topology of the Frobenius norm. Consider
the following real function from Rk � PD (k;R) for k 2 N

kxkA !
�
x=Ax

�1=2
:

For a given matrix the previous function de�nes a norm on Rk. For s�; s 2 N�
with s� � s, let a� = s��1

2
and a = s�1

2
.

Assumption A.1 For a measurable space (
;F), the statistical model (SM)
is a family of probability distributions on F parameterized by par (�) a func-
tion that is onto a compact subset � � Rp for some p 2 N.

We abbreviate with �0 = par (P0) 2 Int (�), for P0 in SM. The auxiliary
estimator is denoted in the paper by �n whereas �n is the collective notation
for the indirect ones. We also employ b (�) to denote the binding function
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Assumption A.2 For B a compact subset of Rq, Qn : 
�B ! R is jointly
measurable. Moreover Qn is continuous on B for P�0�almost every ! 2 
.

We suppress the dependence of the random elements involved on 
, for
notational simplicity.

De�nition D.1 The auxiliary estimator is de�ned as

�n = argmin
�2B

Qn (�)

Qn could be a likelihood function, a GMM or more generally, a distance
type criterion like the ones appearing in the following de�nitions (see also
section 4).

Assumption A.3 The binding function b : � ! B is injective and contin-
uous on �.

The initial estimators are denoted by ��n.

Assumption A.4 W �
n : 
��! Rq and ��n : 
! B are jointly measurable.

De�nition D.2 The GMR1 estimator is de�ned as

�n = argmin
�2�

k�n � b (�)kW �
n(�

�
n)

Lemma 1.1 Under assumptions A.1 and A.2, kE��nk <1 on �.

Proof. kE��n � b (�)k � E� k�n � b (�)k � M1, where M1 denotes the
diameter of B, �nite due to the compactness of B.

De�nition D.3 The GMR2 estimator is de�ned as

�n = argmin
�2�

k�n � E��nkW �
n(�

�
n)

Assumption A.5 Let Qn be di¤erentiable on B for P��almost every ! 2 
.
We denote with cn the derivative of Qn except for the case where Qn =
kcn (�)kWn(�

�
n)
, where cn : 
 � B ! Rl, Wn : 
 � B ! PD (l;R), and

��n : 
 ! B are jointly measurable. Moreover cn is continuous on B for
P�0�almost every ! 2 
, cn (�) is P��integrable on � � B and E� (cn (�))
is continuous on ��B. Also W ��

n : 
��! Rl is jointly measurable.

E� (cn (�n)) denotes the quantity E� (cn (�)) j�=�n for notational simplic-
ity.
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De�nition D.4 The GT estimator is de�ned as

�n = argmin
�2�

kE� (cn (�n))kW ��
n (��n)

When p = q = l and Qn (�) = kcn (�)k, cn (�) = hn � E�hn = hn � g (�)
with hn : 
! Rp, integrable on � and B, g (�) and m (�) = E�hn invertible,
it is easy to see that a) the GMR1 estimator is a GMM estimator and b) g is
linear GMR1 = GMR2. Notice that a) would be valid even if �n = r�g�1�hn
for r a bijection. Hence the GMR1 can be a GMM estimator even in cases
that the auxiliary is an appropriate transformation of a GMM estimator.

2 Validity of Edgeworth Approximations
Assumptions Specific to the Validity of the Edgeworth Approximations

We denote with Dr, the r-derivative operator and with Dr (f (x0)) (x
r) the

rth-linear function de�ned by the evaluation ofDrf at x0 evaluated at (x; :::; x)| {z }
r times

.

Let M denote a universal positive constant, independent of n and �, not
necessarily taking the same value across and inside assumptions proofs and
results. pri;j (x) denotes the transformation of an r

th dimensional vector, say
x = (x1; x2; :::; xr)

0, to a vector containing only the elements of x from the
ith to the jth coordinate, i.e. pri;j (x) = (xi; xi+1; :::; xj)

0, where naturally
1 � i � j � r. Finally whenever the assertion "local locally independent of
�" appears in the sequel it implies "independent of � for � 2 O" (�0)" unless
otherwise speci�ed. Notice that due to the fact that the spaces � and B
are separable and closed, suprema of real random elements over these spaces
are typically measurable (see van der Vaart and Wellner [7], example 1.7.5
p. 47 due to the theorem of measurable projections, completeness of the
underlying probability space, the compactness of � and the continuity of b).

Assumption A.6 �n is uniformly consistent for b (�) with rate o
�
n�a

��
,

i.e.
sup
�2�

P� (k�n � b (�)k > ") = o
�
n�a

��
;8" > 0:

Moreover ��n is uniformly consistent for � with rate o
�
n�a

��
.

Assumption A.7 For j = �; ��, suppose that there exists a sequence of
random elements xn : 
 ! Rm, such that W j

n (�) =
1
n

P
W j (xi (!) ; �) for
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measurable W � : Rm��! PD (q;R), W �� : Rm��! PD (l;R) integrable
with respect to P��, such that a)

sup
��2�

P��
�

W j

n (�)� E��W j (�)


 > "� = o �n�a�� ;8" > 0

E��W
j (�) is continuous when w.r.t. � when �� = �, it is Lipschitz w.r.t. �,

for any �� and the analogous Lipschitz coe¢ cient (say) �j (��) sup��2� �
j (��) <

+1. b) Moreover W j (x; �) is s�-di¤erentiable on O"0 (�0) for "0 > " and

sup
��2O"(�0)

P��

 
sup

�2O"(�0)



Ds�+1W j
n (�)



 > M! = o �n�a��
Let f (x; �) denote the vector that contains stacked all the distinct com-

ponents ofW � (x; �) andW �� (x; �) as well as their derivatives up to the order
s�� 1. Furthermore 	n;s� (�) denotes an Edgeworth measure of order s� (see
for example equations (3.7) and (3.8) of Magdalinos [5]), and with �i�1 (z; �)
the polynomial in the density of 	n;s� (�) coe¢ cient 1

n
i�1
2
, for i = 1; : : : ; s�

(notice that �0 = 1).

Assumption A.8
p
nmn (�) has an Edgeworth expansion of order s� uni-

formly on O" (�0) where

mn (�) =

0@ �n � b (�)
��n � �

1
n

P
f (xi; �)� E� 1n

P
f (xi; �)

1A
or

mn (�) = �n � b (�)
when W � (x; �) and W �� (x; �) are independent of x and �. Furthermore
�i (z; �) is equicontinuous on O" (�0) 8z 2 Rq, for i = 1; : : : ; a�, and if V (�)
denotes the variance matrix in the density of 	n;s (�) then it is continuous
on O" (�0) and positive de�nite.

The proof of the following theorem can be found in Arvanitis and Demos
[1] (Proof of Theorem 3.2).

Theorem 2.1 Suppose that:
-POLFOCMn (�) satis�es 0p�1 =

Ps�1
i=0

1
ni=2

Pi+1
j=0Cijn (�)

�
Mn (�)

j ; Sn (�)
i+1�j

�
+

Rn (�) with probability 1� o
�
n�

s�1
2

�
independent of � where Cijn : O" (�0)�

Rqi+1 ! Rp is (i+ 1)-linear 8� 2 O" (�0), C00n (�) ; C01n (�) are independent
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of n and have rank p 8� 2 O" (�0), Cijn are equicontinuous on O" (�0), 8xi+1,
-LUE Sn (�) admits a locally uniform Edgeworth expansion the polynomials
of the density of which are equicontinuous on O" (�0) and the variance matrix
is continuous on O" (�0) and positive de�nite,

-UAT sup�2� P
�
kMn (�)k > C ln1=2 n

�
= o

�
n�

s�1
2

�
for some C > 0 inde-

pendent of �,
-USR sup�2� P (kRn (�)k > 
n) = o

�
n�

s�1
2

�
for some real sequence 
n =

o
�
n�

s�1
2

�
independent of �.

Then Mn (�) admits a locally uniform Edgeworth expansion he polynomials
of the density of which are equicontinuous on O" (�0) and the variance matrix
is continuous on O" (�0) and positive de�nite.

Existence of Edgeworth Expansions for the GMR-type Estimators

TheGMR1 Case

Assumption A.9 b (�) is s�+1 continuously di¤erentiable and rankDb (�) =
p, for all � in O"0 (�0) and "0 > ".

Lemma 2.2 i) Under the assumptions A.1, A.2, A.3, A.4, A.6 and A.7.a)
the GMR1 is uniformly consistent for � with rate o (n�a). ii) If additionally
assumptions A.7b), A.8 and A.9 hold then,

p
n (GMR1��) has an Edgeworth

expansion of order s� uniformly on O" (�0), for " < "0., where "0 as in the
above assumption.

Proof : i) Due to the triangle inequality and assumption A.6 we have
that for " > 0

sup
��2�

P��

�
sup
�2�

jk�n � b (�)k � kb (��)� b (�)kj > "
�

� sup
��2�

P�� (k�n � b (��)k > ") = o
�
n�a

��
Hence for qn (�) = �n � b (�), q (��; �) = b (��) � b (�) and by assumption
A.7.a) lemma AL.3 applies. Hence for 
 (�) = � due to assumption A.3
lemma AL.1 also applies implying the result.
ii) Given i), we have that �n 2 O� (�) with P�-probability 1 � o

�
n�a

��
that

is locally independent of � for any � > 0. For some � small enough, such that
O� (�) � O"0 (�0) (which exists due to the fact that "0 > ") due to assumption
A.9, we have that condition FOC of the appendix lemmas AL.4 and AL.5 is
satis�ed by the GMR1 estimator with Qn + @b0

@�
. Furthermore assumption
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A.9 implies conditions HUB (
 (�) = � hence set � = "0) and RANK of the
same lemma. Condition TIGHT follows from A.8, as under this assumption
there is C� > 0 locally independent of � such that

sup
�2O"(�0)

P�

�p
n k�n � b (�)k > C� ln1=2 n

�
= o

�
n�a

��
(1)

(see lemma AL.2 of Arvanitis and Demos [1]). Hence lemma AL.4 applies
ensuring that

sup
�2O"(�0)

P�

�p
n kGMR1��k > C ln1=2 n

�
= o

�
n�a

��
for some C > 0 locally independent of �. Hence condition UTIGHT of lemma
AL.5 holds. Moreover assumption A.8 implies condition UEDGE of the same
lemma for Mn (�) =

p
nmn (�). Due to assumption A.9 for any � 2 O" (�0)

and any �� su¢ ciently close to �, @b
0

@�
(��) admits a Taylor expansion of order

s� � 1 around � of the form
@b0

@�
(��) =

Xs��1

i=0

1

i!
Di@b

0

@�
(�)
�
(�� � �)i

�
+

1

(s� � 1)!

�
Ds��1@b

0

@�

�
�+
�
�Ds��1@b

0

@�
(�)

��
(�� � �)s

��1
�

where �+ lies between �� and �. This implies that for any �n = GMR1 due
to condition UTIGHT we have that with P�-probability 1� o

�
n�a

��
locally

independent of �

@b0

@�
(�n) =

Xs��1

i=0

1

i!

1

ni=2
Di@b

0

@�
(�)
��p

n (�n � �)
�i�

+R�n (�n; �)

whereR�n (�n; �) =
1

(s��1)!
1

n(s
��1)=2

�
Ds��1 @b0

@�

�
�+n
�
�Ds��1 @b0

@�
(�)
� �
(
p
n (�n � �))s

��1
�
,

and �+n lies between �n and �. Now by assumption A.9
@b0

@�
(�) has full rank

for any � 2 O" (�0) and by submultiplicativity, the relation of �
+
n to �n and

condition UTIGHT

sup
�2O"(�0)

P�

 





1

(s��1)!
1

n(s
��1)=2

�
Ds��1 @b0

@�

�
�+n
�
�Ds��1 @b0

@�
(�)
�
��

(
p
n (�n � �))s

��1
� 




 > 
�n

!

� sup
�2O"(�0)

P�

 
1

(s� � 1)!
1

n(s��1)=2
sup

�2O"0 (�0)





Ds� @b
0

@�
(�)







�+n � �



pn (�n � �)

s��1 > 
�n
!

� sup
�2O"(�0)

P�

�
M

(s� � 1)!
Cs

�

ns�=2
lns

�=2 n > 
�n

�
+ o

�
n�a

��
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which is of order o
�
n�a

��
for 
�n =

M
(s��1)!

Cs
�

ns
�=2 ln

s�=2 n = o
�
n�a

��
and locally

independent of �. Analogously, due to assumption A.9 for any � 2 O" (�0)
and any �� su¢ ciently close to �, b (��) admits a Taylor expansion of order
s� � 1 around � of the form

qn = �n � b (��) = �n � b (��)�
Xs�

i=1

1

i!
Dib (�)

�
(�� � �)i

�
� 1

s�!

�
Ds�b

�
�+
�
�Ds�b (�)

� �
(�� � �)s

�
�

where �+ lies between �� and �. This implies that for �n we have that with
P�-probability 1� o

�
n�a

��
p
n (�n � b (�n))

=
p
n (�n � b (�))

+
Xs��1

i=0

1

(i+ 1)!

1

ni=2
Di+1b (�)

��p
n (�n � �)

�i+1�
+R#n (�n; �)

where R#n (�n; �) =
1
s�!

1
n(s

��1)=2

�
Ds�b

�
�+n
�
�Ds�b (�)

� �
(
p
n (�n � �))s

��
, and

�+n lies between �n and �. Now by assumption A.9
@b0

@�
(�) has full rank for

any � 2 O" (�0) and so does the identity matrix in front of
p
n (�n � b (�)),

and thereby due to submultiplicativity, the relation of �+n to �n and condition
UTIGHT

sup
�2O"(�0)

P�

 





1
s�!

1
n(s

��1)=2

�
Ds�b

�
�+n
�
�Ds�b (�)

�
��

(
p
n (�n � �))s

�� 




 > 
#n
!

� sup
�2O"(�0)

P�

 
1
s�!

1
n(s

��1)=2 sup�2O"0 (�0)


Ds�+1b (�)





�+n � �


�k
p
n (�n � �)ks

�
> 
#n

!

� sup
�2O"(�0)

P�

�
M

s�!

Cs
�+1

ns�=2
ln(s

�+1)=2 n > 
#n

�
+ o

�
n�a

��
which is of order o

�
n�a

��
for 
#n =

M
s�!

Cs
�+1

ns
�=2 ln

(s�+1)=2 n = o
�
n�a

��
and locally

independent of �. Finally due to lemma AL.6 which applies by assumptions
A.8 and A.7 condition EXPAND holds and the result follows by the same
lemma.�

TheGMR2 Case

Assumption A.10 sup�2O"0 (�0)


Ds�E��n



 < M .
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Lemma 2.3 i) Under the assumptions A.1, A.2, A.3, A.4, A.6 and A.7.a)
the GMR2 is uniformly consistent for � with rate o

�
n�a

��
. ii) If additionally

assumptions A.7.b), A.8, A.9 and A.10 hold then
p
n (GMR2��) has an

Edgeworth expansion of order s� � 1 uniformly on O" (�0).

Proof: For " > 0, let E ("; �) =
�
! 2 
 : k�n � b (�)k > "

2

	
2 F , then

sup
�2�

kE��n � b (�)k � sup
�2�

E� k�n � b (�)k 1E(";�) +
"

2
:

As B is bounded, due to assumption A.2 and by assumption A.6 there exists
an n� such that sup�2� P�

�
k�n � b (�)k > "

3

�
� "

2M
where M denotes the

diameter of B. Hence

sup
�2�

kE��n � b (�)k � " for all n � n�

and since " is arbitrary

sup
�2�

kE��n � b (�)k = o (1) (2)

Due to the triangle inequality and assumption A.6 we have that for " > 0

sup
��2�

P��

�
sup
�2�

jk�n � E��nk � kb (��)� b (�)kj > "
�

� sup
��2�

P��

�
k�n � b (��)k+ sup

�2�
kE��n � b (�)k > "

�
= o

�
n�a

��
For qn (�) = �n � E��n, q (��; �) = b (��) � b (�) and by assumption A.7.a)
lemma AL.3 applies. Hence for 
 (�) = � due to assumption A.3 lemma AL.1
also applies implying the result.
ii) Given i), we have that �n 2 O� (�) with P�-probability 1 � o

�
n�a

��
that

is locally independent of � for any � > 0. For some � small enough, such that
O� (�) � O"0 (�0) (which exists due to the fact that "0 > ") due to assumption
A.10, we have that condition FOC of the appendix lemmas AL.4 and AL.5 is
satis�ed by the GMR1 estimator with Qn + @E��

0
n

@�
. Furthermore assumption

A.10 and A.9 imply conditions HUB (
 (�) = � hence set � = "0) and RANK
of the same lemma due to the fact that since D2E��n is uniformly bounded
on O"0 (�0), DE��n converges uniformly to Db (�) due to lemma AL.7 and
therefore the rank condition is implied by A.10 for large enough n. Now as
a� > a � 0 we have that a� > 0 and there exists a C2 > 0 locally independent
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of � such that for E� =
n
! 2 
 : k�n � b (�)k > C2 ln

1=2 n
n1=2

o
2 F

sup
�2O"(�0)

kE��n � b (�)k

� sup
�2O"(�0)

E� [k�n � b (�)k 1E� ] + sup
�2O"(�0)

E� [k�n � b (�)k 1E� ]

� M sup
�2O"(�0)

P�

 
k�n � b (�)k > C2

ln1=2 n

n1=2

!
+ C2

ln1=2 n

n1=2
sup

�2O"(�0)
E�1E�

= M sup
�2O"(�0)

P�

 
k�n � b (�)k > C2

ln1=2 n

n1=2

!

+C2
ln1=2 n

n1=2
sup

�2O"(�0)
P�

 
k�n � b (�)k � C2

ln1=2 n

n1=2

!

= o
�
n�a

��
+ C2

ln1=2 n

n1=2
�
1� o

�
n�a

���
= o

�
n�a

��
+ C2

ln1=2 n

n1=2
= O

 
ln1=2 n

n1=2

!
;

where the penultimate line comes from equation 1, above. Hence

sup
�2O"(�0)

kE��n � b (�)k = O
 
ln1=2 n

n1=2

!

and therefore

sup
�2O"(�0)

P�

 
k�n � E��nk > C1

ln1=2 n

n1=2

!

� sup
�2O"(�0)

P�

 
k�n � b (�)k+ kE��n � b (�)k > C1

ln1=2 n

n1=2

!

� sup
�2O"(�0)

P�

 
k�n � b (�)k+O

 
ln1=2 n

n1=2

!
> C1

ln1=2 n

n1=2

!
= o

�
n�a

��
Hence due to A.8 and lemma AL.2 of Arvanitis and Demos [1] there exist
C1 > 0 large enough and locally independent of � for which

sup
�2O"(�0)

P�

 
k�n � E��nk > C1

ln1=2 n

n1=2

!
= o

�
n�a

��
:
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Hence lemma AL.4 applies ensuring that

sup
�2O"(�0)

P�

�p
n kGMR2��k > C ln1=2 n

�
= o

�
n�a

��
for some C > 0 locally independent of �, hence condition UTIGHT of
lemma AL.5 holds. Moreover assumption A.8 along with the fact that the
support of �n � b (�) is uniformly bounded by O3� (0) for any � greater
or equal than the diameter of B, and the fact that

p
n (�n � E��n) ad-

mits a locally uniform Edgeworth expansion of order s� � 1 (see lemma 4.1
of Arvanitis and Demos [1]) imply condition UEDGE of lemma AL.5 for

Mn (�) =
p
n

�
mn (�)

�n � E��n

�
with order s�� 1. Due to assumption A.10 for

any � 2 O" (�0) and any �� su¢ ciently close to �,
@E��

0
n

@�
(��) admits a Taylor

expansion of order s� � 1 around � of the form

@E���
0
n

@�
=

Xs��2

i=0

1

i!
Di@E��

00
n

@�

�
(�� � �)i

�
+

1

(s� � 2)!

�
Ds��2@E�+�

00
n

@�
�Ds��1@E��

00
n

@�

��
(�� � �)s

��1
�

where �+ lies between �� and �. This implies that for �n = GMR2 due to
condition UTIGHT we have that with P�-probability 1 � o

�
n�a

��
locally

independent of �

@E�n�
0
n

@�
=
Xs��2

i=0

1

i!

1

ni=2
Di@E�n�

0
n

@�
(�)
��p

n (�n � �)
�i�

+R�n (�n; �)

whereR�n (�n; �) =
1

(s��2)!
1

n(s
��2)=2

�
Ds��2 @E�+n

�0n

@�
�Ds��1 @E��0n

@�

��
(
p
n (�n � �))s

��2
�
,

and �+n lies between �n and �. Now by assumption A.10, by submultiplica-
tivity, the relation of �+n to �n and condition UTIGHT

sup
�2O"(�0)

P�

0B@









1
(s��2)!

1
n(s

��2)=2

�
Ds��2 @E�+n

�0n

@�
�Ds��1 @E��0n

@�

�
��

(
p
n (�n � �))s

��2
�








 > 
�n
1CA

� sup
�2O"(�0)

P�

 
1

(s� � 2)!
1

n(s��2)=2
sup

�2O"0 (�0)





Ds��1@E��
0
n

@�







�+n � �



pn (�n � �)

s��2 > 
�n
!

� sup
�2O"(�0)

P�

�
M

(s� � 2)!
Cs

�

n(s��1)=2
ln(s

��1)=2 n > 
�n

�
+ o

�
n�a

��
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which is of order o
�
n�a

��
for 
�n =

M
(s��2)!

Cs
�

n(s
��1)=2 ln

(s��1)=2 n = o
�
n�a

��
and

locally independent of �. Analogously, due to assumption A.9 for any � 2
O" (�0) and any �� su¢ ciently close to �, E���n admits a Taylor expansion
of order s� � 1 around � of the form

qn = �n � E���n = �n � E��n �
Xs��1

i=1

1

i!
DiE��n

�
(�� � �)i

�
� 1

(s� � 1)!
�
Ds��1E�+�n �Ds��1E��n

� �
(�� � �)s

�
�

where �+ lies between �� and �. This implies that for �n we have that with
P�-probability 1� o

�
n�a

��
p
n (�n � E�n�n)

=
p
n (�n � E��n)

+
Xs��2

i=0

1

(i+ 1)!

1

ni=2
Di+1E��n

��p
n (�n � �)

�i+1�
+R#n (�n; �)

whereR#n (�n; �) =
1

(s��1)!
1

n(s
��2)=2

�
Ds��1E�+�n �Ds��1E��n

� �
(
p
n (�n � �))s

��1
�
,

and �+n lies between �n and �. Now by the previous for large enough n
@E��

0
n

@�
(�) has full rank for any � 2 O" (�0) and so does the identity matrix in

front of
p
n (�n � E��n), and thereby due to submultiplicativity, the relation

of �+n to �n and condition UTIGHT

sup
�2O"(�0)

P�

 





1

(s��1)!
1

n(s
��2)=2

�
Ds��1E�+�n �Ds��1E��n

�
��

(
p
n (�n � �))s

��1
� 




 > 
#n

!

� sup
�2O"(�0)

P�

 
1

(s��1)!
1

n(s
��2)=2 sup�2O"0 (�0)



Ds��1E��n




�+n � �



�k
p
n (�n � �)ks

��1
> 
#n

!

� sup
�2O"(�0)

P�

�
M

(s� � 1)!
Cs

�

n(s��1)=2
lns

�=2 n > 
#n

�
+ o

�
n�a

��
which is of order o

�
n�a

��
for 
#n = M

(s��1)!
Cs

�

n(s
��1)=2 ln

s�=2 n = o
�
n�a

��
and

locally independent of �. Finally due to lemma AL.6 which applies by as-
sumptions A.8 and A.7 condition EXPAND holds and the result follows by
the same lemma.�
We denote with ki� (z; �) = z�i�1 (z; �) and with IV

�
ki� (z; �)

�
=
R
Rq ki� (z; �)'V (�) (z) dz

where �i�1 (z; �) and V (�) as in assumption A.8.

Assumption A.11 I
V

�
ki� (z; �)

�
is s� continuously di¤erentiable for i =

1; : : : ; s� � 1 over O" (�0).

11



Lemma 2.4 If assumptions A.8, A.9 and A.11 hold for s� > s then for any
sequence �+n for which

sup
�2O"(�0)

P�

�p
n


�+n � �

 > M ln1=2 n

�
= o

�
n�a

��
we have that for any "� < "

sup
�2O"� (�0)

P�
�

pn �E�+n�n � E��n�� An (�)

 > 
n� = o �n�a��

where

An (�) =
Ps

i=1

1

n
i�1
2 i!

Di

 
b (�) +

Xs�i

j=1

I
V

�
kj� (z; �)

�
n
j
2

!�p
n
�
�+n � �

�i�

n = o (n�a) independent of �, using the convention that when s � i = 0,
then

Ps�i
j=1 is empty.

Proof. By assumption A.8, lemma 3.1, below, adding subtracting
p
n

�
b (�) +

Ps
i=1

IV (ki� (z;�))
n
i
2

�
and

p
n

�
b
�
�+n
�
+
Ps

i=1

IV (ki�(z;�
+
n ))

n
i
2

�
, we get

p
n
�
E��n�n � E��n

�
� An (�) =

p
n

�
E��n�n � b

�
�+n
�
�
Ps

i=1

IV (kj�(z;�
+
n ))

n
i
2

�
�
p
n

�
E��n � b (�)�

Ps
i=1

IV (ki� (z;�))
n
i
2

�
+

p
n
�
b
�
�+n
�
� b (�)�

Ps
i=1

1
i!
Dib (�)

��
�+n � �

�i��
+Bn where

Bn =
Ps

i=1

IV (ki�(z;�
+
n ))

n
i�1
2

�
Ps

i=1

IV (ki� (z;�))

n
i�1
2

�
Ps

i=1
1
i!

Ps�i
j=1D

i IV (kj� (z;�))

n
j�1
2

��
�+n � �

�i�
:

Employing the mean value theorem for IV
�
ki�
�
z; �+n

��
, and for �++n such that

�++n � �



 < 

�+n � �

, we get Bn =
=
Ps

i=1

�
1

n
i�1
2

Ps�i
m=1

1
m!
DmIV

�
ki� (z; �)

� ��
�+n � �

�m�� 1
i!

Ps�i
j=1D

i IV (kj� (z;�))

n
j�1
2

��
�+n � �

�i��
+Ps

i=1
1

n
i�1
2

1
(s�i+1)!D

s�i+1IV
�
ki� (z; �)

� ��
�++n � �

�s�i+1�
. Collecting terms we

get:

Bn =
Ps

i=1

1

n
i�1
2

1

(s� i+ 1)!D
s�i+1IV

�
ki� (z; �)

� ��
�++n � �

�s�i+1�
:
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Taking into account that �+n 2 O" (�0) with probability 1 � o
�
n�a

��
and

employing the triangular inequality we have that, for s < s�,

sup
�2O"(�0)

P�
�

pn �E�+n �n � E��n�� An (�)

 > 
n�

� sup
�2O"(�0)

P�

 
sup

�2O"(�0)

p
n






E��n � b (�)�Ps
i=1

IV
�
ki� (z; �)

�
n
i
2






 > 
n
6

!

+
Ps

i=1 sup
�2O"(�0)

P�

�
1

n
i�1
2

kBnk >

n
3s

�
+ sup
�2O"(�0)

P�

�p
n





b ��+n �� b (�)�Ps
i=1

1

i!
Dib (�)

��
�+n � �

�i�



 > 
n
3

�
+ o

�
n�a

��
:

Now we have that

an =
p
n






E��n � b (�)�Ps
i=1

IV
�
ki� (z; �)

�
n
i
2






 = o �n�a�
independent of �, due to lemma 3.1.
Now, due to the continuity of Ds�i+1IV

�
ki� (z; �)

�
, assumption A.11, and

the assumption of the asymptotic behavior of �+n we get

sup
�2O"(�0)

P�

�
1

n
i�1
2

kBnk >

n
3s

�

� sup
�2O"(�0)

P�

 
1

n
i�1
2

1

(s� i+ 1)! sup
�2O"(�0)



Ds�i+1IV
�
ki� (z; �)

�

 

�+n � �

s�i+1 > 
n
3s

!

� sup
�2O"(�0)

P�

 
ln

s�i+1
2 n

n
s
2

1

(s� i+ 1)! sup
�2O"(�0)



Ds�i+1IV
�
ki� (z; �)

�

 > 
n
3s

!
+ o

�
n�a

��
= o

�
n�a

��
provided that 
n � ln

s�i+1
2 n

n
s
2

3s sup�2O"(�0)kDs�i+1IV (ki� (z;�))k
(s�i+1)! .

Furthermore using the same reasoning as above

sup
�2O"(�0)

P�

�p
n





b ��+n �� b (�)�Ps
i=1

1

i!
Dib (�)

�
(��n � �)

i
�



 > 
n

3

�

� sup
�2O"(�0)

P�

 
p
n


�+n � �

s+1 > (s+ 1)!
n

3 sup�2O"(�0) kDs+1b (�)k

!
+ o

�
n�a

��
� sup

�2O"(�0)
P�

 
ln

s+1
2 n

n
s
2

>
(s+ 1)!
n

3 sup�2O"(�0) kDs+1b (�)k

!
+ o

�
n�a

��
= o

�
n�a

��
13



when 
n �
3 sup�2O"(�0)kDs+1b(�)k

(s+1)!
ln
s+1
2 n

n
s
2
. Hence for


n = max

�
3 sup�2O"(�0)kDs+1b(�)k

(s+1)!
ln
s+1
2 n

n
s
2
; 6an;

ln
s�i+1
2 n

n
s
2

3s sup�2O"(�0)kDs�i+1IV (ki� (z;�))k
(s�i+1)! , i = 1; : : : ; s

�
the result follows for large enough n.

Lemma 2.5 Suppose that p = q and assumptions A.1, A.2, A.3, A.4, A.6,
A.7, A.8, A.9 and A.11 hold for s� > s. i) If sup�2O"0 (�0) kD

2E��nk <
M then

p
n (GMR2��) has an Edgeworth expansion of order s uniformly

on O"� (�0) for any "� < ". ii) if �n = b (GMR1) with probability 1 �
o (n�a) uniformly on O" (�0) and �n = EGMR2�n with probability 1� o (n�a)
uniformly on O" (�0) then

p
n (GMR2��) has an Edgeworth expansion of

order s uniformly on O"� (�0) for any "� < ".

Proof. i) Notice that the uniform consistency follow for the GMR1 and
GMR2 as in the �rst parts of lemmas 2.2, 2.3. Assumption A.9 along
with i) imply that for r = 1; 2, sup�2O"(�0) kD

r (E��n � b (�))k < M , which
in turn means that Dr�1 (E��n � b (�)) are uniformly Lipschitz on O" (�0),
and therefore uniformly equicontinuous on the same ball. This implies the
commutativity of the limit, with respect to n and the derivative operator,
uniformly over O" (�0). This along with the second part of assumption
A.9, i.e. rankDb (�) = p for all � in O"0 (�0), and continuity imply that
rankDE��n = p, for all � in O"0 (�0) for n large enough. As now p = q,
by the de�nition of GMR2 we get that �n = EGMR2�n with probability
1 � o

�
n�a

��
uniformly on O" (�0). This implies condition FOC of lemma

AL.5. Furthermore by the second part of lemma 2.2 we have that

sup
�2O"(�0)

P�

�p
n kGMR1��k > M ln1=2 n

�
= o

�
n�a

��
(3)

Hence with probability 1 � o
�
n�a

��
locally independent of �, applying the

mean value theorem we have that

b (GMR1) = b (GMR2) +
@b=
�
�+n
�

@�
(GMR1�GMR2) ;

where �+n is such that


�+n �GMR2

 < kGMR1�GMR2k. It follows that

with P�-probability 1� o
�
n�a

��
locally independent of �

GMR1�GMR2 =
 
@b=
�
�+n
�

@�

!�1
(b (GMR1)� b (GMR2)) :

14



As now p = q, by the de�nition of GMR1 we get that b (GMR1) = �n
with probability 1 � o

�
n�a

��
uniformly on O" (�0). Hence with probability

1� o
�
n�a

��
uniformly on O" (�0)

kGMR1�GMR2k � M k�n � b (GMR2)k
� M (k�n � EGMR2�nk+ kEGMR2�n � b (GMR2)k)

� M kEGMR2�n � b (GMR2)k = O
�
1

n

�
and the last equality is true (as �n has a uniform Edgeworth expansion
on O" (�0), assumption A.8, and apply lemma 3.1). Taking into account
equation 3 we get that, for some C > 0, locally independent of �

sup
�2O"(�0)

P�

�p
n kGMR2��k > C ln1=2 n

�
= o

�
n�a

��
:

This implies condition UTIGHT of lemma AL.5. It also, along with lemmas
2.4 and 3.1, implies that for any "� < "

sup
�2O"� (�0)

P�
�

pn (�n � EGMR2�n)� �n (�)

 > 
n� = o �n�a�

where 
n = o (n
�a) independent of � and

�n (�) =
p
n (�n � E��n)�

Ps�1
i=1

1

n
i
2

IV
�
ki� (z; �)

�
�
Ps

i=1

1

n
i�1
2 i!

Di

 
b (�) +

Xs�i

j=1

IV
�
kj� (z; �)

�
n
j
2

!�p
n (GMR2��)i

�
which validates condition EXPAND lemma AL.5 of for Qn = W j

n = Idp�p.
Moreover assumption A.8 along with the fact that the support of �n � b (�)
is uniformly bounded by O3� (0) for any � greater or equal than the diameter
of B, and lemma 4.1 of Arvanitis and Demos [1] imply condition UEDGE of

the same lemma for Mn (�) =
p
n

�
mn (�)

�n � E��n

�
with order s� � 1. Hence

the conditions of lemma AL.5 are satis�ed and the result follows. ii) follows
the same way as i) except now k�n � EGMR2�nk is zero with probability
1� o

�
n�a

��
independent of �.

Existence of Edgeworth Expansion for theGT Estimator

We �rst consider two cases which link the asymptotic behaviors of the GMR1
and the GT estimators.
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Lemma 2.6 A. Suppose that p = q = l, EGT (cn (�n)) = 0l with probability
1 � o

�
n�a

��
independent of � and E� (cn (�)) = 0l i� � = b (�). i) If the

provisions of lemma 2.2.i) hold then the GT is uniformly consistent for �
with rate o (n�a). ii) If the provisions of lemma 2.2.ii) hold then

p
n (GT��)

has an Edgeworth expansion of order s� uniformly on O" (�0) which coincides
with the one of lemma 2.2. B. Suppose that q = l, cn (�) = qn � � for qn
an appropriate q-dimensional random element and W �

n = W ��
n (P� almost

everywhere for all �). i) If the provisions of lemma 2.3.i) hold then the
GT is uniformly consistent for � with rate o (n�a). ii) If the provisions of
lemma 2.3.ii) or the ones of lemma 2.5 i) or ii) hold then

p
n (GT��) has an

Edgeworth expansion of order s� uniformly on O" (�0) which coincides with
the expansions of lemmas 2.3 or 2.5 i) or ii) respectively.

Proof: A. From the assumptions we have that

EGTcn (�) = 0p i¤ � = b (GT)

hence the GT equivalently satis�es

�n � b (GT) = 0p
which de�nes the GMR1 estimator in these special circumstances. Hence
under these special assumptions we have that GMR1 = GT with probability
1�o

�
n�a

��
independent of �. The rest are trivial consequences of lemma 2.2.

B. Similarly this special assumption implies that �n = qn (P� almost surely
for all �). Hence E�cn (�) j�=�n = E�qn � �n = E��n � �n. This and the
assumed coincidence of the weighting matrices involved along with lemmas
2.3 or 2.5 i) or ii) imply the result.�
In a more general case, due to the de�nition of the particular estimator,

we utilize the following two assumptions concerning the asymptotic behavior
of cn.

Assumption A.12 Let Qn = kcn (�)kWn(�
�
n)
and

kcn (�)� cn (�0)k � �n k� � �0k , for all �; �0 (4)

sup�2�E��n = O (1) and

sup
�2�

P�

�
sup
�2B

kcn (�)� c (�; �)k > "
�
= o

�
n�a

��
;8" > 0 (5)

where c (�; �) is continuous on B and equals zero i� � = b (�) for any �.
Furthermore

sup
��2�

lim sup
n
E�� kcn (�)k2 < +1, for all �: (6)
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Assumption A.13 For ' = (�0; �0)
0, '0 as before and � large enough for

O� ('0) � O"0 (�0)�O"0 (b (�0)), rank
�
limn!1

@E�cn(b(�))
@�0

�
= p, rank

�
limn!1

@E�cn(b(�))
@�0

�
=

q on O"0 (�0), sup'2O�('0)


Ds�+1E�cn (�)



 < M .
Lemma 2.7 i) Under the assumptions A.1, A.2, A.3, A.4, A.6, A.7.a) and
A.12 the GT is uniformly consistent for � with rate o (n�a). ii) If addi-
tionally c (�; �) = E�cn (�) and assumptions A.7.b), A.8 and A.13 hold thenp
n (GT��) has an Edgeworth expansion of order s� uniformly on O" (�0).

Proof: i) By assumption A.12.4, we have that for " > 0

sup
��2�

P��

�
sup
�2�

kE�cn (�n)� E�cn (b (��))k > "
�

� sup
��2�

P��

��
sup
�2�

E��n

�
k�n � b (��)k > "

�
= o

�
n�a

��
and the equality is due to assumption A.6. Moreover due to A.12.5-6 and
uniform integrability we obtain that

sup
�2�

kE�cn (b (��))� c (�; b (��))k = o (1)

These via the triangle inequality imply that

sup
��2�

P��

�
sup
�2�

kE�cn (�n)� c (�; b (��))k > "
�
= o

�
n�a

��
Hence for qn (�) = E�cn (�n), q (�

�; �) = c (�; b (��)) and by assumptions
A.7.a) lemma AL.3 applies. Hence for 
 (�) = � due to assumptions A.3,
A.12 lemma AL.1 also applies proving the result.
ii) Given i), we have that �n 2 O� (�) with P�-probability 1 � o

�
n�a

��
that

is locally independent of � for any � > 0. For some � small enough, such that
O� (�) � O"0 (�0) (which exists due to the fact that "0 > ") due to assumption
A.13, we have that condition FOC of lemma AL.4 (in the Appendix) is
satis�ed by the GT estimator for Qn =

@E�cn(�n)
0

@�
. Furthermore assumption

A.13 implies conditions HUB (
 (�) = � hence set � = "0) and RANK of the
same lemma. Condition TIGHT follows from A.8 lemma AL.2 of Arvanitis
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and Demos [1] and as E�cn (b (�)) = 0 the fact that

sup
�2O"(�0)

P�

 
kE�cn (�n)k > C1

ln1=2 n

n1=2

!

� sup
�2O"(�0)

P�

 
E� kcn (�n)� cn (b (�))k > C1

ln1=2 n

n1=2

!

� sup
�2O"(�0)

P�

 
k�n � b (�)k >

C1
sup�2O"(�0)E� (�n)

ln1=2 n

n1=2

!

imply that there exist C1 > 0 large enough locally independent of � for which
the last term in the previous display is of order o

�
n�a

��
. Hence lemma AL.4

applies ensuring that

sup
�2O"(�0)

P�

�p
n kGT��k > C ln1=2 n

�
= o

�
n�a

��
for some C > 0 independent of �. Hence condition UTIGHT of lemma
AL.5 holds. Moreover assumption A.8 implies condition UEDGE of the
same lemma for Mn (�) =

p
nmn (�). Due to assumption A.13 for any

' =

�
�
b (�)

�
for any � 2 O"0 (�0) and any '� =

�
��
'�

�
su¢ ciently close

to ', @E��cn(��)
0

@�
admits a Taylor expansion of order s� � 1 around ' of the

form

@E��cn (��)
0

@�

=
@E��cn (b (��))

0

@�

+

s��1X
i1+i2=1

1

i1!i2!
Di1;i2

�
@E�cn (b (�))

0

@�

��
(�� � b (�))

i1 ; (�� � �)i2
�

+
1

(s� � 1)!

 
Ds��1

 
@E�+cn

�
�+
�0

@�

!
�Ds��1

�
@E�cn (b (�))

0

@�

�!
�
('� � ')

s��1
�

where '+ =
�
�+

�+

�
lies between '� and '. This implies that for �n = GT

due to conditions UTIGHT and EXPAND we have that with P�-probability
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1� o
�
n�a

��
that is independent of �

@E�ncn (�n)
0

@�

=
@E�cn (b (�))

0

@�

+

s��1X
i1+i2=1

1

i1!i2!
Di1;i2

�
@E�cn (b (�))

0

@�

��
(�n � b (�))

i1 ; (�n � �)i2
�
+R�n (�n; �)

whereR�n (�n; �) =
1

(s��1)!

�
Ds��1

�
@E

�+n
cn(�+n )

0

@�

�
�Ds��1

�
@E�cn(b(�))

0

@�

���
('n � ')

s��1
�
,

and �+n , �
+
n lie between �n and � and �n and b (�) respectively. Due to as-

sumptions A.13, A.8, lemma AL.2 of Arvanitis and Demos [1] and by sub-
multiplicativity, the relation of �+n to �n and condition UTIGHT

sup
�2O"(�0)

P�

0B@









1
(s��1)!

1
n(s

��1)=2

�
Ds��1

�
@E

�+n
cn(�+n )

0

@�

�
�Ds��1

�
@E�cn(b(�))

0

@�

��
��

('n � ')
s��1

�







 > 
�n

1CA
� sup

�2O"(�0)
P�

0@ 2s
��1

(s��1)!
1

n(s
��1)=2 sup'2O�('0)




Ds� @E�cn(�)
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independent of �. Furthermore, due to the same assumption and the fact
that c (�; b (�)) = 0 we have that
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where �+ lies between �� and �. Hence with P�-probability 1�o
�
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p
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and independent of �. Then due to assumption A.13 and the fact that
E�cn (�) = c (�; �),

@E�cn(b(�))
0

@�
, @E�cn(b(�))

0

@�
are of full rank for any � 2 O" (�0).

Finally due to lemma AL.6 which applies by assumptions A.8 and A.7 con-
dition EXPAND holds and the result follows by the same lemma.�

3 Validity of 1st and 2nd Moment Expansions
Lemma 3.1 Suppose that K is a m-linear real function on Rw, the support
of an Rw valued random element (say) �n is bounded by Opn� (0) for some
� > 0, and �n admits an Edgeworth expansion of order s

� = 2a+m+1 then����Z
Rq
K (zm)

�
dPn �

�
1 +

Xs�1

i=1

�i (z)

n
i
2

�
'V (z) dz

����� = o �n�a�
where Pn, and

�
1 +

Xs

i=1

�i(z)

n
i
2

�
'V (z) denote the distribution of �n and the

density of the analogous Edgeworth measure of order s = 2a+1 respectively.
Moreover if Pn depends on �, and �i (z) are continuous on O" (�0) for any z,
V is continuous on O" (�0) and the expansion is uniformly valid on O" (�0),
the approximation holds uniformly on O" (�0).
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Proof. Let Qn denote the measure with density
�
1 +

Xs�1

i=1

�i(z)

n
i
2

�
'V (z).

Since 2a + m + 1 > 2a + 1, we have that supA2BC jPn (A)�Qn (A)j =
O (n�a��), where � > 0. Hence
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�����
Z
RqnOc(lnn)� (0)

K (xm) dQn

�����
� naM (lnn)m�

Z
Oc(lnn)� (0)

jdPn � dQnj+ na
Z
RqnOc(lnn)� (0)

jK (xm)j (dPn + jdQnj)

� M (lnn)m� sup
A2BC

na jPn (A)�Qn (A)j+ na
Z
RqnOc(lnn)� (0)

jK (xm)j (dPn + jdQnj)

Due to the hypothesis for the support of Pn
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Hence
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Z
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jK (xm)j jdQnj :

As supA2BC n
a jPn (A)�Qn (A)j = O (n��) for � > 0, we have that

(lnn)2� sup
A2BC

na jPn (A)�Qn (A)j = o (1)

and na+
m
2 �mqmP (k�nk > c (lnn)

�) = o (1) if � � 1
2
and c �

p
2a+m+ 1

by lemma 2 of Magdalinos [5]. Finally na
R
RqnOc(lnn)� (0)

jK (xm)j jdQnj = o (1)
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due to Gradshteyn and Ryzhik [4] formula 8.357. For the uniform case �rst
notice that

sup
�2O"(�0)

P�

�
k�nk > M ln1=2 n

�
= o

�
n�a

��
This is due to the fact that the set

n
x 2 Rq : kxk �M ln1=2 n

o
has boundary

of Lebesgue measure zero and

sup
�2O"(�0)

Z
kxk>M ln1=2 n

�
1 +

Xs�

i=1

1

n
i
2

j�i (x; �)j
�
'V (�) (x) dx

� sup
�2O"(�0)

Z
kzk> M

�max(�)
ln1=2 n

�
1 +

Xs�

i=1

1

n
i
2

���i �V 1=2 (�) z; �����' (z) dz
�

Z
kzk> M

�max(��) ln
1=2 n

�
1 +

Xs�

i=1

1

n
i
2

���i �V 1=2 (��i ) z; ��i ����' (x) dx
where �max (�) denotes the maximum absolute eigenvalue of V 1=2 (�) and �

�
i 2

O" (�0) exist for all i = 1; : : : ; s� due to the continuity and are independent of
z due to the positivity and the fact that �i are polynomials in x, and �

� exists
due to continuity of V and the compactness of O" (�0). For M � s��max (��)
the result follows from lemma 2 of Magdalinos [5]. The rest follows in the
same spirit of the �rst part.

Remark R.1 Notice that in the case that the support of �n is not bounded
the previous result would hold for s� = 2a+m+ 2. This follows easily from
the previous proof by letting � = ln� n and by the fact that the Edgeworth
approximation is uniform w.r.t. the Borel algebra.

In the following we suppress the dependence on � and z where possible for
notational convenience. For the rest of this section we denote by b = b (�), b;j
is the jth element of b,W � = E�W

� (�),W �
j;j0 is the (j; j

0) element ofW �, and
analogously forW ��. Moreover, C = @b0

@�
W � @b

@�0 , ki� (z; �) = pr1;q (z)�i�1 (z; �),
ki�� (z; �) = prq+1;p+q (z)�i�1 (z; �), kiw� (z; �) is the matrix containing the
elements prp+q+1;q2 (z)�i�1 (z; �) and kiw� (z; �) is the matrix containing the
elements of prq2+1;2q2 (z)�i�1 (z; �) at the appropriate orders.

3.1 Valid 2nd order Bias approximation for the Indirect estimators
GMR1 Estimator
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Lemma 3.2 Let �n denote the GMR1 estimator. If assumptions A.1, A.2,
A.3, A.4, A.6 and A.7, A.8, A.9 and A.10 hold with s� � 3 then uniformly
over � 2 O" (�0) 
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where C = @b0

@�
W � @b

@�0 .

Proof. Our assumptions and lemmas 2.2, 3.1 ensure the validity of the mean
approximation. Then from theorem 3.1 of Arvanitis and Demos [1] we have
that the relevant moment approximation can be obtained if

p
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is approximated by

p
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Therefore an appropriate approximation for
p
n (�n � �) is obtained by in-
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Integrating with respect to
�
1 + �1(z;�)p

n

�
'V �(�) (z), noting that k1� (z; �) = z,

k2� (z; �) = z�1 (z; �) we obtain that
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where the dependences of W � (�) and b (�) on � have been suppressed.
It follows trivially.

Corollary 1 When W � is independent of x and � and b (�) is a¢ ne then

�1 (�) = C�1
@b0
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W �IV
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�
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GMR2 Estimator

Lemma 3.3 Let �n denote the GMR2 estimator. If assumptions A.1, A.2,
A.3, A.4, A.6 and A.7, A.8, A.9, A.10 and A.11 hold for s� � 4 then
uniformly over O"� (�0) for any "� < "
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Proof. The assumptions and lemmas 2.2, 3.1 ensure the validity of
the mean approximation uniformly over O"� (�0). Furthermore from lemma
AL.7 we get that sup�2O"� (�0)
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(recall that I'V �
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= 0). Then from theorem 3.1 of Arvanitis and

Demos [1] we get that the relevant moment approximation can be obtained
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Integrating with respect to
�
1 + �1(z;�)p

n

�
'V �(�) (z), noting that k1� (z; �) = z,

k2� (z; �) = z�1 (z; �) we obtain that



E�pn (�n � �)� �2 (�)p
n





 = o�n� 1
2

�
where

�2 (�) = �1
2
C�1@b

0

@�
W �I'V �

 �
k01�W

� @b

@�0
C�1 @bj

@�@�0
C�1@b

0

@�
W �k1�

�
j=1;:::;q

!

+C�1I'V �

0@24
h
k01�W

� @b
@�0C

�1 @2b0

@�@�j

i
j=1;:::;p

W �

+@b0

@�
k1w� +

@b0

@�

h
@

@�=
W �
j;j0k1��

i
j;j0=1;:::;q

35�Idq � C�1@b0
@�
W �
�
k1�

1A ;
where the dependences ofW � (�) and b (�) on � have been suppressed. Taking
into account the expression of �1 (�) in lemma 3.2 we get the result.
The following corollary is trivial and establishes general conditions under

which the GMR2 estimator is second order unbiased.

Corollary 2 When W � is independent of x and � and b (�) is a¢ ne then
�2 (�) = 0p.

GT Estimator Denoting withD = @b0
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lowing lemma.

Lemma 3.4 Using A.12 suppose that E�cn (�) = c (�; �). Furthermore let
A.1, A.2, A.3, A.4, A.6, A.7, A.8, A.13 hold for s� � 3, then uniformly on
O" (�0) 
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Proof: The assumptions and lemmas 2.2, 3.1 ensure the validity of the
mean approximation. Then theorem 3.1 of Arvanitis and Demos implies that
the relevant moment approximation can be obtained as follows. Due to the
fact that c (�; b (�)) = 0l we obtain, by the implicit function theorem, that
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Lemma 3.5 i). Under the assumptions in lemma 2.6.A and for s� � 3 we
have that �1 (�) = �3 (�) uniformly over O" (�0). ii). Under the assumptions
in lemma 2.6.B and for s� � 4 we have that �2 (�) = �3 (�) uniformly over
O" (�0).

Proof of Lemma 3.5. i). The result follows from lemmas 2.6.A and 3.2.
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. ii). The result

follows from lemmas 2.6.B and 3.3.

3.2 MSE 2nd order Approximations for the Indirect Estimators
Lemma 3.6 Let �n denote either the GMR1, or the GMR2 estimator. If
W � (x; �) is independent of x and �, b is a¢ ne and assumptions A.1, A.2,
A.3, A.4, A.6 and A.7, A.8, A.9 hold for s� � 5 then, for any "� < "
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Proof. For both estimators we have that due to lemma 3.1, theorem 3.1 of
Arvanitis and Demos [1] along with the approximations employed in lemmas
3.2, 3.3
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where k1� (z; �) = z, k2� (z; �) = z�1 (z; �). Keeping the relevant order terms,
the result follows.

Lemma 3.7 Let �n denote the GT estimator. If W �� (x; �) is independent
of x and �, b is a¢ ne, E�cn (�) = c (�; �) and assumptions A.1, A.2, A.3,
A.4, A.6, A.7, A.8, and A.13 hold for s� � 4 then, uniformly on O" (�0)
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Proof. Again we have that due to lemma 3.1, theorem 3.1 of Arvanitis and
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get: E�
�
n (�n � �) (�n � �)0

�
=
R
Rq D

�1E @c(�;b)
@�0 k1�k

0
1�

�
D�1E @c(�;b)

@�0

�0 �
1 + �1(z;�)p

n

�
'V (z) dz

and taking into account that k1� (z; �) = z, k2� (z; �) = z�1 (z; �) and thatR
Rp D

�1E @c(�;b)
@�0 k1�k

0
1�

�
D�1E @c(�;b)

@�0

�0
'V (z) dz = D�1E

@c(�;b)
@�0 V (�)

�
D�1E @c(�;b)

@�0

�0
we get the result.

4 Recursive GMR2
Let �(0n denote any estimator of �.

De�nition D.5 Let � 2 N, the recursive � � GMR2 estimator (denoted by
�(�n ) is de�ned in the following steps:

1. �(1n = argmin�



�(0n � E��(0n 


,

2. for � > 1 �(�n = argmin�



�(��1n � E��(��1n




.
Using the results of the previous section, we are now able to prove the

following lemma.

Lemma 4.1 Suppose that assumptions A.6, A.8, A.11 hold for �(0n for s
� �

2�+4. Moreover suppose that E� sup�2O"(�0) knsnk
2 < +1 and E� sup�2O"(�0)



nHn



 <
+1 for all � 2 O" (�0) and

p
nsn (�) admits a locally uniform Edgeworth ex-

pansion of order 6. Then the � � GMR2 estimator is of order s = 2� + 1
unbiased and has the same MSE with the (� � 1) � GMR2, up to 2� order,
uniformly over O"� (�0) for any "� < ".

Proof. First notice that in any step of the procedure the binding function
is the identity. Next the o

�
n�a

��
uniform consistency of �(0n ensures the

analogous for any step of the recursion. Then validity of the Edgeworth
expansion for

p
nsn (�) along with lemma 3.1 and remark R.1 imply that

sup
�2O"(�0)

E


nsn (�) s0n (�) + EHn (�)



2 = O (1)
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and since by the same lemma sup�2O"(�0)E



��(0n � ��


2 = O � 1n� andE� sup�2O"(�0) knsnk2 <

+1 and E� sup�2O"(�0)


nHn



 < +1 we have that sup�2O"(�0)



D2E��

(1
n




 <
M . Hence lemma 2.5 applies and accordingly �(1n admits a locally uniform
Edgeworth expansion of order s�. Given this the exact same reasoning im-
plies the same result for �(hn for any h. Moreover assumption A.11 follows
for the expansions in every step of the procedure due to the previous. The
proof for the moment approximations for the case h = 1 follows easily. Using
induction, let us assume that the result holds for some h, i.e. assume that
the appropriate expression for

p
n
�
�(hn � �

�
is given by:

E�
p
n
�
�(hn � �

�
=

1

n
2h+1
2

IV (k2h+2) +
1

n
2h+2
2

IV (k2h+3) + o
�
n�

2h+2
2

�
:

uniformly over O" (�0). Hence for � 2 O" (�0), by lemma 2.4 it follows that

p
n
�
E
�
(h+1
n
�(hn � E��(hn

�
�

0@Idp+ 1

n
2h+2
2

@IV
�
k
=
2h+2

�
@�

1Apn��(h+1n � �
�

is bounded by a real sequence of order o
�
n�

2h+3
2

�
that is independent of

�, with P�-probability 1 � o
�
n�

2h+3
2

�
independent of �. The h + 1st-step

GMR2 estimator satis�es with P�-probability 1� o
�
n�

2h+3
2

�
independent of

�, �(hn = E�(h+1n
�(hn . Hence lemma 3.1 and Theorem 3.1 of Arvanitis and Demos

[1] imply that the required approximation would be given by the integration
of the Edgeworth density in the hth step of the following approximation

p
n
�
�(hn � �

�
�
�

1

n
2h+1
2

IV (k2h+2) +
1

n
2h+2
2

IV (k2h+3)
�

This integration gives

1

n
2h+1
2

IV (k2h+2) +
1

n
2h+2
2

IV (k2h+3)

�
�

1

n
2h+1
2

IV (k2h+2) +
1

n
2h+2
2

IV (k2h+3)
�
+ o

�
n�

2h+2
2

�
as
R
Rp

�
1 +

P2h+2
i=1

�i(z;�)

ni=2

�
'V (�) (z) dz = 1 + o

�
n�

2h+2
2

�
due to the validity

of the Edgeworth approximation of the distribution of
p
n
�
�(hn � �

�
and the

result follows. For the MSE approximation the result follows analogously, by

simply noticing that
�
Idp+

1

n
2h+2
2

@IV
�
k
=
2h+2

�
@�

��1
= Idp+o (1).
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5 Examples and Monte Carlo Experiments
In this Appendix we present an analytic proof the GARCH (1; 1) example
only.

5.1 The GARCH(1,1) Case
Consider the set of stationary ergodic and covariance stationary processes
de�ned by the recursion

y2j = "2jhj

hj = �1 (1� �2 � �3) +
�
�2"

2
j�1 + �3

�
hj�1

where the ("j) are iid, E"0 = 0, E"20 = 1, E"
28
0 < +1 the distribution of "0

admits a positive continuous density and � = (�1; �2; �3)
0 2 � =

h
�
!
; �!

i
�h

�
�
; ��

i
�
h
�
�
; ��

i
where �

!
; �
�
; �
�
> 0 and for any � 2 �, E (�2"20 + �3)

14
<

1.
Let

b (�) =

�
�1;
�2 (1� (�2 + �3) �3)
1� 2�2�3 � �23

; �2 + �3

�0
and for some compact B � b (�) and cn (�) =

��
y2; b�1; c�2c�1�� ��0 de�ne

�n = argmin
�2B

1

2
kcn (�)k2

where y2 = 1
n

Pn
j=1 y

2
j , b�i = 1

n

Pn
j=1(y2t y2t�i)�(y2)

2

1
n

Pn
j=1(y4t )�(y2)

2 . Furthermore de�ne

GMR1 = argmin
�2�

1

2
k�n � b (�)k

2 :

Now employing the GMR2 estimator, treating the GMR1 as an auxiliary
one, we get the 1 � GMR2 estimator. Again, the E� (GMR1) needs to be
evaluated.

Proposition 4 If the distribution of "0 admits a positive and continuous
density then �n and GMR1 admit 4

th order valid Edgeworth expansions, uni-
formly over �. Furthermore if the distribution of "0 is standard normal, then
GMR2, 1�GMR2 and GT admit 4th order valid Edgeworth expansions, uni-
formly over any compact subset of �.
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Proof: For any � 2 � let Xj (�) =
�
y2j y4j y2j y

2
j�1 y2j y

2
j�2

�0
, and

Sn (�) =
1p
n

Pn
i=1 (Xi (�)� EX0 (�)). Then as E (�2"20 + �3)

14
< 1, the

monotonicity of h w.r.t. � and a dominated convergence argument imply
that E

�
ymj (�)

�
exists and is continuous on � for any m = 1; : : : ; 24. There-

fore sup�2�E kX0 (�)k7 < +1 establishing A.2-M in Arvanitis and Demos
[1]. This also implies that if the formal Edgeworth expansion is valid, the
polynomials of its density are equicontinuous functions of these moments and
the covariance matrix is continuous on � and positive de�nite. The valid-
ity of the the formal Edgeworth expansion follows from the veri�cation of
conditions A.2-WD, A.3-CPD and A.3-NDD in Arvanitis and Demos [1] (for
details see proposition 1 in Arvanitis and Demos [1]).

Let us de�ne the function fact that f (x) =
�
x1;

x3�x21
x2�x21

;
x4�x21
x2�x21

�
which is

continuous. A 4th order Taylor expansion of f -which is independent of �-
around E (X0 (�)) of gives

p
n

��
y2; b�1; b�2b�1

�0
� b0 (�)

�
=
X3

i=0

1

ni=2
D(i+1)f (E (X0 (�))) (Sn (�))

i+1+Rn (�)

where

Rn (�) =
1

n3=2
�
D4f

�
R+n (�)

�
(Sn (�))

4 �D4f (E (X0 (�))) (Sn (�))
4�

R+n (�) lies between
1
n

Pn
j=1Xj (�) andE (X0 (�)) with probability 1�o

�
n�

3
2

�
that does not depend on �. Due to the continuity of D4f on some compact
neighborhood of E (X0 (�)) we have that

kRn (�)k �
kR+n (�)k kSn (�)k

4

n3=2

Hence the de�nition of R+n (�), along with the fact that Sn (�) has a valid
Edgeworth expansion uniformly on � proposition, and lemmas AL.2 and 3.3
in Arvanitis and Demos [1] imply that the result will hold ifX3

i=0

1

ni=2
D(i+1)f (E (X0 (�))) (Sn (�))

i+1

admits the relevant Edgeworth expansion. But this holds due to the fact that
Df (E (X0 (�))) has rank 3 for any �. Hence by theorem 3.1 in Arvanitis and

Demos [1] it follow that
p
n
��
y2; b�1; c�2c�1�� b (�)� � b0 (�) admits a locally

uniform Edgeworth expansion of order 4. As now �n =
�
y2; b�1; c�2c�1� with
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probability 1 � o
�
n�

s�2
2

�
that does not locally depend on �, by lemma 3.3

in Arvanitis and Demos [1] we get
p
n (�n � b (�)) admits a locally uniform

Edgeworth expansion of order 4 with Edgeworth polynomials that are, locally
on �, equicontinuous functions.
Let us call GMR1 by �n. Initially observe that due to the �rst part, for

some �� =
h
��
!
; ��!

i
�
h
��
�
; ���

i
�
h
��
�
; ���

i
where 0 < ��

m
< �

m
; ��m > �m for

m = !; �; �, such that Int (�) � �� � �0

sup
�2O(�0;�)

P
�
�n (�) 2 O (�0; ��)

�
= 1� o

�
n�

s�2
2

�
and it is easy to see that @b

@�0 has full rank for any � in O (�0; �
�), hence

with probability 1� o
�
n�

3
2

�
that does not locally depend on �, �n satis�es

�n = b (�n). The mean value theorem along with the constant full rank and
continuity of @b

@�0 on �
0 imply that for some c > 0 independent of �

sup
�2O(�0;�)

P
�p
n k�n � �k � c

p
n k�n � b (�)k

�
= 1� o

�
n�

3
2

�
which along with lemma AL.2 in Arvanitis and Demos [1] imply that for
some C� > 0 independent of �

sup
�2O(�0;�)

P
�p
n k�n � �k > C� ln1=2 n

�
= o

�
n�

s�2
2

�
A Taylor expansion of b (�n) around b (�) of order 4 implies that

03�1 =
p
n (�n � b (�)) +

p
n
X3

i=0

1

ni=2
D(i+1)b (�)

�p
n (�n � �)

�i+1
+Rn (�)

where

Rn (�) =
1

n3=2

�
D4b

�
�+n
� �p

n (�n � �)
�4 �D4b (�)

�p
n (�n � �)

�4�
�+n lies between �n and � with probability 1� o

�
n�

3
2

�
that does not depend

on �. Due to the continuity of D4b (�) on some compact neighborhood of �
we have that

kRn (�)k �


�+n � �

 kpn (�n � �)k4

n3=2

Hence due to the de�nition of �+n , the fact that �n is uniformly tight, the
uniform expansion of �n and the constant full rank of the Jacobian of b and
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application of theorem 3.2 in Arvanitis and Demos [1] delivers the result for
�n.
Let us now call GMR2 as ��n. Notice �rst that uniform consistency of �n

to b (�) along with the boundeness of � imply by uniform integrability that

sup
�2�

jE��n � b (�)j = o (1) (7)

hence for any " > 0

sup
��2�

P

�
sup
�2�

jj�n � E�n (�)j � jb (��)� b (�)jj > "
�

� sup
��2�

P (j�n � b (��)j+ o (1) > ") = o
�
n�

3
2

�
due to the analogous consistency of �n. Hence

sup
��2�

P (��n 2 O (��; ") \�) = 1� o
�
n�

3
2

�
for any " > 0. Then from lemma AL.9 and lemma 2.5 we obtain that

sup
��2�00

P
�p
n j��n � �j > C ln1=2 n

�
= o

�
n�

3
2

�
(8)

for some appropriate C > 0. Now by recursive examination it is easy to see
that Ehm0 (�) is 4 times continuously di¤erentiable for any � in �

00 for all
m = 1; : : : ; 5. This along the analogous di¤erentiability of f imply that the
�i there are also 4 times continuously di¤erentiable for any � in �00 for any
z 2 R. Then dominated convergence implies the same for I

V
(ki (z; �)) for

all i = 1; : : : ; 3. Then lemma 2.4 along with lemma AL.9 imply that
@E��n (�n)

@�

converges to @b(�)
@�0 for any � in �

00 with probability 1� o
�
n�

3
2

�
independent

of �, hence with the same probability ��n satis�es �n = E��n�n. Hence with

probability 1� o
�
n�

3
2

�
independent of �, ��n satis�es

0 =
p
n (�n � E���n) + An (�) +Rn (�)

where sup�2�00 P (kRn (�)k > o (n�1)) = o
�
n�3=2

�
. The result follows from 8,

proposition AL.8, lemma AL.2 and theorem 3.2 in Arvanitis and Demos [1].
Notice that by the de�nition of cn (�) we have that E� (cn (�n)) = E��n��n,
i.e. GT = GMR2.
Finally, the case of 1�GMR2 follows in complete analogy to the previous

by simply replacing in the previous proof any invocation to f with b�1 (') =�
'1;

1�'23�
q
(1�(2'2�'3)2)(1�'23)
2('2�'3)

;
�(1�2'2'3+'23)+

q
(1�(2'2�'3)2)(1�'23)

2('2�'3)

�
and of b

with the identity. �
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Appendix-General Proofs
The following are a collection of helpful results that are frequently used in
the proofs of the main results.

Lemma AL.1 Suppose that:
-UUC

sup
�2�

P�

�
sup
�2B

jcn (�)� c (�; �)j > "
�
= o

�
n�a
�
; 8" > 0

-AB c (�; �) is jointly continuous and 
 (�) = argmin�2B c (�; �), then

sup
�2�

P� (k�n � 
 (�)k > ") = o
�
n�a
�
; 8" > 0

where �n 2 argmin�2B cn (�).

Proof. For " > 0 independent of �, and for any � for which

k� � 
 (�)k > "

there must exist a � > 0 such that

c (�; �)� c (�; 
 (�)) > �

due to the compactness of B the continuity of c (�; �) and the uniqueness of
b (�) as a minimizer of c (�; �) for any �. The compactness of ��B and the
joint continuity of c implies that it can be chosen independent of �. Suppose
that this is not the case which implies that inf�2O"(�0) � = 0. Then there
exists a sequence �m in � for which, for any " > 0 there exists an m (") such
that c (�m; �) � c (�m; 
 (�)) < " for all m � m ("). Due to compactness �m
can be chosen convergent, say to ��. Then due to the joint continuity of c
and the continuity of b we have that c (��; �n) � c (��; 
 (��)) = 0 which is
impossible if � 6= 
 (��) due to the property of 
. Hence

sup
�2�

P� (k�n � 
 (�)k > ")

� sup
�2�

P� (jc (�; �n)� c (�; 
 (�))j > �)

� sup
�2�

P�

�
sup
�2B

jcn (�)� c (�; �)j >
�

2

�
= o

�
n�a

��
which implies the result.
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Lemma AL.2 Let assumptions A.7.a) and A.6 hold. Then for j = �; ��

sup
�2�

P�
�

W j

n (�
�
n)� E�W j (�)



 > "� = o �n�a�� ;8" > 0
Furthermore, there exists K > 0 for which

sup
�2�

P�
�

W j

n (�
�
n)


 > K� = o �n�a��

Proof. Assumptions A.6, A.7a) and the triangle inequality imply that for
any " > 0

sup
�2�

P�
�

W j

n (�
�
n)� E�W j (�)



 > "� (9)

� sup
�2�

P�

�

W j
n (�

�
n)� E�W j (��n)



 > "

2

�
+ sup

�2�
P�

�

E�W j (��n)� E�W j (�)


 > "

2

�
� o

�
n�a

��
+ sup

�2�
P�

�

E�W j (��n)� E�W j (�)


 > "

2

�
by assumption A.7.a)

� o
�
n�a

��
+ sup

�2�
P�

�
�� (�) k��n � �k >

"

2

�
by assumption A.7.a)

= o
�
n�a

��
by assumption A.6

due to the fact that sup�2� �
j (�) < +1. Now for K > sup�2� kE�W j (�)k >

0 which exists due to assumption A.7.a) and " = K � sup�2� kE�W j (�)kwe
have that

sup
�2�

P�
�

W j

n (�
�
n)


 > K� = sup

�2�
P�
�

W j

n (�
�
n)


 > "+ 

E�W j (�)



�
= sup

�2�
P�
�

W j

n (�
�
n)


� 

E�W j (�)



 > "�
� sup

�2�
P�
�

W j

n (�
�
n)� E�W j (�)



 > "�
= o

�
n�a

��
:

Lemma AL.3 Suppose that

cn (�) =

q
q0n (�)W

j
n (�

�
n) qn (�)

for some appropriate random element qn where W j
n, �

�
n satisfy assumptions

A.7.a), A.6 and for q an appropriate jointly continuous function on ��B

sup
�2�

P�
�
sup�2B kqn (�)� q (�; �)k > "

�
= o

�
n�a

��
;8" > 0

Then AL.1.UUC holds for c (�; �) =
p
q0 (�; �)E�W j (�) q (�; �) which is

jointly continuous.
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Proof. Due to the triangle inequality the submultiplicativity and the monotonic-
ity of the square root, we have pointwise that

jcn (�)� c (�; �)j

�
����cn (�)�qq0 (�; �)W j

n (�
�
n) q (�; �)� c (�; �)

����
� kq0n (�)� q (�; �)kW j

n(�
�
n)
+
q��q0 (�; �) �W j

n (�
�
n)� E�W j (�)

�
q (�; �)

��
� kq0n (�)� q (�; �)kW j

n(�
�
n)
+ kq0 (�; �)k

q

W j
n (�

�
n)� E�W j (�)




� kq0n (�)� q (�; �)k

q

W j
n (�

�
n)


+ kq (�; �)kq

W j

n (�
�
n)� E�W j (�)




therefore

sup
�2�

P�
�
sup�2B kcn (�)� c (�; �)k > "

�
� sup

�2�
P�

�
sup�2B kq0n (�)� q (�; �)k

q

W j
n (�

�
n)


 > "

2

�
+sup
�2�

P�

�
sup(�;�)2��B kq (�; �)k

q

W j
n (�

�
n)� E�W j (�)



 > "

2

�
Now continuity of q and compactness of��B imply that sup(�;�)2��B kq (�; �)k <
M . Furthermore, for c =

p
K and K as in lemma AL.2, that applies due

to assumptions A.7.a), A.6 we have that the right hand side of the previous
inequality is bounded by

sup
�2�

P�

�
sup�2B kq0n (�)� q (�; �)k >

"

2c

�
+sup
�2�

P�

�

W j
n (�

�
n)� E�W j (�)



 >r "

2M

�
and AL.1.UUC follows due to the hypotheses and lemma AL.2. The joint
continuity follows from the hypothesis for q and the the fact that E�W j (�)
is continuous due to A.7.a).

Lemma AL.4 Suppose W j
n, �

�
n satisfy assumptions A.7, A.6, �n and 
 (�)

are as in lemma AL.1, 
 is continuous on O" (�0) and that:
-FOC �n satis�es

@q0n (�n)

@�
W j
n (�

�
n) qn (�n) = 0

with P�-probability 1� o
�
n�a

��
that is independent of �,

-HUB for some �;M > 0 independent of � such that 

�
O" (�0)

�
� O� (
 (�0))
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and for all i, sup�2O"(�0) P�
�
sup�2O�(
(�0))




@2q0n (�n)@�@�i




 > M� = o �n�a��,
-RANK for any � 2 O� (
 (�0)),

@qn(�)
@�0 is of full rank with P�-probability

1� o
�
n�a

��
that is independent of � and,

-TIGHT for some C > 0 independent of �, sup�2O"(�0) P�
�p
n kqn (
 (�))k > C ln1=2 n

�
=

o
�
n�a

��
, then

sup
�2O"(�0)

P�

�p
n k�n � 
 (�)k > C+ ln1=2 n

�
= o

�
n�a

��
for some C+ > 0 independent of �.

Proof. Due to AL.4.HUB-RANK, A.7 and the mean value theorem we have
that with P�-probability 1� o

�
n�a

��
that is independent of �

@q0n (b (�))

@�
W j
n (�

�
n)
p
nqn (
 (�)) + An

p
n k�n � 
 (�)k = 0

with

An =

"
@2q0n

�
�+n
�

@�@�i
W j
n (�

�
n) qn

�
�+n
�#

i

+
@q0n

�
�+n
�

@�
W j
n (�

�
n)
@qn

�
�+n
�

@�0

where �+n lies between �n and 
 (�). We have that due to submultiplicativity



@q0n (
 (�))@�
W j
n (�

�
n)
p
nqn (
 (�))






�





@q0n (
 (�))@�







W j
n (�

�
n)


pn kqn (
 (�))k

and due to AL.4.HUB we have that @q
0
n(
(�))
@�

is asymptotically equi-Lipschitz
and therefore there exists some constant m� > 0, independent of � for which

sup
�2O"(�0)

P�

 
sup

�2O"(�0)





@q0n (
 (�))@�





 > m�

!
= o

�
n�a

��
furthermore assumptions A.7, A.6 along with lemma AL.2 imply that there
exists K > 0 independent of � for which

sup
�2O"(�0)

P�
�

W j

n (�
�
n)


 > K� = o �n�a��
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hence due to AL.4.TIGHT

sup
�2O"(�0)

P�

�



@q0n (b (�))@�
W j
n (�

�
n)
p
nqn (
 (�))





 > C� ln1=2 n� = o �n�a��
for any C� � C

m�K which is obviously independent of �. Furthermore, due
to AL.4.HUB and the mean value theorem with P�-probability 1� o

�
n�a

��
that is independent of �

qn
�
�+n
�
= qn (
 (�)) +

@q0n
�
�++n

�
@�

�
�+n � b (�)

�
where �++n lies between �+n and 
 (�). As before due to the de�nitions of
�+n ; �

++
n and due to AL.4.TIGHT

sup
�2O"(�0)

P�

 




@q0n
�
�++n

�
@�






 > m�

!
= o

�
n�a

��
;

sup
�2O"(�0)

P�
�

�+n � 
 (�)

 > "� = o

�
n�a

��
for any " > 0

and due to AL.4.TIGHT

sup
�2O"(�0)

P�
�

qn ��+n �

 > "� = o �n�a�� ;8" > 0

which furthermore along with AL.4.HUB and lemma AL.2 imply that

sup
�2O"(�0)

P�

 





"
@2q0n

�
�+n
�

@�@�i
W j
n (�

�
n) qn

�
�+n
�#

i






 > "
!
= o

�
n�a

��
;8" > 0

Also, AL.4.RANK via the Weierstrass theorem which implies that with P�-
probability 1 � o

�
n�a

��
that is independent of �, inf�2O�(b(�)) rank

@q0n(�)
@�

is full. A.7 imply that, with P�-probability 1 � o
�
n�a

��
that is indepen-

dent of � sup�2O"(�0) P�
�
�minn < k

�
= o

�
n�a

��
for some k > 0 indepen-

dent of �, where �minn denotes the smallest absolute eigenvalue of W j
n (�

�
n).

These imply that with P�-probability 1 � o
�
n�a

��
that is independent of �

sup�2O"(�0) P�
�
�minn < k�

�
= o

�
n�a

��
for some k� > 0 independent of �, where

�minn denotes the smallest absolute eigenvalue of
�
@q0n(�+n )

@�
W j
n (�

�
n)

@qn(�+n )
@�0

�
.

Hence with P�-probability 1 � o
�
n�a

��
that is independent of �, A�1n exists

and is of the form
�
@q0n(�+n )

@�
W j
n (�

�
n)

@qn(�+n )
@�0

��1
+Bn, with sup�2O"(�0) P� (kBnk > ") =
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o
�
n�a

��
for any " > 0. Furthermore due to the fact that

�
@q0n(�+n )

@�
W j
n (�

�
n)

@qn(�+n )
@�0

��1
is symmetric we have that
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�
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@�
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�
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@qn

�
�+n
�

@�0
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 � r

(�minn )2

where r is the rank of the matrix. Hence for an " > 0

sup
�2O"(�0)

P�
�

A�1n 

 > c�

� sup
�2O"(�0)

P�

�
r

(�minn )2
+ " > c

�
+ o

�
n�a

��
� sup

�2O"(�0)
P�

�
r

(k�)2
+ " > c

�
+ o

�
n�a

��
= o

�
n�a

��
for any c � r

(k�)2
+ ". These imply that

sup
�2O"(�0)

P�

�p
n k�n � 
 (�)k > C+ ln1=2 n

�
� sup

�2O"(�0)
P�

�

A�1n 





@q0n (b (�))@�
W j
n (�

�
n)
p
nqn (
 (�))





 > C+ ln1=2 n�+ o �n�a��
� sup

�2O"(�0)
P�

�



@q0n (b (�))@�
W j
n (�

�
n)
p
nqn (
 (�))





 > C+

c
ln1=2 n

�
+ o

�
n�a

��
which is o

�
n�a

��
for any C+ � cC�.

Lemma AL.5 Suppose that:
-FOC �n satis�es

Qn (�n)W
j
n (�

�
n) qn (�n) = 0

with P�-probability 1� o
�
n�a

��
that is independent of �,

-UTIGHT There exists a C+ > 0 independent of � for which

sup
�2O"(�0)

P�

�p
n k�n � 
 (�)k > C+ ln1=2 n

�
= o

�
n�a

��
-UEDGE a. There exists a random element Mn (�) with values in an Euclid-
ean space, containing the elements of

p
n (��n � �), the distribution of which

admits a uniform over O" (�0) Edgeworth expansion 	n;s (�). The ith poly-
nomial, say, �i (z; �) of 	n;s (�) is equicontinuous on O" (�0) 8z 2 Rq, for
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i = 1; : : : ; s � 2, and if � (�) denotes the variance matrix in the density of
	n;s (�) then it is continuous on O" (�0) and positive de�nite.
-EXPAND The following hold with P�-probability 1 � o

�
n�a

��
that is inde-

pendent of �

Qn (�n) =
s��1X
i=0

1

ni=2

Xi

j=0
C�ijn (�)

�
Mn (�)

j ; Sn (�)
i�j
�
+R�n (�n; �)

W j
n (�

�
n) =

s��1X
i=0

1

ni=2
C��in (�)

�
Mn (�)

i
�
+R��n (�

�
n; �)

p
nqn (�n) =

s��1X
i=0

1

ni=2

Xi+1

j=0
C#ijn (�)

�
Mn (�)

j ; Sn (�)
i+1�j

�
+R#n

�e�n; ��
where Sn (�) =

p
n (�n � 
 (�)), C�ijn : O" (�0) � Rq

i ! Rp, C��in : O" (�0) �
Rqi ! Rp are i-linear, Cijn : � � Rq

i+1 ! Rp is (i+ 1)-linear 8� 2 O" (�0),
C�00n, C

��
0n, C

#
00n (�) ; C

#
01n (�) are independent of n and have full rank 8� 2

O" (�0), C�in, C
��
in , C

#
ijn
are equicontinuous on O" (�0), and

sup
�2O"(�0)

P�
�

Rln

 > 
ln� = o �n�a�� , l = �; ��;#

for real sequence 
ln = o
�
n�a

��
independent of �, for , l = �; ��;#.

Then
p
n (�n � 
 (�)) admits a locally uniform Edgeworth expansion, 	�n;s (�),

over O" (�0). The ith polynomial, say, ��i (z; �) of the density of 	
�
n;s (�) is

equicontinuous on O" (�0) 8z 2 Rq, for i = 1; : : : ; s�2, and if �� (�) denotes
the variance matrix in the density of 	�n;s (�) then it is continuous on O" (�0)
and positive de�nite.

Proof. Due to conditions UTIGHT and EXPAND condition FOC implies
that with P�-probability 1� o

�
n�a

��
that is independent of � 

s��1X
i=0

1

ni=2

Xi

j=0
C�ijn (�)

�
Mn (�)

j ;
�p
n (�n � 
 (�))

�i�j�
+R�n (�n; �)

!
� 

s��1X
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1

ni=2
C��in (�)

�
Mn (�)

i
�
+R��n (�

�
n; �)

!
� 

s��1X
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1

ni=2

Xi+1

j=0
C#ijn (�)

�
Mn (�)

j ;
�p
n (�n � 
 (�))

�i+1�j�
+R#n (�n; �)

!
= 0
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Gathering terms of the same order we obtain that with P�-probability 1 �
o
�
n�a

��
that is independent of �

s��1X
i=0

1

ni=2

Xi+1

j=0
Cijn (�)

�
Mn (�)

j ;
�p
n (�n � 
 (�))

�i+1�j�
+Rn (�n; �

�
n; �) = 0

with C00n (�) = C
�
00n (�)C

��
0n (�)C

#
00n (�), C01n (�) = C

�
00n (�)C

��
00n (�)C

#
01n (�)

which are obviously independent of n and of full rank,

Cijn (�) =
X

j0+j1+j2=j;i0+i1+j1=i

C�i0j0n (�)C
��
j1n
(�)C#i1j2n (�)

which is obviously equicontinuous on O" (�0). Moreover Rn (�n; �
�
n; �) is a

sum containing terms of the form

An =
1

n(i0+i1+j1)=2
C�i0j0n (�)

�
Mn (�)
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�p
n (�n � 
 (�))

�i0�j0�C��j1n (�)�Mn (�)
j1
�
�

C#i1j2n (�)
�
Mn (�)

j2 ;
�p
n (�n � 
 (�))

�i1+1�j2�
for which i1 + i2 + j1 > s� � 1. Due to equicontinuity which along with
the compactness of O" (�0) imply that the C functions and thereby their
products have uniformly bounded coe¢ cients, and the submultiplicativity
we have that for some M > 0 independent of �

kAnk �
M

n(i0+i1+j1)=2


pn (�n � 
 (�))

i0+i1+1�j1�j2 kMn (�)kj1+j2

hence due to UTIGHT, UEDGE which along with lemma AL.2 of Arvanitis
and Demos [1] imply the existence of a constant C > 0 independent of � for
which

sup
�2O"(�0)

P� (kAnk > 
n)

� sup
�2O"(�0)

P�

�
M

n(i0+i1+j1)=2


pn (�n � 
 (�))

i0+i1+1�j1�j2 kMn (�)kj1+j2 > 
n

�

� o
�
n�a
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+ sup
�2O"(�0)
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M (C+)

i0+i1+1�j1�j2 Cj1+j2

n(i0+i1+j1)=2
ln
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2 n > 
n

!

which is of order o
�
n�a

��
for 
n =

M(C+)
i0+i1+1�j1�j2Cj1+j2

n(i0+i1+j1)=2
ln

i1+i2+1
2 n = o

�
n�a

��
and is obviously independent of �. Furthermore Rn (�n; �) contains terms of
the form

Bn =
R�n (�n; �)

n(i1+i2)=2
C��i1n (�)

�
Mn (�)
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�
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�
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j ;
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and of the form

�n =
R�n (�n; �)

ni1=2
C��i1n (�)

�
Mn (�)

i1
�
R#n (�n; �)

and of the form

�n =
1

n(i1+i2)=2
C�i1j0n (�)

�
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 (�))
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�
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�
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n (�

�
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#
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and using the same arguments as before along with condition EXPAND, we
have that
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� sup
�2O"(�0)

P�

�
M
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which is of order o
�
n�a

��
for 
n =

MCi1

ni1=2
ln

i1
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#
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�
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��
and is obvi-

ously independent of �, and
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n

!
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�
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��
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��n =

o
�
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��
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sup
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i1�j0 kR��n (�n; �)k

R#n (�n; �)

 > 
n�
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#
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�
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��
and

is obviously independent of � and �nally
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�
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R#n (�n; �)

 > 
n�
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�2O"(�0)
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�

�n


��
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#
n > 
n

�
which is of order o

�
n�a

��
for 
n = 


�
n


��
n 


#
n = o

�
n�a

��
and is obviously inde-

pendent of �. Hence there exists a real sequence 
n = o
�
n�a

��
independent

of � for which

sup
�2O"(�0)

P� (kRn (�n; ��n; �)k > 
n) = o
�
n�a

��
The result follows then from theorem 3.2 of Arvanitis and Demos [1].

Lemma AL.6 Under assumptions A.7 and A.8 condition EXPAND hold
for W j

n (�
�
n) where Mn (�) =

p
nmn (�).
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Proof. Due to assumption A.7.b) for any � 2 O" (�0) and any �� su¢ ciently
close to �, W j

n (��) admits a Taylor expansion of order s
�� 1 around � of the

form

W j
n (��) =

Xs��1

i=0

1

i!
DiW j

n (�)
�
(�� � �)i

�
+

1

(s� � 1)!
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Ds��1W j
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�
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�
�Ds��1W j

n (�)
� �
(�� � �)s

��1
�

where �+ lies between �� and �. Due to the assumption A.8 the elements ofp
n (�� � �) are in Mn (�). Furthermore there exist Ki (�) i-linear functions

such that the coe¢ cients of
p
n (DiW j

n (�)�Ki (�)) are also in Mn (�). Due
to assumption A.7.b) the elements of Ki (�) can be identi�ed as the uniform
probability limits of the corresponding elements of DiW j

n (�) and thereby
are continuous on O" (�0). Obviously K0 (�) = E�W

j
n (�) due to A.7.a).

The previous along with lemma AL.2 of Arvanitis and Demos [1] imply the
existence of a constant C > 0 independent of � for which
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� ��p
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Furthermore due to submultiplicativity, A.7.b), A.8 and lemma AL.2 of Ar-
vanitis and Demos [1] there exist M;C > 0 and independent of � such that
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p
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which is less than or equal to

sup
�2O"(�0)
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1

n
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2
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Ds�W j
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p
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2

!
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n
s�
2



pn �Ds��1W j
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�

�
k
p
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s��1
> 
��n

2

!

� o
�
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��
+ sup
�2O"(�0)

P�

�
1

(s� � 1)!
M

n
s�
2
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�=2 n >


��n
2

�
+ sup
�2O"(�0)

P�

�
1

(s� � 1)!
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�

n
s�
2
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�=2 n >
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�

which is of order o
�
n�a

��
when 
��n = 1

(s��1)!
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�
)

n
s�
2

lns
�=2 n = o

�
n�a

��
independent of �. Hence due to the rank condition on E�W j

n (�) from as-
sumption A.7.a) the result follows.

Lemma AL.7 For real valued functions fn, f de�ned on �0 � �, suppose
that: sup�2� jfn � f j = o (1), and sup�2� kD2fnk ; sup�2� kD2fk < M . Then
sup�2� kDfn �Dfk = o (1).

Proof. For any with �m 6= � and Di =
@
@�i
for any i

sup
�2�

jDifn (�)�Dif (�)j

� sup
�2�

����Difn (�)�
fn (�m)� fn (�)

j�im � �j

����+ sup
�2�

����f (�m)� f (�)j�im � �j
�Dif (�)

����
+sup
�2�

����fn (�m)� f (�m)j�im � �j

����+ sup
�2�

����fn (�)� f (�)j�im � �j

����
which is less than or equal

2M k�m � �k+
1

cm

�
sup
�2�

jfn (�m)� f (�m)j+ sup
�2�

jfn (�)� f (�)j
�

where cm = min�2� j�im � �j which exists due to the compactness of � and
continuity and it is di¤erent from zero due to the de�nition of �m, which
converges as n!1 to

2M k�m � �k
letting then �m ! � we obtain the needed result.
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Lemma AL.8 Suppose that
p
nmn (�) admits a locally uniform Edgeworth

expansion, say 	n;s (�), of order s over �0, the polynomials of the density
of which, say, �i (z; �) of 	n;s (�) are equicontinuous on � 8z 2 Rq, for
i = 1; : : : ; s � 1, and V (�) denotes the variance matrix in the density of
	n;s (�) then it is continuous on � and positive de�nite. Let the random
element

p
n
n (�) be comprised by elements of

p
nmn (�) such that its support

is bounded by
p
n� for � a bounded set of some Euclidean space. Then

p
nm�

n (�) =
p
n

�
mn (�)


n (�)� E
n (�)

�
admits a locally uniform Edgeworth

expansion of order s � 1 over O (�0; �), the polynomials of the density of
which are equicontinuous, as well.

Proof. As
p
n
n (�) is part of

p
nmn (�) (a projection) we have that

p
n
n (�)

admits a locally uniform Edgeworth expansion of order s over �0 (see lemma
AL.1 in Arvanitis and Demos [1]), the polynomials of the density of which
are equicontinuous on �. Due to lemma 3.1, above, we have that

sup
�2�0

�����pnE�
n �
Z
R
z

 
1 +

s�2X
i=1

�i (z; �)

ni=2

!
'V (�) (z) dz

�����
= sup

�2�0

����pnE�
n �Xs�2

i=1

I
V
(ki (z; �))

ni=2

���� = o�n� s�2
2

�
where

�
1 +

Ps�2
i=1

�i(z;�)

ni=2

�
'V (�) (z) denotes the density of the Edgeworth dis-

tribution truncated up to the O
�
n�

s�2
2

�
order, i.e. of the (obviously) valid

locally uniform Edgeworth expansion of order s � 1, ki (z; �) = z�i (z; �)
and I

V
(ki (z; �)) =

R
R ki (z; �)'V (�) (z) dz. Using the fact that the �i�s are

equicontinuous on � it is easy to see that so do the I
V
(ki (z; �)). It is also

obvious that the random vector
p
nln (�) =

p
n

�
mn (�)

n (�)

�
admits a locally

uniform Edgeworth expansion of order s � 1 over �0, the polynomials of
the density (say ��i ) of which are equicontinuous on �. Consider the vector
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vn =

�
0dim(mn)Ps�2
i=1

I
V
(ki(z;�))

ni=2

�
. For an arbitrary Borel set A due to the previous

P
�p
nm�

n (�) 2 A
�

= P
�p
nln (�) 2 A+ vn + o

�
n�

s�2
2

��

=

Z
A\Hc

n(C)

0BBB@1 +
s�3X
i=1

��i

�
z +

�
0dim(mn)Ps�2
i=1

I
V
(ki(z;�))

ni=2

�
+ o

�
n�

s�2
2

�
; �

�
ni=2

1CCCA
�'V (�)

�
z +

�
0dim(mn)Ps�2
i=1

I
V
(ki(z;�))

ni=2

�
+ o

�
n�

s�2
2

��
dz + o

�
n�

s�2
2

�
where Hc

n (C) analogously to the relevant term in the proof of theorem 3.1
in Arvanitis Demos [1]. Expanding and holding terms of relevant order,

by noticing that the �i are polynomial in z, and that the o
�
n�

s�2
2

�
are

independent of � we obtain the needed result.
The second auxiliary result is the only one employing the assumption of

normality.

Lemma AL.9 Suppose that
p
n ('n � b (�)) and

p
n (�n � �) admit locally

uniform Edgeworth expansions of order s over �0 the polynomials of the
densities of which, say, �i (z; �) are equicontinuous on �0 8z 2 R3, for i =
1; : : : ; s � 1, and the distribution of "0 is standard normal. Then E ('n (�))
and E (�n (�)) are two times di¤erentiable on �0 and for any � 2 �0 and
any sequence �n 6= � with values in �0 such that k�n � �k � C ln1=2 n

n1=2
for

C > 0, i = 1; 2



@Min (�n)

@�0 �Ki (�)



 = o (1) where M1n (�) = E ('n (�)),

M2n (�) = E (�n (�)), K1 =
@b
@�0 , K2 = idR3.

Proof. Consider �rst the case of E ('n (�)). Let � ("0) the smallest sub
�-algebra of F w.r.t. the "0 ; "�1; : : : are measurable. We have that

E ('n (�)) = E (E ('n (�) =� ("0)))

Now notice that

E ('n (�) =� ("0)) =

Z
Rn
'n

1q
(2�)n

Qn
j=1 hi (�)

exp

�
�1
2

Xn

i=1

y2j (�)

hj (�)

�
dz
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and the di¤erentiability result would follow via the dominated convergence
theorem if

E

�
sup
�2�0

ksn (�)k
�
and E

�
sup
�2�0

kHn (�)k
�

are �nite where sn (�) +
Pn

j=1

�
"2j � 1

�
1

hj(�)

@hj(�)

@�
,Hn (�) +

Pn
j=1

�
"2j � 1

�
1

hj(�)

@2hj(�)

@�@�0 �Pn
j=1

�
2"2j � 1

�
1

h2j (�)

@hj(�)

@�

@hj(�)

@�0 , sn (�) =
1
n
sn (�), Hn (�) =

1
n
Hn (�). First no-

tice that hj (�) � �!
�
1� �� � ��

�
+ c� and due to the fact that

@hj (�)

@�1
= (1� �2 � �3) +

�
�2"

2
j�1 + �3

� @hj�1 (�)
@�1

@hj (�)

@�2
= ��1 + "2j�1hj�1 (�) +

�
�2"

2
j�1 + �3

� @hj�1 (�)
@�2

@hj (�)

@�3
= ��1 + hj�1 (�) +

�
�2"

2
j�1 + �3

� @hj�1 (�)
@�3

hence

E

�
sup
�2�0





Xn

j=1

�
"2j � 1

� 1

hj (�)

@hj (�)

@�





�
� 1

c�

Xn

j=1
E1=2

��"2j � 1��2E1=2 sup
�2�0





@hj (�)@�





2
and for �� =

�
��!; �

�
�
; ��
�

�0
it is easy to see that

E sup
�2�0





@hj (�)@�





2 � E 



@hj (��)@�





2 < +1
Furthermore, since

@2hj (�)

@�21
= 0

@2hj (�)

@�22
= ��1 + "2j�1

@hj (�)

@�2
+ "2j�1

@hj�1 (�)

@�2
+
�
�2"

2
j�1 + �3

� @hj�1 (�)
@�22

@2hj (�)

@�23
= ��1 + 2

@hj�1 (�)

@�3
+
�
�2"

2
j�1 + �3

� @2hj�1 (�)
@�23

@2hj (�)

@�1@�2
= �1 + "2j�1

@hj�1 (�)

@�1
+
�
�2"

2
j�1 + �3

� @hj�1 (�)
@�1@�2

@2hj (�)

@�1@�3
= �1 + @hj�1 (�)

@�1
+
�
�2"

2
j�1 + �3

� @2hj (�)
@�1@�3
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we have that

E

�
sup
�2�0





Xn

j=1

�
"2j � 1

� 1

hj (�)

@2hj (�)

@�@�0





�
� 1

c�

Xn

j=1
E1=2

��"2j � 1��2E1=2 



@2hj (��)@�@�0





2 < +1
and

E

�
sup
�2�0





Xn

j=1

�
2"2j � 1

� 1

h2j (�)

@hj (�)

@�

@hj (�)

@�0





�
� 1

c2�

Xn

j=1
E1=2

��2"2j � 1��2E1=2 



@hj (��)@�





4 < +1
Next notice that for any � in �0 any i = 1; : : : ; 3, and any sequence �n as
described above we have that



@E ('n (�n))@�i

� @b (�)
@�i






� 2 sup

��2�0





@2E ('n (��))@�i@�
0





 k�n � �k+ 



E ('n (�n))� E ('n (�))�in � �i
� @b (�)

@�i






Then lemma 2.4, above, implies that due to the behavior of �n the last term
on the right hand side of the last display is o (1). Hence the result would

follow if sup��2�00



@2E('n(��))@�i@�

0




 = o
� p

n

ln1=2 n

�
. The previous along with an

application of the Cauchy-Schwarz and the triangle inequalities imply that
for any i

sup
�2�0





@2E ('n (�))@�i@�
0






� sup

�2�0
E1=2 k'n (�)� �k

2

�
�
sup
�2�0

E1=2 ksn (�) s0n (�)� EHn (�)k
2
+ sup
�2�0

E1=2 kHn (�)� EHn (�)k2
�

Furthermore, due to assumed Edgeworth approximation for
p
n ('n (�)� �),

and the fact that s � 5 lemma 3.1 along with theorem 3.1 in Arvanitis Demos
[1] imply that sup�2�0 E

1=2 k('n � b (�))k
2 = O

�
1p
n

�
. Hence the result would

follow if

sup
�2�0

E


nsn (�) s0n (�) + EHn (�)



2 = o
� n

lnn

�
sup
�2�0

E


Hn (�)� EHn (�)



2 = o
� n

lnn

�
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From the proof of Lemma A.1 of Corradi and Inglesias [2], we can prove
that

p
n (S�n (�)� E (S�n (�))), where S�n contains stacked the elements of sn

and Hn admits a locally uniform Edgeworth expansion of order s � 3 over
�0 by establishing the conditions A2.M-WD and A3.EL-CPD in Arvanitis
Demos [1] through the provision of bounds being independent of � using the
compactness of �0 and condition A3.NDD in Arvanitis Demos [1] using the
result of the referenced proof, the P almost everywhere continuity of the
elements of S�n (�) on �

0, the continuity of determinant and the compactness
of �0. Then remark R.3 implies that

sup
�2�0

E


nsn (�) s0n (�) + EHn (�)



2 = O (1)

sup
�2�0

E


Hn (�)� EHn (�)



2 = O

�
1

n

�
which establish the needed bounds. The result about E (�n (�)) is derived
analogously.
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