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Abstract

This is an extended appendix for the revision of the paper Sto-
chastic Expansions and Moment Approximations for Three Indirect
Estimators.

1 Definition of Estimators

In what follows, when A is a matrix ||A|| denotes a submultiplicative matrix
norm, such as the Frobenius one (i.e. |A] = Vird’A). O.(0) denotes
the open e-ball around 6 in a relevant metric space and O, (6) its closure.
We denote with PD (k,R) the vector space of positive definite matrices of
dimension k x k£ endowed with the topology of the Frobenius norm. Consider
the following real function from R* x PD (k,R) for k € N

|z]|, — (a:/Aa:)l/Z.

For a given matrix the previous function defines a norm on R*. For s*, s € N*

with s* > s, let a* = 8—2_1 and a = %

Assumption A.1 For a measurable space (S, F), the statistical model (SM)
is a family of probability distributions on F parameterized by par () a func-
tion that is onto a compact subset © C RP for some p € N.

We abbreviate with 6y = par (Fy) € Int (©), for Py in SM. The auxiliary
estimator is denoted in the paper by /3, whereas 6,, is the collective notation
for the indirect ones. We also employ b (6) to denote the binding function
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Assumption A.2 For B a compact subset of RY, Q),, : 2 X B — R 1is jointly
measurable. Moreover @Q),, is continuous on B for Py,—almost every w & ).

We suppress the dependence of the random elements involved on (2, for
notational simplicity.

Definition D.1 The auxiliary estimator is defined as
B = argmin Qs (5)

@, could be a likelihood function, a GMM or more generally, a distance
type criterion like the ones appearing in the following definitions (see also

section [4)).

Assumption A.3 The binding function b : © — B 1is injective and contin-
uous on O.

The initial estimators are denoted by 6.
Assumption A.4 Wy :Qx0O — R? and 0}, : Q@ — B are jointly measurable.
Definition D.2 The GMRI1 estimator is defined as
0, = arg min 180 = 0(O)lyyx o)
Lemma 1.1 Under assumptions[A.1] and[A.9, ||Esf,| < oo on ©.

Proof. ||EyB, —0(0)| < Egl|5,, —b(0)|| < M;, where M; denotes the
diameter of B, finite due to the compactness of B. m

Definition D.3 The GMR2 estimator is defined as
en — i - E * (0%
arg min |8, — Eofp|lyw g,

Assumption A.5 Let ), be differentiable on B for Py—almost every w € €.
We denote with ¢, the derivative of @, except for the case where Q, =
len (Bl g2y, where ¢ = @ x B — R, W, : Q@ x B — PD(I,R), and
By Q — B are jointly measurable. Moreover ¢, is continuous on B for
Py,—almost every w € Q, ¢, (B) is Py—integrable on © x B and Ey (¢, (5))
is continuous on © x B. Also W** : Q x © — R! is jointly measurable.

Ey (¢, (B,,)) denotes the quantity Ey (¢, (3)) |s=s, for notational simplic-
ity.



Definition D.4 The GT estimator is defined as
= i E sx (0%
0, = argmin |y (ca (5,)lws- o

When p = ¢ =1 and @n (8) = [len (B)I], cn (8) = hn — Eghyn = hy — g (5)
with h, : 2 — RP integrable on © and B, g (5) and m (0) = Eph,, invertible,
it is easy to see that a) the GMR1 estimator is a GMM estimator and b) g is
linear GMR1 = GMR2. Notice that a) would be valid even if 3,, = rog~toh,,
for r a bijection. Hence the GMR1 can be a GMM estimator even in cases
that the auxiliary is an appropriate transformation of a GMM estimator.

2 \Validity of Edgeworth Approximations

Assumptions Specific to the Validity of the Edgeworth Approximations

We denote with D", the r-derivative operator and with D" (f (z9)) (z") the
r"_linear function defined by the evaluation of D" f at zq evaluated at (z, ..., 7).
r times
Let M denote a universal positive constant, independent of n and 6, not
necessarily taking the same value across and inside assumptions proofs and
results. pr; ; () denotes the transformation of an r" dimensional vector, say
x = (x1,29,...,2,), to a vector containing only the elements of x from the
i to the j™ coordinate, ie. pr;;(z) = (zi,Tis1, .., ;) , where naturally
1 < i < j < r. Finally whenever the assertion "local locally independent of
0" appears in the sequel it implies "independent of 6 for § € O, (6y)" unless
otherwise specified. Notice that due to the fact that the spaces © and B
are separable and closed, suprema of real random elements over these spaces
are typically measurable (see van der Vaart and Wellner [7], example 1.7.5
p. 47 due to the theorem of measurable projections, completeness of the
underlying probability space, the compactness of © and the continuity of b).

Assumption A.6 (3, is uniformly consistent for b(0) with rate o (n‘“*),
1.€.

sup Py (|3, = b(0)| >¢) =0 (nfa*) , Ve > 0.
0cO
Moreover 07, is uniformly consistent for 6 with rate o (n‘“*).

Assumption A.7 For j = x,%x, suppose that there exists a sequence of
random elements x, : Q — R™, such that W3 (0) = LS W (z; (w),0) for
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measurable W* : R x © — PD (q,R), W* : R™ x © — PD (I,R) integrable
with respect to Pp+, such that a)

sup Pg* HWJ Eg*W] H > e —0( ) Ve >0
0*€O

Eg=W7 (0) is continuous when w.r.t. 0 when 0* = 0, it is Lipschitz w.r.t. 0,
for any 6" and the analogous Lipschitz coefficient (say) &7 (07) supgecq £ (07) <
+00. b) Moreover W (z,0) is s*-differentiable on O, (0y) for g > ¢ and

sup Py ( sup || DWW (6)]] > M) =o(n™")
0*€0:(60) 0€0:(6o)

Let f (x,0) denote the vector that contains stacked all the distinct com-
ponents of W* (x,0) and W** (x,0) as well as their derivatives up to the order
s* — 1. Furthermore V,, ;+ (#) denotes an Edgeworth measure of order s* (see
for example equations (3.7) and (3.8) of Magdalinos [5]) and with m;_; (z g)
the polynomial in the density of ¥, . () coefficient 21 yfori=1,...,s*

(notice that mo = 1).

Assumption A.8 vnmy, (0) has an Edgeworth expansion of order s* uni-
formly on O. (6y) where

B —b(0)
my, (0) = 0 — 6

or

my (0) = B, — b (6)
when W* (x,0) and W**(z,0) are independent of x and 0. Furthermore
7 (2,0) is equicontinuous on O, (0y) Yz € RY, fori=1,...,a*, and if V ()
denotes the variance matriz in the density of W, s (0) then it is continuous
on O. (0y) and positive definite.

The proof of the following theorem can be found in Arvanitis and Demos
[1] (Proof of Theorem 3.2).

Theorem 2.1 Suppose that:
-POLFOC M, (0) satisfies Opu1 = 31—y — 2”1 iin (0) (Mn 0y, S, (9)i+1—j)+

R, (0) with probability 1 — o (n’%> independent of 0 where Cj;, 0. (6y) x
RY™ — R? is (i + 1)-linear Y0 € O (6y), Coo, () ,Cor, () are independent
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of n and have rank p V0 € O, (0y), Cij, are equicontinuous on O, (6), Vo',
-LUE S, (0) admits a locally uniform Edgeworth expansion the polynomials
of the density of which are equicontinuous on O (6o) and the variance matrix
is continuous on O, (0y) and positive definite,

-UAT supyce P <||Mn (0] > C'1n'/? n> =0 (n_%) for some C > 0 inde-
pendent of 0,

-USR supyeg P (|| Rn (8)]| > 7v,) = 0 (n’%> for some real sequence vy, =

) (n_%l> independent of 6.

Then M, (0) admits a locally uniform Edgeworth expansion he polynomials

of the density of which are equicontinuous on O. (8y) and the variance matriz
is continuous on O (0y) and positive definite.

Existence of Edgeworth Expansions for the GMR-type Estimators
The GMR1 Case

Assumption A.9 b(0) is s*+1 continuously differentiable and rank Db (¢) =
p, for all 0 in O, (0y) and g > €.

Lemma 2.2 i) Under the assumptions|A.1}, [A.2, [A.5, |A.4, |A.6 and|[A.7.a)
the GMR1 is uniformly consistent for 0 with rate o (n=%). ii) If additionally
assumptions|A. M), |A.8 and|A. 9 hold then, \/n (GMR1 —60) has an Edgeworth
expansion of order s* uniformly on O. (6y), for € < &y., where gy as in the
above assumption.

Proof: i) Due to the triangle inequality and assumption we have
that for € > 0

sup Py (sup 1B, — bO)]] - 116 (0) — b(O) | > )
0*cO 0cO
1B, = b(0)]| >¢) =0 (n"")

< sup Py (
0*cO

Hence for ¢, (0) = 3, — b(0), ¢(6*,0) = b(0*) — b(#) and by assumption
[A7a) lemma applies. Hence for v(0) = 6 due to assumption
lemma also applies implying the result.

ii) Given i), we have that 6, € O, () with Pp-probability 1 — o (n™*") that
is locally independent of # for any € > 0. For some ¢ small enough, such that
O, () C O, (6y) (which exists due to the fact that ey > €) due to assumption
we have that condition FOC of the appendix lemmas [AT.4] and [AL.5| is

o’

satisfied by the GMR1 estimator with @), = %;. Furthermore assumption




implies conditions HUB (7 (6) = 6 hence set § = £3) and RANK of the
same lemma. Condition TIGHT follows from [A.8] as under this assumption
there is C* > 0 locally independent of # such that

sup Py <\/E||Bn — b ()| > C* In'/? n) —o(n™™) (1)

00O (o)

(see lemma AL.2 of Arvanitis and Demos [I]). Hence lemma applies
ensuring that

sup Py <\/ﬁ\|GMR1 —6|| > C'In'/? n) =o(n™")
9665(90)

for some C' > 0 locally independent of . Hence condition UTIGHT of lemma
[AL.5|holds. Moreover assumption [A.8|implies condition UEDGE of the same
lemma for M, (6) = /nm,, (). Due to assumption for any 0 € O, (6)
and any @, sufficiently close to 6, 2 5o Y (#,) admits a Taylor expansion of order
s* — 1 around @ of the form

8[)’ s*—1 ]_ Zabl i
0 (6.) = Zi:O ﬁD 06 () ((0* —0) )
1 s*— 16()’ + s* —18[9/ s*—1
] <D 5 0 -0 0) (0-0 )
where 07 lies between 6, and 6. This implies that for any 6, = GMRI1 due

to condition UTIGHT we have that with Py-probability 1 — o ( ) locally
independent of 6

ov s-11 1 .o
90 (0n) = Zz‘:o ﬂniﬂD o0 (
where R (0,,,0) = —IVW (D" _1ab/ ' (0F) — D —1%5)9' (0)) ((\/_(8 _9) 71)

and 6 lies between 6,, and §. Now by assumption m Sg (0) has full rank

for any 0 € O, (fy) and by submultiplicativity, the relation of #; to 6, and
condition UTIGHT
> 72)

sup By
9665 (00)

0) (Vi (6 — 0))") + B, (61, 6)

m (Ds —181)’ (9+) D# *—19b (9)) %

(s*=1)! e - 80
((f(en —0)*)

1 1 s*—1
< sup P — sup 0 H o — 0| ||vn (0, -0
6€0:(60) ’ <(S* - 1)‘ n(sT=1)/2 0€0., (60) ) H H H ( )H
M CcT oL )
< P—*18/2>;>+ -
0686111()00) o <(S — 1) /2 n n g 0 (n )
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M
(s*=D!n

independent of #. Analogously, due to assumption M A9 for any 0 € O. (6)
and any 6, sufficiently close to 6, b (6.) admits a Taylor expansion of order
s* — 1 around @ of the form

—a*

which is of order o ( ) for v = < /2 I n=o (n ) and locally

*

o= B b0 =5, —b(6) - ZDb) (0.~ 0))

zlz'

— (D70 (0) = Db 0) (6.~ 0))

s*

where 0% lies between 6, and . This implies that for #,, we have that with
FPy-probability 1 — o (n‘“*)

Vi (B, = b(6n))
\/ﬁ( —b(9))

where R¥ (0, 0) = 2 owtas (D7 (67) = D*'0(6)) (v (6, — 6))"" ), and
0, lies between 6,, and §. Now by assumption %—be/ (0) has full rank for
any 0 € O, (0y) and so does the identity matrix in front of v/n (3, — b(0)),

and thereby due to submultiplicativity, the relation of 6" to 6,, and condition

UTIGHT
>~ )

ﬁn(s’il)/? (Ds*b (9,’—.’;) - Ds*b(e)) X
sup Fy
0655(90)

QWﬂm—wW)

< s p[ TR DO 0]
0O, (60) X [[v/n (0, _‘9)” >’y#
s* 41
= st (M c o T2 > ﬁ) +o(n™)
00O (0o)

which is of order o (n*“*) for 77 = % 23721 I D2 = (n*a*) and locally
independent of . Finally due to lemma which applies by assumptions
and [A.7 condition EXPAND holds and the result follows by the same

lemma.l

The GMR2 Case

Assumption A.10 supycp, (g |D*" EpB,|| < M.



Lemma 2.3 i) Under the assumptions|A.1}, |A.9, [A.5, |A. 4, |A.6 and|A.7.a)
the GMR2 is uniformly consistent for 6 with rate o (n_“*). ii) If additionally
assumptions |A.7.0), |A.8, |A.9 and |A.1( hold then \/n (GMR2—6) has an
Edgeworth expansion of order s* — 1 uniformly on O, (6;).

Proof: For e >0, let E (¢,0) = {w e Q: |8, —b()| > £} € F, then
£

sup [| 3, — b (0)|| < sup By [|5,, = b (0)l| Lreo) + 5
0o 9cO

As B is bounded, due to assumption and by assumption there exists
an n* such that supyee Py (|3, —b(0)| > £) < 557 where M denotes the
diameter of B. Hence

sup || Epf,, — b(0)|| < ¢ for all n > n*
0€®

and since ¢ is arbitrary

sup || Eyf3, — b (0)]| = o(1) (2)
0cO

Due to the triangle inequality and assumption we have that for ¢ > 0

sup Fp- (zlelg 18, = EoB,ull = o (67) = 0 ()| > 8)

0*€O

< sup P (I3, =00 +sup BB, = b(0)] > =) =0 (™)
0* €O 0cO®

For ¢, (0) = B3, — Eof,, q(0%,0) = b(6") — b(#) and by assumption [A.7]a)
lemma applies. Hence for v (6) = 0 due to assumption lemma
also applies implying the result.

ii) Given i), we have that 6,, € O, () with Pp-probability 1 — o (n™®") that
is locally independent of 6 for any € > 0. For some ¢ small enough, such that
O, (0) C O, (8y) (which exists due to the fact that g > ¢) due to assumption
[A.10, we have that condition FOC of the appendix lemmas [AL.4| and [AL.5|is
satisfied by the GMR1 estimator with @),, = a}?f =, Furthermore assumption
and imply conditions HUB (7 () = 0 hence set 6 = ¢¢) and RANK
of the same lemma due to the fact that since D?Fpf,, is uniformly bounded
on O, (), DEyp,, converges uniformly to Db (f) due to lemma and
therefore the rank condition is implied by [A. 10| for large enough n. Now as
a* > a > 0 we have that a* > 0 and there exists a Cs > 0 locally independent




of 6 such that for £* = {w eQ: |8, —b0)| > 021111/2”} cF

/2

sup || Epf, —b(0)]

9665(90)
< sup Ep[l|B, —b0)||1p]+ sup Ep[[|B, —b(0)[ 1p+]
0c0.(00) 00, (6o)
]. 1/2 1 1/2
< M swp B8, —b(O)| > oy | + Compy sup Eylpe
0€0.(00) n n 0€0.(60)
In'/2n
= M sup Py (Hﬁn—b(H)H >C’21—/2)
9€0-(90) n
In'/2n In'/2n
Co—— P, —b(0)| < Cy———
+C2 nl/2 9686111()90) 0 ”Bn ()”— 2 nl/2

gt In'/%n g
= o(n ")+ Gz (L—0(n"))
gt In'/%n In'/%n
= o(n")+C nlz 0 ni/z |
where the penultimate line comes from equation [I}, above. Hence

In'?n
sup |[EpB, —b(0)] = O (W)

0665 (90)

and therefore

In*2n
sup By <Hﬁn — BB, > ClW)

9665(90)
In'?n
< sup By | (18, =0 (O) + [|EeB, — 0 (O)]| > Cr—75-
0€0:(0o) n
In'?n In'/?n .
< ﬂlp by Hﬁn_b<9)”+0 W >01W :O(Tla)
9605(90)

Hence due to and lemma AL.2 of Arvanitis and Demos [I] there exist
C7 > 0 large enough and locally independent of 6 for which

12,

ln —a*
sup Py (Hﬁn — BB, > 011—/2> =o(n").
0€0. (00) "



Hence lemma [AL.4] applies ensuring that

sup Py (\/EHGMRZ —0] > C'In*/? n) =o(n™™)
9668(90)

for some C' > 0 locally independent of #, hence condition UTIGHT of
lemma [AL.5 holds. Moreover assumption [A.§ along with the fact that the
support of (3, — b(f) is uniformly bounded by Os, (0) for any 7 greater
or equal than the diameter of B, and the fact that \/n (53, — Epf3,) ad-
mits a locally uniform Edgeworth expansion of order s* — 1 (see lemma 4.1
of Arvanitis and Demos [I]) imply condition UEDGE of lemma [AL.5| for

M, () =+/n ( 5 m_"(Ei)B ) with order s* — 1. Due to assumption [A.10| for

any 0 € O, (6y) and any 6, sufficiently close to 6, ang n (A.) admits a Taylor

expansion of order s* — 1 around 6 of the form

OEy, B, =21 ,0Fyf, i
o0 Zmo uD a0 ((6*_9))

1 2 0Bp Bl OB el
T =2 (D S~ D) (e —a)

where 67 lies between 6, and #. This implies that for §, = GMR2 due to
condition UTIGHT we have that with Py-probability 1 — 0( ) locally
independent of 6

0Ep, B, ~~s-21 1 _,0E,f, . .
00 Zizo il nz’/QD 90 (0) <(\/ﬁ (6, —0)) ) + Ry (6,,0)
where R* (0,,0) = 2)|W (DS*_gaE(gﬁn _ Ds*_la%f;) ((\/_(9 — ) 72)

and 0 lies betvveen 0, and 6. Now by assumption |A.10, by submultiplica-
tivity, the relation of 6 to 6, and condition UTIGHT

1 *_9 0*5/ *_10EypB!,
(s*=2)! n(s (DS 55— — D’ 899 ) X %
> Tn

sup Fy

00-(00) (v (6.~ 0)y ‘2)

‘Ds*—l

o) [V 6. - > 72)

1 1
< sup Byl — - sup
00, (60) <(3 =222 o 00)

lu CS* * *
(s*—1)/2 * —a
: ae?;f@o) o <(S* —2)Ip(s*-1)/2 n " 7n> ¢ (n )

10



which is of order o (n’“*) for v = %ﬁ In n=o (”w*) and

locally independent of 6. Analogously, due to assumption for any 0 €
O:. (6y) and any 0, sufficiently close to 0, Ey, [, admits a Taylor expansion
of order s* — 1 around 6 of the form

(s*—1)/2

b = B BoBu= B Foby =3 DS, (6.~ 6))
1

o (D' Egi 8, — D" Epf,,) ((9* - 9)8*)

where 0% lies between 6, and 6. This implies that for #,, we have that with
Py-probability 1 — o (n_“*)

Vn (B, — Eo,5,)
= Vn(B, — Eyf,)

s*—2 1 1 ) ;
2 Gt )inil D" BB, ((\/ﬁ (6, — 6)) “) + R¥ (6,,,0)

=1

where B (0, 0) = oty etays (D 7 Bgi B, — D 1EB,) (Vi (6, — 0)) ),
and 92 lies between 6, and #. Now by the previous for large enough n

% (0) has full rank for any § € O, (fy) and so does the identity matrix in

front of \/n (8,, — Fyf3,), and thereby due to submultiplicativity, the relation
of 0 to 6, and condition UTIGHT
>k )

P (8*1_1)] n(S*%?)/Q (Ds*ilEng/Bn - Ds*ilEQBn) X
sup 0 s —1
0eB.(00) (v @ =0 )
T a7 SWaeo., o) |07 Eoul |07 — 6
sup Py oy
0€D. (00) X [[Vn (0, = )" >

M cs . "
s*/2 # —a
< (G e o) o)

IN

which is of order o (n_“*) for v77 = %n(s{f—iwlné‘*ﬂn _ (n—(z*) and

locally independent of 6. Finally due to lemma which applies by as-
sumptions [A.§ and [A.7] condition EXPAND holds and the result follows by
the same lemma.ll
We denote with k;, (z,0) = zm;_1 (2,0) and with Z,, (ki, (2,0)) = [ kis (2,0) 0y (2) dz
where m;_; (z,6) and V (6) as in assumption [A.§

Assumption A.11 Z, (k‘iﬂ (2,9)) is s* continuously differentiable for i =
1,...,8" =1 over O (6y).
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Lemma 2.4 If assumptions|A.8, [A.9 and|A.11] hold for s* > s then for any
sequence 0 for which

sup Py (\/ﬁHﬁz — 9” > M In'/? n) =0 (n’“*)
9655(00)

we have that for any e, < €

S B (V7 (B8 = EoB,) = An (0)]] > 7) = 0 (™)

where

An(0) = Ty =D ( *lei_jim>wﬂ%_w>

n 2

Y, = 0(n~%) independent of 0, using the convention that when s —i = 0,
then > 77| is empty.

Proof. By assumption . lemma 3.1, below, adding subtracting
vn <b 0)+> 0, ﬁ and \/n (b (6)) +>7, M) , we get

Vi (Eg: B, — Eo,) — A (0) =

vn (Ee;iﬁn —b(0) — X M) —V/n <Eeﬁn —0(0) - >0, w) +

n2

ﬁ(b(&*)—b() Sy 500 (0) (65— 6)')) + By where
B, = v, MGl POl s 4 R Ce) (61 - 6))

Employing the mean value theoren;1 for Zy (lfZ 5 (z, oF )) and for ;" such that
|03+ — || < |67 — 0], we get B, =

= 25:1 <n1 1 Zm 1 mquIV (k (2 ‘9)) ((0: )m) Tl ES Z DZ@ ((6: - 0)i>>+

di T ey 2 Ty (ki (2,0)) ((Q:Jr — Q)Sﬂ“). Collecting terms we

n;Tl (s H—l
get:
1 1
B,=57 —
2in n's (s —i+1)!

DTy (kyy (2,0)) (05 - 0.
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Taking into account that 6 € O, (fy) with probability 1 — o (n™") and
employing the triangular inequality we have that, for s < s*,

6665(90)
yA kz Z, 0
< sup Py| sup n|EB,—b(0)—>, M > In
00 (60) 0€0:(0o) n2 6
s 1 Yn
+Zi:1 sup P@ (T ||Bn|| > 3—>
9€0:(00) n-z 8

b(87) ~b(6) - S, 5D 0) (67 - 0)')

+ sup Fy (\/ﬁ

0cO:(0o)

Now we have that

A
an = \/ﬁ Eeﬁn - 5(9) - Zf:l

independent of 6, due to lemma [3.1]
Now, due to the continuity of D*~"*'Zy (k;, (z,6)), assumption [A.11] and
the assumption of the asymptotic behavior of 6 we get

1 Tn
sup Pg( — | Bnll > g)

00O (0o) n 2
< sw B swp DT (ky (2 0)] |65 — 0] > I
00 (o) n'z (s =i+ 1! 4o (0 3s
In"z n 1 , v .
S P . : Ds—z-i—l:z- kz ’9 > In + —a
66%1%0) b ( B (s—it 1) 9:51?()90) I v (kiy (2,0)) | 33) o(n™)

= o0 (n_“*)

s=i+l 3ssup, = ”Ds_i'HI (k (2 9)) H
. In- 2 n 0€0c(0g) VAtigl®
provided that v, > 3 it .

n
Furthermore using the same reasoning as above

sup (Vb (65) = b(6) - £, 3000) (05 0))

Tn
>_
- 5)

9€65(90)
s+1 (3 + ]-)"7 %
< sup P vnllof -6 > - +o(n™®
9O (0o) ( ” H 3SUPyca. (o) 1070 (0] ( )
s+1
Inz n (s+ 1)y . .
< sup By — > L +o(n*)=o0(n"
0cO. (00) ( n? 3SUPyep. (o) 1D7T10 (0] (™) (™)
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_ +1 +1
35uPges, (o) || 277100 || 10 F 1 Hence for
S .

when v, > (41! 3

— max 35uPyc, (g | P00 || 10 O e n 3359, (o) || D° 7 Ty (ki (2.0)) || i=1 s
Tn = (s+1)! n% ) n n% (s—i+1)! y VT ety
the result follows for large enough n. =

Lemma 2.5 Suppose that p = q and assumptions[A.1), [A.2, [A.5, [A.4), [A.60,
A7 |A.8, |A.9 and [A.11) hold for s* > s. i) If SUDpco,  (60) |D2EsB,| <
M then \/n(GMR2—0) has an Edgeworth expansion of order s uniformly
on O., (0y) for any e, < e. i) if B, = b(GMRI1) with probability 1 —
0 (n=%) uniformly on O, (0y) and 3, = Egmra2,, with probability 1 — o (n=)
uniformly on O, (0) then /n (GMR2 —0) has an Edgeworth expansion of
order s uniformly on O., (0y) for any e, < ¢.

Proof. i) Notice that the uniform consistency follow for the GMR1 and
GMR2 as in the first parts of lemmas 2.2 2.3 Assumption [A.9] along
with i) imply that for r = 1,2, supycg_,) |1D" (Eef3,, — b (0))|| < M, which
in turn means that D"~! (Eyf3, — b(#)) are uniformly Lipschitz on O (6,),
and therefore uniformly equicontinuous on the same ball. This implies the
commutativity of the limit, with respect to n and the derivative operator,
uniformly over O, (6y). This along with the second part of assumption
i.e. rank Db () = p for all § in O, (), and continuity imply that
rank DEyf3, = p, for all § in O, (6y) for n large enough. As now p = g,
by the definition of GMR2 we get that 3, = Egur25, with probability

1 — o (n™) uniformly on O. (6p). This implies condition FOC of lemma
Furthermore by the second part of lemma [2.2] we have that
sup Py (\/ﬁ |IGMR1 —6| > M In'/? n) =o(n™*) (3)
9€65(90)

Hence with probability 1 — o (n_“*) locally independent of 6, applying the
mean value theorem we have that

ov/ (67)

n

00

where 6 is such that ||f,) — GMR2|| < |[GMR1— GMR2|. It follows that
with Py-probability 1 — o (n*“*) locally independent of

b(GMR1) = b (GMR2) + (GMR1— GMR2),

v (6})

) (b (GMR1) — b (GMR2)) .

14



As now p = ¢, by the definition of GMR1 we get that b(GMR1) = g,
with probability 1 — o (n™") uniformly on O. (). Hence with probability
1—o0 (n‘“*) uniformly on O, (6)

|IGMR1 — GMR2]| M |8, — b(GMR2)||

M (18, ~ Borefll + [Eoxmaf, ~ b(GMR2)])
1
< M| Bewnas, — b (MR = 0 (1)

<
<

and the last equality is true (as [, has a uniform Edgeworth expansion
on O, (0y), assumption , and apply lemma . Taking into account
equation (3| we get that, for some C' > 0, locally independent of 6

sup Py (\/EHGMRZ —6|| > C'In"/? n> =o(n™).
9€65 (90)
This implies condition UTIGHT of lemma [AL.5 It also, along with lemmas
and [3.1], implies that for any e, < ¢

sup Py (H\/ﬁ(ﬁn — Eamref,) — T'n (@H > Vn) =0 (”_a)

9665* (90)

where v, = 0(n~%) independent of § and

Lo(0) = vi(B, — EB,) — S {zV(k (2.0))

which validates condition EXPAND lemma of for @, = W] = Id,,.
Moreover assumption along with the fact that the support of 3, — b (0)
is uniformly bounded by 5377 (0) for any n greater or equal than the diameter
of B, and lemma 4.1 of Arvanitis and Demos [I] imply condition UEDGE of
_ Mo, ()
the same lemma for M, (§) = \/n ( B, — EyB,
the conditions of lemma are satisfied and the result follows. ii) follows
the same way as i) except now |3, — Famref, || is zero with probability
1—o0 (n_“*) independent of /. m

" I‘”—e))> (ﬁ (GMR?2 —9)1')

J
2

with order s* — 1. Hence

Existence of Edgeworth Expansion for the GT Estimator

We first consider two cases which link the asymptotic behaviors of the GMR1
and the GT estimators.

15



Lemma 2.6 A. Suppose that p=q =1, Egt (¢, (8,))) = 0; with probability
1 —o0(n™") independent of 0 and Eqy(c, (8)) = 0, iff 8 = b(0). i) If the
provisions of lemma z) hold then the GT is uniformly consistent for 6
with rate o (n=%). i) If the provisions of lemma|2.4.4i) hold then \/n (GT —0)
has an Edgeworth expansion of order s* uniformly on O, (6y) which coincides
with the one of lemma (2.4 B. Suppose that ¢ = 1, ¢, (B) = ¢, — B for gy
an appropriate q-dimensional random element and W) = W* (P, almost
everywhere for all 0). i) If the provisions of lemma z) hold then the
GT is uniformly consistent for 0 with rate o(n=%). i) If the provisions of
lemmal2.3.ii) or the ones of lemmal[2.5i) or ii) hold then /n (GT —) has an
Edgeworth expansion of order s* uniformly on O. (8y) which coincides with

the expansions of lemmas or[2.8 1) or i) respectively.

Proof: A. From the assumptions we have that
Egren (B) = 0, iff 5 = b(GT)
hence the GT equivalently satisfies
B, —b(GT) = 0,

which defines the GMR1 estimator in these special circumstances. Hence
under these special assumptions we have that GMR1 = GT with probability
1—o (n_a*) independent of . The rest are trivial consequences of lemma
B. Similarly this special assumption implies that 3, = ¢, (P almost surely
for all §). Hence Eyc, (8) |s=5, = Eoqn — B, = Lo, — B,. This and the

assumed coincidence of the weighting matrices involved along with lemmas

or [2.5/1) or ii) imply the result.l

In a more general case, due to the definition of the particular estimator,
we utilize the following two assumptions concerning the asymptotic behavior
of ¢,.

Assumption A.12 Let Q, = |cu (B, (5:) and

len (8) = e (B < #n |8 = Bl for all B, 5 (4)

Supgeo Eotin = O (1) and
sup By (sup llen (B) — (6, 8)]] > €> =0 (n_“*) Ve >0 (5)
9co BeB

where ¢ (0, ) is continuous on B and equals zero ifft B = b(0) for any 0.
Furthermore

Ch, (B)H2 < +o0, for all 5. (6)

sup lim sup Fy*
0* €O n

16



Assumption A.13 For ¢ = (9’,6')/, o as before and n large enough for

O, (¢g) D O, (00)x O (b (b)), rank (limnﬂoo %&b(e))) = p, rank (limnﬁoo

q on O, (6o), SUPLed, (00) HDS*JrlEHCn (/B)H < M.

Lemma 2.7 i) Under the assumptions|A. 1], [A.9, (A.5,|A.4, |A.6, [A.7.a) and
the GT s uniformly consistent for 0 with rate o(n=%). i) If addi-
tionally ¢ (0, 8) = Egc, (8) and assumptions|A.7.b), |A.8 and |A.15 hold then
V1 (GT —0) has an Edgeworth expansion of order s* uniformly on O, (6;).

Proof: i) By assumption 4l we have that for ¢ > 0

sup Py~ (sup | Egcn (B,,) — Egcn (b(07))]] > 8>

0*€O 0cO
< sup P ((sup B ) 18, ~0(0")] > ) =0 (™)
6*€O 0cO

and the equality is due to assumption [A.6] Moreover due to [A.12)5H6 and
uniform integrability we obtain that

Sup [Egcn (0(67)) — ¢ (6,6 (67))[| = o (1)

These via the triangle inequality imply that

sup Py~ <sup | Egcn (8,,) — c(6,b(6%))] > 5) =o(n™)
6*co 00
Hence for ¢, (0) = Eyc, (8,), q(07,0) = ¢(0,0(0")) and by assumptions

a) lemma applies. Hence for v (0) = 6 due to assumptions
lemma also applies proving the result.

ii) Given i), we have that 6, € O, (0) with Pp-probability 1 — o (n‘“*) that
is locally independent of ¢ for any € > 0. For some € small enough, such that
O, () C O, (6y) (which exists due to the fact that ey > €) due to assumption
A.13, we have that condition FOC of lemma (in the Appendix) is

satisfied by the GT estimator for ), = %. Furthermore assumption

implies conditions HUB (v (#) = 6 hence set § = ¢y) and RANK of the
same lemma. Condition TIGHT follows from [A.8 lemma AL.2 of Arvanitis

17
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and Demos [1] and as Eyc, (b(0)) = 0 the fact that

In'/2n
sup Py | [[Bocn (B,)] > Cr—i77~
6€0. (60) n
In'/2n
< sup By | Epllen (8,) = ¢ (0(0)) ]| > Cr—75-
9665(00) n
4 In'/2n
< sup By | [|B,—0b(0)] >
00, (o) SUPgco. (00) Ep (kn) nl'/?

imply that there exist C'; > 0 large enough locally independent of # for which
the last term in the previous display is of order o (n_a*). Hence lemma
applies ensuring that

sup DBy <\/ﬁHGT —0|| > C'ln'/? n) =o(n™")
6668(00)

for some C' > 0 independent of 6. Hence condition UTIGHT of lemma
[AL.5] holds. Moreover assumption [A.§ implies condition UEDGE of the
same lemma for M, (6) = /nm, (#). Due to assumption for any
Y = ( b(ee) ) for any 0 € O, (fy) and any o, = ( 890* ) sufficiently close

*
8E9* Cn (6*),

to ¢, =57~ admits a Taylor expansion of order s* — 1 around ¢ of the
form
aEG* Cn (6*)
00
_ 0Ep.c, (b(6,))
B 00
s*—1 /
1 11,82 aEgCn (b (0)) (51 12
3 o (2RO (6. - v 0. - 0)*)

1 vy [0Byrc, (BY vy (OEqgcy, (b(0))
M (D ( o0 )‘D ( 8 ))

Jr
where ¢ = < g+ > lies between ¢, and ¢. This implies that for 0,, = GT
due to conditions UTIGHT and EXPAND we have that with Py-probability

18



1—o0 ( ) that is independent of ¢

0Fy, cp (571),
00
OEyc,, (b(0))
00

* i TN (MGC%—S)(W> (B, =)™ (0= 0)) + B (61, 6)

i1+i0=1

. OE 4 cn(BF) . / .
where R; (6,..6) = 5=l (Ds - (%) e (E)Ea#)) (m oy 1),

and 0, B lie between 6,, and 6 and 3, and b () respectively. Due to as-
sumptions [A.13} [A.8 lemma AL.2 of Arvanitis and Demos [I] and by sub-
multiplicativity, the relation of 6 to #,, and condition UTIGHT

* oE +Cn(6;‘;)l * OF /

1 s*—1 o7 s —1 cn (b(0))

(s*—1)! n<s*—1)/2 (D ( a0 ) - D < : o0 ) X *
sup Py > Yn

0€0:(6) ((wn — )’ _1>

28 *_1 1 Sup
*_1) p(s*—=1)/2 P€O,(p
< sup By @ =Din (o)

oo\ (167 —oll + 1155 —o @) (v @, — o) *1+||5 —bO1) >

27 IM max® (C,CT) . ) . o
<(s*_1)! e >0 ) o (n7)

‘ 5 8E90n(6)' H

< sup By
0665 (00)

* * s* \ —+ « .
which is of order o (n~") for v; = 22— mx (O 1052 = o (n=") and

independent of #. Furthermore, due to the same assumption and the fact
that ¢ (0,b(0)) = 0 we have that

g*

qn = EG*Cn(ﬁ*): Z

+(S*;_1)! (Ds*—l (%) _ psl (8Egc%—(9b(6))’)> <(¢* B gp)s**)

D B, (0(0)) (8.~ b)) 0. — 0)°)
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where 6" lies between 0, and #. Hence with P;-probability 1—o (n_”*) locally
independent of ¢

s*—1
1 1 1 4 :
= (i14+1),(i2+1)
' 4.2: 0 (i1 + 1)! (1o + 1) nia/2 nl2/2D Eycn (b(0))
i1+ia=

(VA (B, =)™ (6= 0)*) + RE (6,,0)

where R¥ (0,,,0) = L—257 (D* Egrca (B)) — D* Egey (b(0))) ((\/ﬁ(wn—w)s*),

and 6 lies between 6,, and . Hence analogously to the previous

P, s (D7 Byrca (By) — D Egen (b(0))) %
su v
96681(990) ' <(\/ﬁ =) )

< sup P %n(s*—ll)/gsup%@ (¢0) HDS*HE@C” w)H
= oo\ x (6 el + 1By — v @) (Hf (O = O + 118, —b(O)7) > ~#
s* s*+1 +
- sup P, (2 *]'\/[ max 5*(/?0 )ln(s*+1)/2n > vf) +o0 (n_“*)
0€0<(00) s "

s* m. XS*+1 + * *
which is of order 0( ) for v = 25*]!\4 : ngfc ) I 2 =0 (n‘“ )

and independent of 6. Then due to assumption and the fact that
Eyc, (B) = ¢(6,5), 8Eecgg’(9))/, 3E"cg/(6b(9))/ are of full rank for any 6 € O, ().
Finally due to lemma which applies by assumptions and con-
dition EXPAND holds and the result follows by the same lemma.ll

3 Validity of 1st and 2nd Moment Expansions

Lemma 3.1 Suppose that K is a m-linear real function on R™, the support
of an R" wvalued random element (say) ¢,, is bounded by O s, (0) for some
p >0, and C,, admits an Edgeworth expansion of order s* = 2a+m+ 1 then

K (2™) (dP - <1+ZS trl ) v (2) dZ)‘ =o(n™)

where P,, and (1 + Z W;(Z ) oy (2) denote the distribution of ¢,, and the

density of the analogous Edgeworth measure of order s = 2a + 1 respectively.
Moreover if P, depends on 0, and 7; () are continuous on O, (6y) for any z,
V is continuous on O. (0y) and the expansion is uniformly valid on O (6y),
the approximation holds uniformly on O, (0p).

Ra

20

)



s—1
Proof. Let @, denote the measure with density (1 + Zi:l 72 ) o0 (2).

Since 2a +m + 1 > 2a + 1, we have that sup,cg, [P, (A) — Qn (A)| =
O (n=*"), where n > 0. Hence

K (™) (dP, — dQ,) / K (™) (dP, — dQ,)
R4 Oc(inny<(0)

/ K (z™)dP, / K (z™)dQ,
Rq\oc(ln ,,L)E(O) Rq\oc(ln n)¢ (O)

n® M (Inn)™ / (P, — dQu| + n° / K (z™)] (AP, + |dQn])
Oc(ln n)e(o) Rq\oc(ln n)€ (0)

<n*

+n® +n°

IN

IN

M (Inn)™ sup n®[F, (A) — Qn (4)] +”“/ K (z™)] (dPy + [dQn|)
AeBeo Rq\oc(ln n)¢ (U)

Due to the hypothesis for the support of P,

ne / K (z)|dP,
Rq\oc(ln n)€ (0)

— n/ |K(xm)|dPn—|—n“/ K (z™)|dP,
[RINO, (10 0y (0)] O 7, (0) [RINO, (10 1y (0)]N (O z7,(0))

_ n/ |K(mm)|dPn:n“/ K (2| dP,
[RINO, (10 ny (0)]NO 7, (0) O /5 (O\Oc(in nye (0)

a+mp m_ m
< n BP q / ]-||mH>c(lnn)€dPn
Ra

Hence
n® / 2™ (dP, —dQ,)| < M (Inn)™ sup n®|P, (A) — Q, (4)|
Ra A€eBeo
AP (1, | > ) + [ K (&™) dQu
Rq\oc(lnn)e(o)

As sup 45, 1 | P, (A) — Qn (A)] = O (n7") for n > 0, we have that

(Inn)* sup n® |P, (A) = Qu (A)] = o (1)
AeBc

and n*"2 p"g™P (||| > c(Inn)) = o(1) if e > L and ¢ > V2a+m+1
by lemma 2 of Magdalinos [5]. Finally n® qu\o ©) |K (z™)]]dQ,| = o (1)

c(lnn)€
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due to Gradshteyn and Ryzhik [4] formula 8.357. For the uniform case first
notice that
sup Py (¢, > MIn'2n) = o (n)
6€0¢(6o)

This is due to the fact that the set {x eR?: ||z|| < MInY?n } has boundary
of Lebesgue measure zero and

sup / <1 + (x 9)|> Oy (x) dz

9665(90) H£C||>M1n1/2n Zl_ TL V(@)

< sup / (1 + Z i (VY2(0) 2,0) |> ¢ (2)dz
0€0:(00) 121> nt/2n =1

= /z||> (1 ! Z ='n

where Apax (#) denotes the maximum absolute eigenvalue of V'/2 () and 0} €
O, (6y) exist for all i = 1,. .., s* due to the continuity and are independent of
z due to the positivity and the fact that m; are polynomials in x, and 0" exists
due to continuity of V' and the compactness of O, (8y). For M > s*\pax (67)
the result follows from lemma 2 of Magdalinos [5]. The rest follows in the
same spirit of the first part. m

i
mn2

Am ( )

i (VH2(07) 2,07)

) (x)dx

Remark R.1 Notice that in the case that the support of ¢,, is not bounded
the previous result would hold for s* = 2a +m + 2. This follows easily from
the previous proof by letting p = In“n and by the fact that the Edgeworth
approzimation is uniform w.r.t. the Borel algebra.

In the following we suppress the dependence on ¢ and z where possible for
notational convenience. For the rest of this section we denote by b = b(6), b,
is the j'* element of b, W* = EgW* (0), W7, is the (j, ;') element of W*, and
analogously for W/**. Moreover, C = ‘%9 Ww* gé’, ki, (2,0) =pry, (2) mi1(2,0),
Kige (2,0) = Py piq (2) M1 (2,0), ki, (2,0) 1s the matrix containing the
elements pr,, . 2 (2) i1 (2,0) and k; . (z,0) is the matrix containing the
elements of pr 2, ;9.2 (2) Ti—1 (2,0) at the appropriate orders.

3.1 Valid 2"? order Bias approximation for the Indirect estimators
GMRI1 Estimator
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Lemma 3.2 Let 0,, denote the GMRI estimator. If assumptions [4.3,
A5, 14.4, [A.0 and A7 [A.8,[A.9 and[A. 10 hold with s* > 3 then uniformly
over 6§ € O (6y)

o'

&1 (9) = C I%W*va* (k%)

oy’ oy’ " Ob; oy’
_ —1_ * 177 * 177 *
' I(KC W’“ﬁ) aeae’c aHW'“BLl )

Eov/n (6, — 0) — gl\/(g) H - (n*%)

where

.....

—10b 117% ’ 52y
1T [(C Vo Wk ]J 1, (Id LS 1a—blw*) iy
o +% k1, + 25 [H W), klo*] i toog o0 ’

/
where C = ab W gé’,.

Proof. Our assumptions and lemmas[2.2] ensure the validity of the mean
approximation. Then from theorem 3.1 of Arvanitis and Demos [I] we have
that the relevant moment approximation can be obtained if /n (3,, — b (6,,))
is approximated by

ob
o0’

Vi, - 0) g, —9>L

1=1,...,q

Vn (B, = b(0) =5V (0 — 0)—

1
2\/n
Moreover W (67) is appropriately approximated by

W2 0)+ |00, v (8~ 0)

vn oo/ il
that is by
1 1 0
W*(0)+ —=ki,. + — {— *(0), . ks ]
\/ﬁ \/ﬁ 69/ I ’ 74,3'=1,....q
and analogously () jg appropriately approximated by
96
oy’ 1 9%b; |
—+ — 0, —0
20 " Jn [f< ) d600 |
hence by
ov’ 1 , 0% ]
— + — 0,—0
90 "~ Jn [\/ﬁ( ) o608,)
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Therefore an appropriate approximation for y/n (6, — #) is obtained by in-
verting

_py 9% *
ab’W* () + 1 [\/_ (0 — 9) 2900, ] 1. pW ) y
a0 Vi \ Gk + 5 W Ok |

80/

.....

b 1 / abj
<\/_(B = b(8)) = 5V (6a = 0) - 5= {W@n—‘)) 0606 ”(""“))Ll,...,q>

and for C = 22W* 2 '\ /n (6, — 0) is approximated by

oy
Cog W () vV (8, —b(0))
N [ AU OT a%TH W) b, o
+%C o J. o' [0y« (p k:, ’ Idq = 80’C %W (6) ) b,
+% 1oy* + 00 |:89/ ( ) Lox 7.3'=1,....q
1 1ab/ * labl * , 8b lab/ *
2\/_6 60W (0) |:(C 89W (9) klﬁ) 8960,6 aQW (9) kl@ i

Integrating with respect to (1 + mf;”) Py=(g) (2), noting that ky, (2,0) = z,

ko, (2,0) = 21 (z,0) we obtain that

o .
&1 (‘9) = C 1%W I@Ov* (k%)

o’ oy " Ob; o’
= 1 * 1 * 1 *
26 _86W I@W ([(C —W klﬂ) 8980’C —W kl@]jzl q)

.....

_18_b’W$k ! 52y /
+C'T,... [(C 1) 3939]] L. Id, — a,c 100 ki |
ov o' 1. o' " 700 a0 7
o6 P T 50 [ae' i 19*] =1,..q

.....

ol

Egv/n (6, — 0) — &—J(?H = o(n"

where

where the dependences of W* (f) and b () on 6 have been suppressed. m
It follows trivially.

Corollary 1 When W* is independent of v and 6 and b(0) is affine then

&(0)=C 12—2W Zy (ks,)
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GMR2 Estimator
Lemma 3.3 Let 0,, denote the GMR2 estimator. If assumptions [4.3,
(A3, [AF A8 and A7, [A8, [A9, [A1] and [A11 hold for s* > 4 then
uniformly over O., (0y) for any e, < e
0
‘ Egv/n (0, — 0) — gi/(ﬁ> H =0 (n_%)
where
L, on
& (0) =& (0)-C %W Iv (kQﬂ)
Proof. The assumptions and lemmas [2.2} ensure the validity of
the mean approximation uniformly over O, (6y). Furthermore from lemma
we get that sup,cs._(g,) |DEsB, — Db(0) — DI, . (ks,) (0)| = 0(1)
(recall that Z,,. (klﬁ) = 0). Then from theorem 3.1 of Arvanitis and
Demos [1] we get that the relevant moment approximation can be obtained
if \/n (8, — E,[3,)) is approximated by
Tp,. (ko) b 10ZL,,. (k)
—b(h)) = =) 22y DTV VAR 0, —0

0(b+ 3 Zpy. (k)

0000’

1
2vn

W (67) is the same as the proof of lemma 3.2 before and analogously aEg—’éﬂ"
is appropriately approximated by

0 (b + %ISDV* (kzﬁ))/ 4 L \/ﬁ(en _ 0)/ 82 (b + %ISDV* (kzﬁ))/
a0 NG 9000; )
J= D

[\/ﬁ (6, — 0) Ly/n (0, — 9)]

Jj=1,....q

geeey

hence by
o 1 , o2
26 " {\/ﬁw” -9 aeaej]jl

In this respect an approximation for \/n (6, — 0) is
oy

C SV (8, — b(6))

CILW* (0) ky,) 22 W :
1 Cll [( o5V (0) k1) aaaaj]jl . ] (qu_ b

-----

_|__ / P . I
v +55 k1, + 5 [iW* 0);,5 kle*]jj

a0/
1 0y .
7w

1 , b
Zcpv* (kQB) + 5 |:\/ﬁ (Qn - 9) 8989/ n (en - 9):| i1 q]

,,,,,
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Integrating with respect to (1 + L\;{”) Py=(g) (2), noting that ky, (2,0) = z,

ko, (2,0) = zm1 (2,0) we obtain that

(NI

Eov/n (6, — 0) — gi/(g) H — 0 (n—

)

where
1,0 ob ., db; 0l
p _ __C_l—W*I k?/ W*_C—l J C_l—W*k‘
£y (0) 2 06 Py ([ 1s o0’ 0000’ o0 15}]‘1 ..... q)
k/ W*@_b/cfl 92y W*
con ([ B o)
+Wk1w* + 80 {WM/}vj,kle*}jj’:l wnq

where the dependences of W* (§) and b (#) on 6 have been suppressed. Taking
into account the expression of &, () in lemma (3.2l we get the result. m

The following corollary is trivial and establishes general conditions under
which the GMR2 estimator is second order unbiased.

Corollary 2 When W* is independent of x and 6 and b(0) is affine then
§2(0) = 0,.

: : : / dc Q,b k% de 9,b /! dc 0,b k%
GT Estimator Denoting with D = 2 8(6’ L) (6) a(ﬁ’ )%, E=2 a(ﬂ/ L)W= (9),

_ oy 9%c;(0.0) ab  [9c;(0.0) 92 _ O ik
Hi=36 5505 o0 ~ [3780/39r]r:1 7 _klw**Jr[WW ©);r klg*]jj =1,
T* = <8ca(g;b) %D_IE— Idl) 308(2;1?) and q1, = D—lg%g’,b)klﬁ we obtain the fol-
lowing lemma.

Lemma 3.4 Using suppose that Egc, (8) = c(0,3). Furthermore let
[A.1,[A.9,[A.3,[A4 [A.6,[A.7 [A.8 [A.13 hold for s* > 3, then uniformly on

| )

O. (0o)

[N

Eov/n (60, — ) — 5‘}%9) H —0 (n*
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where

Oc(0,b K 9 J 0,0
£,(0) = DE (9(5 )IV(kQB) _D 15{ (15 gﬁéﬁl)kw)k—l l

=1,...,

O 92c; (0,b 1 ,
_p-lg {IV (C] —L,)klg)} + D7l [IV (qlﬁHj(hB)} '
j=1,...1 7=1

1200 0pos 2

a o' 9%c; (0, ) o ¥
+D7 7y, ({Hjmﬁ — %WWQB} o W= (0)J klﬁ
_18_19’80’ (0,b)
00  0p

Iy (\7\7*/?1[,) -

Proof: The assumptions and lemmas 2.2 ensure the validity of the
mean approximation. Then theorem 3.1 of Arvanitis and Demos implies that
the relevant moment approximation can be obtained as follows. Due to the
fact that ¢ (6,b(0)) = 0, we obtain, by the implicit function theorem, that

de (0, )’ab 3c(9,ﬁ)‘
o5 "o — o0 "

9c(0,b(0))

Moreover as 50’

we obtain that

= 043, we have, by the same theorem, that for any j,

d%c; (6, 8) b= P (0,8) )| ob
opog’ " apag "o
and
& (0c; (b, ﬁ)| o dc; (0, ﬁ)| P (6,5)‘
o0 a0 00 o ") ono0 "

+ac,(9 )’ a9 <8_b’8(:j(0,ﬁ)‘)
2005 "o0 a0 \a9 o "
0%¢; (0,8),  92c; (0,8), Ob o2 dc; (6, )
= o000 " g5 ag T {aeaej, ap |bL,1 :
O%c; (0.8), oW &Pc; (0,8), b 0% e, (6, )
9600 "~ 3 0Bof vog {aeaej, o83 |bL/:1 i

.....

ey

and therefore

Pe; 0.5), _ 000 (0.5) [ O 0c;(6.8)
o009 "~ 00 opop od o000, o5 |,

.....
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Now

Ve (0n,8,) = 808(2 5, - )—@ngib)% n(6n —0)
- f v, v, - TR
— |trv/n — n - /—aQCj(e’ﬁ)
—l—\/— {t \/_<6n b)\/_(gn 0) 000’ Ll ..... .

b [ - m(en—e)/%]jl |

=1,...,

and it follows that
Oc (9’b>k ~ 0c(0,b) b

Ve (0,,8,) = o5 M o o n (0, — )
, 0%¢; (0,0)
M [t R } ,,,,, l
1 / 82Cj (‘976) @
—% |:tT]€15\/ﬁ<6n—9) - 8685, b00/‘|j:1 ..... l

| b’ 9%c;(6,8) |b@
00 opop’ 1bag
NG trv/n (0, — 0) v (0, — 0)/ [ e,
9600, o Ib| ., _ .
J J'=1...p G=1,..,0

777777

Moreover W, (6;) is appropriately approximated by

W) =W 0) 7 oV O va@ 0]
that is by
W (05) = W5 6) 4 b+ |07 0), 0|
v v Loe/ R PP
and analogously % is appropriately approximated by
2
Lo Tz o o b)Ll ,,,,, l

e
% [a gje(ae’ )| Vi (O _9)}
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that is by

0 (6, B,) _ V00,5 1 {(%,ww}
o o0 Bk \/_ 00 0pop j=1,....1
. o' 82%895 B) |b e
96 _
+_ 80](9 ﬁ) | 6212 :| \/ﬁ (Qn 9)
Vn T | o baeae, Ji=1,..p j=1,...,1
! ac'(0,b Kk 0c(0,b)
0=-9 8(5 LW (6) aﬂ/ klf : )
r oy 8%c;(0,8 *k
B [W 5605 |bk1ﬁ} nd
v’ 8%¢c;(0,8)
) 20 8565’2 |b69’ v (0, —0) W**(6) %g}b)lﬁﬁ
+7= + [8(:](95 | 9%b }
0" 100000, | iy, J=1,0
1 9 (0,b b 0c(0.b) | 0 _yrrex () ]
—g—”ea 8(6 )klw** — %005 |V (0); B, =1, J
1 o ( . 9c(0,b) o _
+ ‘Zl; o eb LW (6) 8(ﬁ’ o/ (0 = 0) N
ob’ 0? C"(evﬁ oK
- |2, |bk15LL W)
oy 92e;(0.0) ob
B 0 00 ] Vi (0, —0) W (0)
n — 86/ 80/663’ j,:17"'7p ]:17 7l
1 9 (0, ou Dc(0b) | 0 yyrex gy ]
%_beaca(g_) Kty — 5505 [ae/W (6);.5 Ko Ji'=lesl )
acagfb) 35/\/_ (6 =) )
/ c *k e (6 b
-l S0 i b T
oy 9%¢c;(0,8)
+ IR 0 [k, - 0 HEEA
' 9%¢;( 05)|
( 0) v/ (0, — 0)/ ) i
19y oc'(8,b try/n (0, — n(t, — 92y 9ci(6,8
2/n 90 (0) [trv/n( ) - [aaael o | =1,..p j=1,..
, 9 1836(01) k
£ = WWOHyr== () Tt follows that /n (8, — 0) = o5 s .
r ' 9%c;(0,8) ok
[ae 5508 |bk1ﬁ]] 1 w8
' 9%¢;( 95)|
90~ 0Bop o _ W (6 86(9 b)k
—LD_l —+ 80](95)| 92b ] \/ﬁ(en 0) ( ) 1s
Vin IR AT P j=1,.0
! Oc b v’ acl(07b) i *k i ]
%% 2 ((Jg,g )klw** 90 B [aG/W (Q)JJ, klg* 53’ =100
\
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-|

ob' BQCJ‘ (9 [3

' 9%¢;(9,8)
09 0Bop’

|bk1ﬁ} .

7=1,...,1

W** (6)

j=1,..1

00~ 9BoF’ |bae' o
WD_ + [acj(eﬁ b 92b } V1 (6, —0) W (0)
00001 ] jr1,...p G=1,...1
oy o Hb) 9y ac(eb) | 8 *x N
5% ke = 5 o8 [WW (©);5 F,e G =1l )
5 9c(0.b) b DE | trk: K acj_(avb)]
op aa’\/_< —0)+ 7 15k1, 9BOB™ | iy 4
_ _100c(0,b) b’ 9%c;(0,8)
— \/LED 18 |:t7“ <D 15 8B' klﬂ) 69 85(%’ |bk15:| 71 l
Bl 82% 9,5) ’b
‘00 —0pop” 1boe’
DLE |try/n (0, — 0) /n (6, — 6)/ o 0ei0) :
2‘f 9000, b = A
=1,...,p j=1,..1
/ oy oc’ 91) *k
where D = 2800w (9) 24T 00 and £ = 920 CUY (9). Tt follows
dc(6,b)
that \/_(en—e) D€ ‘;ﬁ, k1,
b’ 0%¢;(6,8) o
[89 5505 |bk1ﬂ] L)
_ oy 9%¢;(6,5)
+=D! 90 0B |b89’ 1 00c(0,) .
. + [acg(&m 9%b } & 86’ klﬁ w (9>
o000, | iy, j=1,...1
D- 18b’80(9b jj L 1 Dflg |:t7“]€1 L 80](9/17)}
_T 1t 6™Ms 0BOB" |y 4
_ ) (9 ) ' 9%¢;(9,8)
- \/LED e [t7"< DETGs le) 90 8/;’8,8’ ’bklﬁ} e
8b/ 82(3] 0/8 |b
90 —opop’ 1o’
15 tTD Sac 9() kl ( 566(9/17 kl ) a2b/ oc; (9 ,8) :|
2 25" "lg 25" g _[ 5
f 9000, — 0P o =1
% « [ 0c(0,b) b 1 9c(6,b)
Wherej:k;lw** [89/W (9%7]/ kle*i|jj’=1 l’j - < o8 89/D E— Idl) Gl
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Againas [0l ] [mOna]
Vi (0, —0) =D" 5808(2 )klﬁ
+#D € {k,ﬁazacé(@%’b)klﬂ]j—l ,,,,, - %D_lg [qlﬁgl; a;%égﬁb)kw =1l
+7D '€ [qiﬁHg‘qlB]jl _____ l
i bS] w0,
—%D gl;'acgﬁ Y 75+ "k,
where D = & ac'ggb W (8) a%(glb & g _ ooc0h oc 9b QKON e (9), T =k,
82/ T (9)1,1’ kl"*L,j/:l 7777 y T = (8%(2/[)) aaeb'p 1o Id) 86521)): a0, = 8008(2/@ i,

9y’ 0%¢;(0,b) 9 dc;(0,b) o2 . m1(z,0
, H=2 aééﬁ,)a—;’,—[ '},f@/ )BB’B%TLZI ; Integrating the above w.r.t. (1 + 1\(f )) Py (2)

we get the result.ll

,,,,,

Corollary 3 When W* is independent of x and 6 and b(0) is affine then

e 0c(0,0) geaciuL
£&(0) = D le o7 Iv(kzg) FD 15[ (kﬁ 0p0s k16>:|j—1 l

oo 0.8) (9 \\
D~ 1 17 J ) 7 -9
+2\r € [ (qlﬁ 00 9p9p3 <ae’q“3 klﬁ))]jzl !

1 o &2c; (0,b) ( Ob
—D 7, — g —k W (0) Tk, | -
IRV qae 0Bp’ (89’% )} ,,,,, SO TR
Moreover, even under the scope of stochastic weighting, when p = q =1 and

b(0) is affine, then &5 (0) = (%)_II‘/ (k2,).

Proof. When W** is independent of z and 6 and b () is affine then J =0

and Hj:%—lg%%. Hence by integrating w.r.t. <1 + mfﬁ”) Py (9 (2) the
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following expression

de (0,0) 1 {

[ _1 S
ol k15+2\/ﬁp ¢ s 9B klﬁL_l ..... l

1 a2,
Do [q, ' 8%¢; (6,b) (ab —21%)}
G=1,.

2.
p-lg 1 0%c; (6,b)

1
NG a0 ages” \oo' ™ )L

1 oY c; (0,b) [ Ob
_Dfl -7 J ) 7 o *k *
I {ae 0p0p <ae'q”3 klﬁ)Ll lW ) 7"

we get the result. On the other hand, when p = ¢ = [ and b (0) is affine then
-1
1o _ (9c6.b) ob * _ _ (ob\ L _ (ob\t
D€ = ( o5 W) T =04, = () R @, = () ki, and

o — 0 9%¢;(0.b) b
1700 " 9pop’ 96"

.....

Hence we the expression is

b\ "
(o) o

and integrating the above w.r.t. <1 + L\%”) Py (9 (2) we get the result. =

Lemma 3.5 i). Under the assumptions_m lemma .A and for s* > 3 we
have that £, (0) = &5 (8) uniformly over O, (0y). ii). Under the assumptions
in lemma [2.0. B and for s* > 4 we have that &, (0) = & (0) uniformly over

O. (by).

Proof of Lemma i). The result follows from lemmas 2.6/ A and
Notice that as p = ¢ = [, we have that Cilaa—lgW* = (%)_1. ii). The result
follows from lemmas 2.6.B and 3.3 m

3.2 MSE 2"“ order Approximations for the Indirect Estimators

Lemma 3.6 Let 0, denote either the GMR1, or the GMR2 estimator. If
W (z,80) is independent of x and 0, b is affine and assumptions
(4.5, [A.4, [A.6 and [A.7, [A.8, [A.9 hold for s* > 5 then, for any e, < €

, H, (0 _
'Eg(n(ﬁn—ﬁ)(ﬁn—ﬁ)) — Hy () — \2/%) =o(n1?)
where
oY ob
_ —1 * * —1

H (0) = C 55" V()W 50C

oY ob

-1 * / * -1

Hy(6) = CT'S-W'Ty (/@Bklﬁ) W
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Proof. For both estimators we have that due to lemma theorem 3.1 of
Arvanitis and Demos [I] along with the approximations employed in lemmas

B2 B.3
v’

B (00s =00, -0)) = [ 25w (b, (20)+ 22D (b ey 220

T,

o
W o€ You) (2) dz,

vn

where k1, (2,0) = z, ko, (2,0) = 271 (2,0). Keeping the relevant order terms,
the result follows. m

Lemma 3.7 Let 0, denote the GT estimator. If W** (x,0) is independent
of x and 0, b is affine, Egc, (8) = c(0,5) and assumptions |A.1, [A.Z, [A.5,
A4 |A.6,|A.7,|A.8, and|A.15 hold for s* > 4 then, uniformly on O. (6)

'Ee (1 (6, = 6) (6, —6)') — H1 (6) — ng) ] =o(n'?)
where
o 100c(0,0) oc (0,b) ..~
H, () = D& 95 vV (9) R E'D
dc (0,b) ac (0,b)

H2 (6) - erlg

5 T (k2uk,) 55 €D

Proof. Again we have that due to lemma 3.1} theorem 3.1 of Arvanitis and
Demos [1] along with the approximations used in lemma [3 when W** is inde-

pendent of = and 6 and b () is affine, we get from the proof of lemma (3| that

we have to integrate w.r.t. (1 + %) Py (9) (2) the following expression:

/ 2 ’
D-1g9¢0.0) klﬁkiﬁ <'D_18 80(917)) +- 1 p-lig [k‘/ 0%¢;(6,b) k15i| l kllg (D—lg 30(9:b)>

o8 98" ) T2vm 15 0pop” o] o8
+ D7 [, B (e —2h)] M, (D7)
F D S (G, — k)] W0 TR R, e D
- ([kiﬂ %klﬁ]j_l ..... l)lg/ -
D €5 ([QQB%% (s — %15)L1 l>l€l P
..... ,
07 (55682 B )], )
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where ki, (2,0) = 2. and q, = D~ Saca(g,b)

!
0c(0,b ok * 1 9%¢;(60,b
fR DE BB’ )klﬂkis (W (9) J ), ([%_% 8556’) (Baeb’(hﬂ - klﬁ)]j ) v (z) dz =

0 as it involves the integral of (), which is zero-mean normally distributed.

Hence by integrating the above expression w.r.t. (1 + m\(;a)) Py (o) (2) We

get: By (n (0, —0) (0, —0)) = [, D 18860b)k15k’1ﬁ< 153‘3"“) (1+7”<“’>) oy (2)dz

z. Now notice that

—1,..l

ap’ ap’ vn
and taking into account that ki, (2,0) = 2, ky, (2,0) = zm1 (2,0) and that
Jor DIEXEIE b (D1E%ED) o () de = DIEXERY (9) (D e
we get the result. m

4 Recursive GMR2

Let 0° denote any estimator of 6.

Definition D.5 Let ( € N, the recursive ( — GMR2 estimator (denoted by
6’55 ) is defined in the following steps:

1. 0% = argminy |0 — E,00|],

2. Jor ¢ >1 0% — argming |4 — 0.

Using the results of the previous section, we are now able to prove the
following lemma.

Lemma 4.1 Suppose that assumptions|A.6, |A.8, |A.11 hold for 6 for s* >

2¢+4. Moreover suppose that Eyp supgcp. (g, |n5,||> < +00 and Ey SUDpco. (60) |nH.,|| <
+o0 for all § € O (6y) and \/n3,, (0) admits a locally uniform Edgeworth ex-

pansion of order 6. Then the ( — GMR2 estimator is of order s = 2¢ + 1
unbiased and has the same MSE with the (( — 1) — GMR2, up to 2¢ order,
uniformly over O., (8y) for any e, < .

Proof. First notice that in any step of the procedure the binding function
is the identity. Next the o (n_“*) uniform consistency of 9&0 ensures the
analogous for any step of the recursion. Then validity of the Edgeworth

expansion for y/ns, (f) along with lemma (3.1 and remark imply that

sup  E|[ns, (0)5, (0) + EH, (0)|" = 0 (1)
0€0 (o)
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2
and since by the same lemma supycp_(g,) F H <97(10 — 9) H = O (1) and Ey supycp. (g, [n5,|° <

+00 and Ey supyep, (o) ||nﬁnH < +o00 we have that supycp_(g,) HDQEQHS

<

M. Hence lemma applies and accordingly 07(11 admits a locally uniform
Edgeworth expansion of order s*. Given this the exact same reasoning im-
plies the same result for G%h for any h. Moreover assumption follows
for the expansions in every step of the procedure due to the previous. The
proof for the moment approximations for the case h = 1 follows easily. Using
induction, let us assume that the result holds for some h, i.e. assume that

the appropriate expression for y/n (9%}1 — 0) is given by:

Eg/nl (egh _ e) _
uniformly over O, (#y). Hence for § € O, (6), by lemma it follows that

1 Iy <kéh+2>
n2s2 ol

1
—zmm Lv (kan2) +

1 2h+42
@IV (k2h+3) +o0 <niT+) .
n 2

n

Jn (Eeglmeif - E(,e;h) — 14, + Jn (95}“ - 9)

is bounded by a real sequence of order o (n‘#) that is independent of

0, with Py-probability 1 — o (n_L‘jg) independent of 6. The h + 1%-step

GMR2 estimator satisfies with Py-probability 1 — o (n_#> independent of

0,0 = E (hH1 6\". Hence lemma and Theorem 3.1 of Arvanitis and Demos
[1] imply that the required approximation would be given by the integration
of the Edgeworth density in the h* step of the following approximation

1 1
it (8- 0) = (T (he) + T b))

This integration gives

1 1
2ht1 IV (k2h+2) + THIV (k2h+3)
n 2 n 2
1

1
_ (THZV (/{?2h+2) + @IV (k2h+3)) +o0 (n_ 2h2+2>
n 2 2

n

as Jnp (1 + Zfﬁfz ”;(j’f)) Py (2)dz =1+o0 (n_%> due to the validity

of the Edgeworth approximation of the distribution of v/n (Ggh — 0) and the

result follows. For the MSE approximation the result follows analogously, by

oz (K, -
simply noticing that (Idp + wlLTH V<a;h+2>> =1Id,+0(1). m
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5 Examples and Monte Carlo Experiments

In this Appendix we present an analytic proof the GARCH (1, 1) example
only.

5.1 The GARCH(1,1) Case

Consider the set of stationary ergodic and covariance stationary processes
defined by the recursion

y = &l
hj = 91 (1 — 92 — 93) + (9255_1 + 93) hj,1

where the (g;) are iid, Egg = 0, Fe2 = 1, Fe3® < +oo the distribution of &g

admits a positive continuous density and § = (6, 0,,03) € © = [Qw ,ﬁw} X

[Qa,ﬁa} X [ﬂg’ﬁﬁ] where Ny Mo g > 0 and for any 6 € ©, F (052 + 93)14 <

Let

b(0) = (917 02 (1 — (02 + 03) 03)

!
0y 40
1— 20,0, — 62 7 3)

R — /
and for some compact B 2 b(0) and ¢, (f) = ((yZ, 015 %) — ﬂ) define

1 9
B, = arg min 5 lcn (B)]]

I 1 son
where y2 — % Z?:l y]2, ﬁz =L R (y;l),(ﬁ 7. Furthermore define

1 2
GMRI = arg min o I8, —b(0)]".

Now employing the GMR2 estimator, treating the GMR1 as an auxiliary
one, we get the 1 — GMR2 estimator. Again, the Fy (GMR1) needs to be
evaluated.

Proposition 4 If the distribution of €9 admits a positive and continuous
density then 3, and GMR1 admit 4" order valid Edgeworth expansions, uni-
formly over ©. Furthermore if the distribution of g is standard normal, then
GMR2, 1—GMR2 and GT admit 4" order valid Edgeworth expansions, uni-
formly over any compact subset of ©.
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Proof: For any 6 € x let X; () = (yj2 y;* yjz-y?,l y]zyjz,2 )/, and
Sp(0) = J=30, (X (6) — EXo(6). Then as E (63 +65)" < 1, the
monotonicity of A~ w.r.t. 6 and a dominated convergence argument imply
that £ (y;” ((9)) exists and is continuous on O for any m = 1,...,24. There-
fore supge, F || Xo (A)]|” < +0o establishing A.2-M in Arvanitis and Demos
[1]. This also implies that if the formal Edgeworth expansion is valid, the
polynomials of its density are equicontinuous functions of these moments and
the covariance matrix is continuous on © and positive definite. The valid-
ity of the the formal Edgeworth expansion follows from the verification of
conditions A.2-WD, A.3-CPD and A.3-NDD in Arvanitis and Demos [1] (for
details see proposition 1 in Arvanitis and Demos [1]).

_ 2 2
Let us define the function fact that f(z) = (iL’l, o x;) which is

2 _
1 T2y

continuous. A 4™ order Taylor expansion of f-which is independent of -
around F (Xq (0)) of gives

vir (7.7 ;’;) 0O)) =300, D (B (X 0) (5, 007, 0)

i=0 ni/?

where

Ry (0) = # (DS (B (6)) (Sa (0))" = D*f (E (X0 (6))) (5. (6))")

(NI

R, () lies between < > -1 X (0) and E (X, (¢)) with probability 1—o (n_ )
that does not depend on . Due to the continuity of D*f on some compact
neighborhood of F (X (#)) we have that

[y QINEAGI

n3/2

172 ()]} <

Hence the definition of R (0), along with the fact that S, () has a valid
Edgeworth expansion uniformly on © proposition, and lemmas AL.2 and 3.3
in Arvanitis and Demos [1] imply that the result will hold if

S L e (e (x, (0) (5, ()

admits the relevant Edgeworth expansion. But this holds due to the fact that
Df (E (X, (0))) has rank 3 for any 6. Hence by theorem 3.1 in Arvanitis and

Demos [I] it follow that \/n ((?,ﬁl, %) — b(@)) — V' (0) admits a locally

uniform Edgeworth expansion of order 4. As now (3, = (42,7, %) with
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probability 1 — o (n_%> that does not locally depend on #, by lemma 3.3

in Arvanitis and Demos [I] we get \/n (5, — b(#)) admits a locally uniform
Edgeworth expansion of order 4 with Edgeworth polynomials that are, locally
on O, equicontinuous functions.

Let us call GMR1 by 6,,. Initially observe that due to the first part, for
some O* = [ﬂi’ﬁi] X [Q’;,ﬁZ] X [Q;,ﬁg] where 0 <n* <1 .7, > 1, for
m = w, a, 3, such that Int (©) D ©6* > 6’

sp P (5, (6) € D (0. 6) =1~ o (n"7")

0€0(00,0)

and it is easy to see that

2% has full rank for any 6 in O (6y,6%), hence
3

with probability 1 — o <n 2) that does not locally depend on 6, 6,, satisfies

B, =b(0,). The mean value theorem along with the constant full rank and
continuity of 2 80, on ©" imply that for some ¢ > 0 independent of

sup P (vl — 0] < evn B, —b(@)]) =1—o0(n"F)

0€O(60,0)

which along with lemma AL.2 in Arvanitis and Demos [I] imply that for
some C* > 0 independent of ¢

sup P (\/ﬁ 16, — 6] > C*In'/? n) —0 (n—?)

966(90,5)

A Taylor expansion of b(6,,) around b () of order 4 implies that

0351 = vVn (8, —b(0)) + \/ﬁZjZO #D(Hl)b(@) (\/_(9 _ 9))z+1 R, (6)

where

1

Far(0) = — (D" (67) (Vi (60 — 0))" = D (0) (v (6, — 0))")

3

0" lies between 6,, and 6 with probability 1 — o (n_2> that does not depend

on 0. Due to the continuity of Db (#) on some compact neighborhood of

we have that .
16,5 — 0] lIv/n (0, — 0)]
1372

Hence due to the definition of 6, the fact that 6, is uniformly tight, the
uniform expansion of (3, and the constant full rank of the Jacobian of b and

17 ()] <
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application of theorem 3.2 in Arvanitis and Demos [I] delivers the result for
O,

Let us now call GMR2 as 6. Notice first that uniform consistency of 53,
to b (6) along with the boundeness of © imply by uniform integrability that

sup | Ey3, — b (0)] = o(1) (7)
0cO

hence for any € > 0

sup P (p 18, — EB, ()] - b(6") - b(6)]| > )

0*€cO e

< swp P (13, b)) +0(1) > ) = o (n°})
0*cO

due to the analogous consistency of /3,,. Hence

sup P(0r € O(0",e)NO)=1—0 (n_%>

0*co
for any € > 0. Then from lemma [AL.9 and lemma [2.5 we obtain that
sup P<\/ﬁ|9;—6’| > Cln1/2n> zo(n_%> (8)
0*cer

for some appropriate C' > 0. Now by recursive examination it is easy to see
that Ehy' (0) is 4 times continuously differentiable for any 6 in ©” for all
m = 1,...,5. This along the analogous differentiability of f imply that the
m; there are also 4 times continuously differentiable for any € in ©” for any

z € R. Then dominated convergence implies the same for Z,, (k; (z,6)) for

(Bn)

allv=1,...,3. Then lemma along with lemma [AL.9|imply that BE‘%—'Q

converges to %é?) for any 0 in ©” with probability 1 — o (n’%> independent
of 0, hence with the same probability 0 satisfies 3, = Ey+0,. Hence with

probability 1 — o <n_%> independent of 6, ¢ satisfies

0= \/ﬁ (ﬁn - EQG:L) + An (9) + Ry (9)

where supgegr P (|| Rn (0)]] > 0 (n™')) = o (n7%/2). The result follows from
proposition , lemma AL.2 and theorem 3.2 in Arvanitis and Demos [1].
Notice that by the definition of ¢, (5) we have that Ey (¢, (8,,)) = Eof,,— B,
ie. GT = GMR2.
Finally, the case of 1 — GMR2 follows in complete analogy to the previous
by simply replacing in the previous proof any invocation to f with b=! () =
1—p3—1/(1=(202—¢3)*) (1-93) —(1—20a03+¢3)+1/(1-(202—3)?) (1—¥3
1 A 2p2—v3) o) 3)2&(—@3) A 3)) and of b
with the identity. B
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Appendix-General Proofs

The following are a collection of helpful results that are frequently used in
the proofs of the main results.

Lemma AL.1 Suppose that:
-UucC

sup Py (sup len (B) —c(0,8)] > 6) =0 (n’“) , Ye>0

) BeB

-AB ¢ (0, B) is jointly continuous and v (f) = arg mingeg c (6, 8), then
sup Py (|18, — v (O)l > e) =o(n™"), Ve>0
00

where (3, € arg mingep ¢, (3).

Proof. For £ > 0 independent of #, and for any 3 for which

1B =~ 0) >

there must exist a § > 0 such that

6(876)_C<677(9)) >0

due to the compactness of B the continuity of ¢ (6,-) and the uniqueness of
b(f) as a minimizer of ¢ (0, 8) for any 6. The compactness of © x B and the
joint continuity of ¢ implies that it can be chosen independent of . Suppose
that this is not the case which implies that infgea(eo) 0 = 0. Then there
exists a sequence 0, in © for which, for any € > 0 there exists an m (&) such
that ¢ (0, 5) — ¢ (0, v (0)) < € for all m > m (g). Due to compactness 6,,
can be chosen convergent, say to #,. Then due to the joint continuity of ¢
and the continuity of b we have that ¢ (0., S,) — ¢(0.,7v(0.)) = 0 which is
impossible if 5 # «y (6.) due to the property of v. Hence

sup Py (18, =7 (@) > ¢)
sup Py(|c(0,8,) —c(0,7(0))] > 9)

IN

IN

sup Py (suplcn () = (0.0)] > § ) =0 (™)

0eO BEB 2

which implies the result. m
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Lemma AL.2 Let assumptions . a) and hold. Then for j = %, %x
sup Py (||W; (67) — EgW (0)| > ¢) =0 (n~ “) Ve >0
0cO

Furthermore, there exists K > 0 for which

P (20> 1) =017

Proof. Assumptions , ) and the triangle inequality imply that for
any € > 0

sup Py (||W7 (67) — EgW (8)| > ¢)
0e®
< sup By (W4 03) = B 0)]] > 5 ) +sup Po (|| oW (63) = EaW (0)] >
0€0 0€O
< o(n™™)+ sup Py (HEQWJ (07) — EgW (0)| > %) by assumption [A.7a)
< o(n™™)+ Sup Py ( 0) |6y, — 8] > g) by assumption [A.7a)

= o(n™) by assumption

due to the fact that supyeg k7 (0) < +00. Now for K > supy.g | EgW7 (0)] >
0 which exists due to assumption [A.7a) and e = K — supyee || EsW7 (0)| we
have that
sup Py (HWJ (07) (
e 0e®
= sup Py (”W 0
(
)

)| > K) = supPy(||W} (0

w7 O)])

\— 1EW7 O)]] > €)

< supPg ||W (0) — EgW ( )H>€)
)

= o(n

Lemma AL.3 Suppose that

\/qn Wj (07,) ¢ (3)

for some appropriate random element q, where W7, 07 satisfy assumptions
. a), and for q an appropriate jointly continuous function on © x B

glelgPa(supgeBan(ﬂ)—q( Bl >¢e)=o0(n""),¥e>0

Then UUC holds for ¢ ( = /¢ (0,8) EgW7(0)q(0,5) which is

jointly contznuous.
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Proof. Due to the triangle inequality the submultiplicativity and the monotonic-
ity of the square root, we have pointwise that

e (8) — c(0.5)|

< lew (8) £ \Ja (6,8 W3 (63) 4.0, 8) — (6, 5)

< la, (8) = 2 0.8 lyson) +wq ) (WA (8) — EaW7 (0)) (6, 5)]
< g, (8) = 4 (0.8)llygos, + Il (6 ||\/||WJ o) — EgWi (0)]

< la (8) = a (8, 8) \/[[W2 (

therefore

0:)[| + lla (0, )1 /|| W3 (65) — EoWi (0)]

sup Py (supges llen (B) — c(8,8)] > €)

< sup P (supjes 14, ) 0. 9)] /[ 62
S

19
|>§>

s Py (supircoes 0 0,019 6~ £ 0)] > 5)

Now continuity of ¢ and compactness of © x B imply that sup y s)co x5 |17 (0, 8)[| <

M. Furthermore, for ¢ = VK and K as in lemma that applies due
to assumptions a), we have that the right hand side of the previous
inequality is bounded by

9
P, ' (B) — —
sup Py (supses 6, (5) — 0 (6,8)] > 5. )

X . e
P W2 (0% — E,W7 (6 —_—
+sup 9(” T(0r) — EgW ( )H>V2M)

and [AL.JJUUC follows due to the hypotheses and lemma The joint
continuity follows from the hypothesis for ¢ and the the fact that FE,WW7 (6)
is continuous due to[A.7a). =

Lemma AL.4 Suppose W7, 0% satisfy assumptions B,, and ~(0)
are as in lemma v is continuous on O. (0y) and that:

-FOC p,, satisfies
0
2 o)y 07 0, (5, = 0

with Py-probability 1 — o ( ) that is independent of 0,
-HUB for some §, M > 0 independent of 6 such that (Oa (60)) € Os (v (6o))
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: >q, ( ) —a*
and for all 7, SUDpeo, (09) Py (Supﬁeas(v(@o)) ) aﬁaﬁ ) (n ),

-RANK for any 8 € Os (v (6o)), aqg—ﬁ(ﬁ) is of full rank with Py-probability
1—o ( ) that is independent of 6 and,
-TIGHT for some C' > 0 independent of 0, supyep_ (o, Fo <\/ﬁ gn (7 (6))] > C'1In*/? n) =

o(n™"), then

sup Py (Vitl18, =7 (O)]] > C* 2 n) =o (0

9665(90)
for some C > 0 independent of 0.

Proof. Due to[AL.4 HUB-RANK, |A:7| and the mean value theorem we have
that with Py-probability 1 — o ( ) that is independent of ¢

2o 2w (07) Vg (3 (0) + A5, — 1 0)] =0
with
+ od’ + ) o n Ter
A= W(g Div 07, (57) 4+%§")W3 @t)%

where 3, lies between (3, and 7 (6). We have that due to submultiplicativity

waz )i (0 0)|

S Vit (@)

[

and due to |[AL.4HUB we have that 2.0 5(9)) is asymptotically equi-Lipschitz
and therefore there exists some constant m* > 0, independent of # for which

94, (v (9)) H . m*) o)

9B

furthermore assumptions [A.7] along with lemma imply that there
exists K > 0 independent of # for which

sup Py sup
0€0:(0o) €0 (6o)

sup Py (|[W3(6)]] > K) =0 (n™)
9605(90)
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hence due to [ALATIGHT

s £ (| 222w 07) v (@) > 00 =00

0605 90

for any C* > m?K which is obviously independent of . Furthermore, due
to .HUB and the mean value theorem with FPy-probability 1 — o (n_a*)
that is independent of

aq, (B,)
B

where 51" lies between 3 and ~ (). As before due to the definitions of
B and due to |[AL.4 TIGHT

an (B) = an (v (0)) + (BF —b(0))

g, (8,") . o
sup F, ———=||>m = o(n "),
0€0:(00) ’ ( op ( )
sup Py (||8 —v(0)] >¢) = o(n™) foranye >0

9665(90)

and due to[AL4 TIGHT

QGX%O)Pe(H%( D >e)=0(n™),ve>0

which furthermore along with [AL. 4 HUB and lemma imply that

9*q, (B) .
sup P, _— >ec|l=0(n""),Ve>0
00.00) ( 0pap; )

Also, [AL.4RANK via the Weierstrass theorem which 1mphes that with Py-

probability 1 — o (n™*") that is independent of 6, fﬂeo (b(0)) TARK q"[(f )

is full. imply that, with Fp-probability 1 — 0( ) that is indepen-
dent of 9 SUPyeo, (9y) Lo (A < k) = o(n™") for some k > 0 indepen-
dent of §, where A} denotes the smallest absolute eigenvalue of W7 (67).
These imply that with Py-probability 1 — o (n*a*) that is independent of 6
SUPgeo. () Lo (pm» < k*) = o (n™*") for some k* > 0 independent of §, where

W (03) ¢ (@t)]

i

+
pmin denotes the smallest absolute eigenvalue of (6 n(o )WJ 07) %
Hence with P,-probability 1 — o ( ) that i 1s independent of 6, A1 exists

0q.(87)

. 0 n n ] * n :
and is of the form (%Wg ) 6—6’) +B,, with suppcg_(g0) Po (|| Bnll > €) =
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0 (n™") for any € > 0. Furthermore due to the fact that < % (51)

is symmetric we have that

od, (B) . 9 (B)) r
(ngw")@—ﬁ’ = ()

[\

where 7 is the rank of the matrix. Hence for an € > 0

sup Py (141 > o
‘9605(‘90)

< sup Py (%+€>C> +o(n™")
0665(00) (/’L;”Lnln>

< sup P (%+8>c) +o(n ) =0(n")
0c0.(00)  \ (k")

sup By (Vi l|g, =7 (0)]] > C* n'/2n)

9€65(00)
< sw (a2 w6 v 6 @) > 0w o)
9605(90
+
< w1 (|22 0w ) Vi, 00| > S o)
0O (o) 85 C

which is 0 (n™®") for any C* > cC*. m

Lemma AL.5 Suppose that:
-FOC 3,, satisfies '
@n (B,) W3 (07,) an (B,) = 0O
with Py-probability 1 — 0( ) that is independent of 0,
-UTIGHT There exists a C*™ > 0 independent of 6 for which

s Py (Vallg, =7 (O) > Ct ' n) = o (n)

0€0, (60)

-UEDGE a. There exists a random element M, (0) with values in an Euclid-
ean space, containing the elements of \/n (67, — 0), the distribution of which
admits a uniform over O, (0y) Edgeworth expansion U, , (). The i" poly-
nomial, say, 7; (2,0) of W, (0) is equicontinuous on O. (0y) Yz € R, for
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i=1,...,8—2, and if ¥ (0) denotes the variance matriz in the density of
W, (0) then it is continuous on O, (8) and positive deﬁmte

-EXPAND The following hold with Py-probability 1 — o( ) that is inde-
pendent of 0

Z nz/2 Z] 0 Un < n (0)j 7Sn (0) ) + R (6 9)
i (9 « ! wox i N
Wi (67,) = Z —Ci (0) <Mn () ) + R™ (6%, 0)

Vit (8, —an S CEO) (Mo (0 S0 (0) ) + RE (B,00)

where S, (0) = /n (8, — (), C5, + O=(0) x RY — RP, C* : O. () x
R? — RP are i-linear, Ci;, : © x RT™ — RP is (i + 1)-linear Y0 € O, (6,),
Coo,.» Cor, C’S%n 9), C’Sﬁn (0) are independent of n and have full rank V0 €
0. (0), Cr., Cr~, Cﬁn are equicontinuous on O, (0y), and

sup Py (||RH| > 72) =0 (n_“*) L=k, xx,
0665(00)

for real sequence 4!, = o (n_“*) independent of 0, for , [ = %, xx, #.

Then \/n (B, — v (0)) admits a locally uniform Edgeworth expansion, W, . (6),
over O, (6). The i™ polynomial, say, m; (z,0) of the density of 7 () is
equicontinuous on O, (0p) ¥z € RY, fori=1,...,5—2, and if ¥* (0) denotes
the variance matriz in the density of U7 _(0) then it is continuous on O, (6y)
and positive definite.

Proof. Due to conditions UTIGHT and EXPAND condition FOC implies
that with FPy-probability 1 — o ( ) that is independent of ¢

(Z ni/2 i Un (0) (Mn (e)j ’ (\/ﬁ (B — (9)))Fj> + Ry, (B, 0)) X

W (Mn 0)) + By’ <9:;,9>> x
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Gathering terms of the same order we obtain that with Pj-probability 1 —
0 (n_“*) that is independent of ¢

s*—1

ZW S o (0) (M (0 (Vi (B, = 00) ) 4R (5,,05,0) = 0

with Coo, (0) = Ciy, (0) G2 (0) Cgp, (0), Con,, (0) = Ci, (0) Cs, (0) Gy, (6)
which are obviously independent of n and of full rank,
Cij, (0) = > Crojon 0) Ci (0)CE, (6)
Jotj1tje=Jto+i1+j1=1
which is obviously equicontinuous on O, (fy). Moreover R, (8,,0%,0) is a
sum containing terms of the form
1 * 1) 10—Jo *k 1

An = G (0) (Ma (O, (VAL (B, = 7 (0)" ) €51, (0) (Ma (0)")

CF, (0) (Mo (0)”, (VR (B, — 7 (8) ")

for which 7; + 45 + j1 > s* — 1. Due to equicontinuity which along with
the compactness of O, (fy) imply that the C' functions and thereby their
products have uniformly bounded coefficients, and the submultiplicativity
we have that for some M > 0 independent of ¢

io+i1+1—j1—j 14
14l < gz VR Bu =y @) 1M ()11

hence due to UTIGHT, UEDGE which along with lemma AL.2 of Arvanitis
and Demos [1] imply the existence of a constant C' > 0 independent of # for
which

sup By ([ Anll > 7,,)

9€65(00)
< P \/— t0+i1+1—71—J2 M. (0 J1+72
< s P (VA (B, -1 )] M, @+ > 7,
9605(90)
. M (C+)io+i1+l—j1—jz Cirtiz iy
< o(n_“)—i- sup Py — In" 2 n>qy,
0D (60) n(lo+i1+51)/2

M(CH)OTATITITI2 gy jy iy g1 .
which is of order o (n™*") for v, = )n(ioﬂ.ﬁjl)m n 2 n=o(n")

and is obviously independent of ¢. Furthermore R,, (3,,,0) contains terms of
the form

B O lles o) (1.0)) €2, @) (407 (Vi (5, -~ @) ")

B, =
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and of the form

G

Fn - ni1/2 t1n

(6) (M. (6)" ) BE (3,.6)

and of the form

1 1 11—Jo *k *
An = WCZJWL (9) (Mn (‘9)]0 ) (\/E (ﬁn -7 (8))) ) R" (9”’ 8)

XCl, (0) (M (6), (Vi (5, = (8))) "7 7)

and of the form

By = 5 Chge, 6) (M (0, (VAL (B, — 7 (0)" ) R 65,6) BY (5,.,0)

for any compatible iq, 71, 72, j, j1, j2 and finally the term
Zn = Ry, (B,,0) Ry (05, 0) R (8,,,0)

and using the same arguments as before along with condition EXPAND, we
have that

sup By (|| Bull > 7,)

9665(00)
M . i in+1—j
< s B (e R (B O M O [V (8, — 7 @) > 7,
90, (6o) niTe

. M (CH)2 T oin iy
< o(n*“)—i- sup Pg( (n(i3+i2)/2 In" 2 Ty >,

0€0, (6o)

. . M(cH)2 o igip s .
which is of order o (n @ ) for v, = (n(i2+i2)/2 In" 2 ny, = o (n @ )

and is obviously independent of #, and

sup By ([Tall > 7,)

9665(90)
M * i1 #
< sup By (= R (B, )M (O)1™ (| B (B, 0)]| > 7
0€0O: (o)

. MCH
< o (n*a ) + sup Py ( iz Inz nyiy# > ”yn)
6€0. (60) nt

49



. . ok 7 ﬂ _
which is of order o (n a ) for ~,, = 17\1410/21 In? nyy?r =o (n

ously independent of 6, and

a*

) and is obvi-

sup By (|An]] > 7,)

00O (o)
t1+iz+1—jo—j jo+J x% [ )k
< sw B ( s IV B = O] 0 @) | Ry (05, 0)]] > vn>
9605(90)
e MOjOJer (C+)i1+i2+1fj0*j2 iy gt .
< oln )+9e§9111()90) i ( nlit+iz)/2 =2y >
jot+iz ()1 T2t do—d2 gy
which is of order o (n™*") for v, = pem (n?ilzw)/z n nyr =
0 (n_“*) and is obviously independent of # and
sup By ([|Enll > 7,)
9605(90)
< sw B < AL O [V (8, — 7 O] IR (B O] || RE (8,.0)]) > vn)
0608(00)
N C+ 11—Jjo C(jo
< o(n™)+ sup By M 31 7 In? g F >,
9665(90) n

* + 1-Jo i1 *
which is of order o (n™*") for v, = W In? ny v =o(n™) and

is obviously independent of # and finally

sup By ([|Zn]] > 7)

0€0.(6o)

< sup Py (R (B, O IRy (65, O | RE (B, 0)]| > 7.)
00 (60)

< sup Py (Vi > )
0€O.(0o)

which is of order o ( ) for v, = vy y# =0 (n ) and is obviously inde-
pendent of #. Hence there exists a real sequence v, = o (n‘“*) independent
of @ for which

sup P9(||R ( n’ n’ )H >7n)20(n_a*)
9605(00)

The result follows then from theorem 3.2 of Arvanitis and Demos [I]. m

Lemma AL.6 Under assumptions [A.7 and [A.§ condition EXPAND hold
for Wi (0%) where M, (6) = \/nm,, (0).
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Proof. Due to assumption |A.7b) for any 6 € O. (6y) and any 6, sufficiently
close to 0, W7 (0,) admits a Taylor expansion of order s* — 1 around 6 of the
form

W) = 7, oo (6.-)
+ﬁ (D77 (0F) — DYWL (0)) <(9* - 9)5*_1>

where 67 lies between 6, and 6. Due to the assumption the elements of
Vn (0% — 0) are in M, (). Furthermore there exist K*(f) i-linear functions
such that the coefficients of v/n (D'W/ (6) — K (6)) are also in M, (f). Due
to assumption - A.7\b) the elements of K* () can be identified as the uniform
probability limits of the corresponding elements of DWW/ () and thereby
are continuous on O, (fy). Obviously K°(§) = E,W7 (6) due to .a
The previous along with lemma AL.2 of Arvanitis and Demos [1] imply the
existence of a constant C' > 0 independent of # for which

sup By <\/ﬁ\|9;’; —6|| > C'In'/? n) =o(n™*)

9655 (90)

hence we obtain that with probablhty 1—o0 ( ) that is independent of 6
T o) (VA - 0))

+Zl 1121, }/2 (D' (0) — K7H(0)) ((\/ﬁ(e;‘;—e))i)
+R (6, 0)

W7(0:) = EWi(0 Z

with

R0 = -

( - 1) - (Ds*flwg (9+) o DS*ilWrZ (0)) ((\/ﬁ (9; . 6))s*—1>
1 1

Fpy eV (0O - K ) (Va6 - 0))
Furthermore due to submultiplicativity, [A.7] -b E and lemma AL.2 of Ar-
vanitis and Demos [1] there exist M, C > 0 and independent of § such that

sup Py (|| 7, (07, 0)] > 77"
0c0-(0o)

ﬁ ngl (Ds 71W] (0+ Ds*ilwg (0)) X *ok
< sup By "

) -
6€0.(60) ((\/_( —0)) _1> 7
Vi (DT (0) = KT (9)) % -
+ sup By "

6€0.(00) <(\/_(9* —0))’ _1) 2
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which is less than or equal to

sup By ( n; SUPyeo.. (6o) | D" Wi (0)] 1165, — 6]l = >
) I8, - > %

-5 )
VA - 0" > %

< O(n*“*) b oswp P <; ]\4* W2 s 7;:*)

6665 (90

1
+ sup By < n'r

0c0.00)  \(s*—Dln> 2
1 Os* . *3k
+ sup Pg (*—'Tlns /2n> Tn >
0c0.00)  \(5* = Dlp% 2

1 2max(M,CS*)
s*—1)! s>
n

which is of order o (n™*") when v = ( = In*/%n = o (n=")

independent of §. Hence due to the rank condition on EyW/ (f) from as-
sumption [A.7a) the result follows. m

Lemma AL.7 For real valued functions f,, f defined on © O O, suppose
that: suppee | fu — f| = 0 (1), and supyeg ||D?foll , supgeo [|D?f|| < M. Then
supgeo | Dfn — Df|| = 0(1).

Proof. For any with 6,, # 6 and D; = a%- for any i

sSup ’Difn (0) — Dif (‘9)|

0cO
0cO ‘elm - 9’ 0cO ‘Hlm - 9‘
By I T vt B

which is less than or equal
1
2010 01+ - (sup16) = O}l + 50011, 0) — £ 0) )
Cm \0cO 0cO

where ¢, = mingeg |0;,, — 0| which exists due to the compactness of © and
continuity and it is different from zero due to the definition of 6,,, which
converges as n — o0 to

2M (|0, — 0]

letting then 6,, — 6 we obtain the needed result. m
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Lemma AL.8 Suppose that v/nm,, (0) admits a locally uniform Edgeworth
expansion, say ¥, s (0), of order s over ©', the polynomials of the density
of which, say, 7 (2,0) of U, (0) are equicontinuous on © Vz € R?, for
i =1,....,s =1, and V (0) denotes the variance matriz in the density of
U, (6) then it is continuous on © and positive definite. Let the random
element \/nv,, (6) be comprised by elements of \/nm,, (8) such that its support
is bounded by /nI’ for T' a bounded set of some Euclidean space. Then
Vnmi (0) = /n ( . 0;”_” (Ee')yn () ) admits a locally uniform Edgeworth
expansion of order s — 1 over O (6y,6), the polynomials of the density of
which are equicontinuous, as well.

Proof. As+/nv, (0) is part of v/nm,, (0) (a projection) we have that \/n-y,, (6)
admits a locally uniform Edgeworth expansion of order s over ©' (see lemma
AL.1 in Arvanitis and Demos [I]), the polynomials of the density of which
are equicontinuous on ©. Due to lemma [3.1, above, we have that

5—2
T (27 9)
\/ﬁEGfYn - /RZ (1 + Z nz‘/Q ) SOV(G) (’Z> dz

sup
e’
ST, R 0| (e
Qsél(gl \/ﬁ 0n Zz‘zl nz/Z =o\n

where (1 Y2 ml) ) ¥y sy (2) denotes the density of the Edgeworth dis-

nz/2
tribution truncated up to the O (n’%z> order, i.e. of the (obviously) valid

locally uniform Edgeworth expansion of order s — 1, k; (2,0) = zm; (2,0)
and Z,, = [p ki (2,0) oy ) (2) dz. Using the fact that the 7;’s are
equlcontmuous on O it is easy to see that so do the Z,, (k; (z,6)). It is also

obvious that the random vector v/nl, (#) = v/n ( 7:’;” ((90)) ) admits a locally

uniform Edgeworth expansion of order s — 1 over ©', the polynomials of
the density (say 7)) of which are equicontinuous on ©. Consider the vector
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0 im(mny . .
Uy = ( ZS_; I\E (kizzﬂ)) ) For an arbitrary Borel set A due to the previous

i=1 nt/2

P (vnm;, (0) € A)
= P(VaL(0) € A+ v, +o(nF))

0dim mn _s—2
s—3 ﬂ-f (Z + < 25—2 I‘E(kizzﬂ)) ) +o0 (TL 22) ,9)
_ 14 i=1 ~ i/
[ANEEDS

i=1

0dim(mn) _s=2 _s=2
X@y@ | Zt+ Z;_g Iy (ki(=,0)) +0<n 2) dz+o<n 2)

=1 n"/2

where H¢ (C') analogously to the relevant term in the proof of theorem 3.1
in Arvanitis Demos [I]. Expanding and holding terms of relevant order,

by noticing that the 7; are polynomial in z, and that the o (n’%g) are

independent of 6 we obtain the needed result. =
The second auxiliary result is the only one employing the assumption of
normality.

Lemma AL.9 Suppose that \/n(p, —b(0)) and /n (6, — 0) admit locally
uniform Edgeworth expansions of order s over ©' the polynomials of the
densities of which, say, m; (z,0) are equicontinuous on ©' Vz € R3, for i =
1,...,s =1, and the distribution of €q is standard normal. Then E (p,, (9))
and E (0, (0)) are two times differentiable on ©' and for any 0 € ©' and

1/2

any sequence 0, # 0 with values in ©' such that ||0, — 0] < C252 for
0>&@:wHaﬁ—» O = o1) where M, (0) = E(g, (0)),
M2 (9) = E(0 (0)) K1 K2 ldRB

n

80/

Proof. Consider first the case of E (¢, (0)). Let o (g) the smallest sub
o-algebra of F w.r.t. the e5,e_1,... are measurable. We have that

E (¢, (0)) = E(E (¢, (0) /o (€0)))

Now notice that

St e on (A1)

o4



and the differentiability result would follow via the dominated convergence
theorem if

 (sup 1, 0] and £ (sup 17, )]

0ce’

are finite where s, (6) = > " (52. — 1) _1 _0h;(0) H, () =" (5? _ 1) 1 9%h(0)

j=1\%j R;(0) 99 j=1 h;(0) 900"
n Oh;(0) Oh;(0) — T7 .

5o (263 - 1) g 4O 00 5 (0) = Ls, (6), H, (0) = LH,, (). First no-

tice that h; (0) >

(1 — N, — ﬁﬂ) = ¢, and due to the fact that

Oh;—1(0)
001

Ohj—1 (0)
004

Ohj—1 (0)
863

= (1—0;—03) + (0257_, +05)

= —01+¢e7 b1 (0) + (0255, + 03)

= —61 + hj,l (9) + (928?71 + 93)

hence

Sy )
Oh; (0)
0

E (sup
0ce’

1 n
< Y BV 1 B s

!/
and for 0* = (77, n*,n* ) it is easy to see that
N 10 Mg

2 2

ahj (0) < 400

o, (9")
060

06

<5

FE sup
9ce’

Furthermore, since

0*h; (0)
003
0%h; (9)
06?2

2
: 22)?)( - 893(0) + (a4 )
0*h; (0)
96100, I
9*h; (0)
90,005 a0,

Ohy1 (6)
00,

Oh_ (6)
062

+ei + (0225, + 05)

9h;_, (6)
003
Oh;_1 (6
+ (92*3]2'_1 +0s) —aélééZ)
0%h; (9)
00,003

+ (0282 + 93)

7—1

95



we have that

E <sup
oco’

no 1 0%h; (0)
2 &~V 1) o000 D
*h, (07 |

9000’

ézjl B2 |e2 1P B2 < 40

and

> - ml(e) a@’ H)

E (sup
gcer §
Oh, (6% |I*
00

1 n
< 2 Zj:1 EY? |22 — 1 B/

Next notice that for any 6 in © any ¢ = 1,...,3, and any sequence 0,, as
described above we have that

H@E (¢ (62)) _ 9 (6)
00, 00;

PE (9, (07)) E (2, (0)) = E (9, (6)) _ 0b(6) ‘
00,00' 0, —0, 90,

Then lemma [2.4) above, implies that due to the behavior of 6,, the last term
on the right hand side of the last display is o(1). Hence the result would

follow if supg«cgn H% ’ =0 <ln\1//7§n>' The previous along with an

< 400

< 2 sup
0*ce’

|

application of the Cauchy-Schwarz and the triangle inequalities imply that
for any 7

325 ae ae’ H

sup E'Y? |, () — 6]

IN

. (S“P EY? |5, (0) 5, (8) — EH, (0)|> + sup EY? | H, (0) — EH, <9>|!2)
e’ 0cO’

Furthermore, due to assumed Edgeworth approximation for v/n (¢, (6) — 6),
and the fact that s > 5 lemma/[3.I]along with theorem 3.1 in Arvanitis Demos

[1] imply that supgee £/ (0, — b(0))|]> = O ( ) Hence the result would
follow if

sup E |5, (0) 3, (0) + B, ()" = o ()

0O’ Inn
_— 2 n
sup B |71, (6) = EA 0)]" = o (57)
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From the proof of Lemma A.1 of Corradi and Inglesias [2], we can prove
that /n (Sk(0) — E(Sk())), where S} contains stacked the elements of s,
and H, admits a locally uniform Edgeworth expansion of order s — 3 over
©' by establishing the conditions A2.M-WD and A3.EL-CPD in Arvanitis
Demos [I] through the provision of bounds being independent of 6 using the
compactness of ©’ and condition A3.NDD in Arvanitis Demos [1] using the
result of the referenced proof, the P almost everywhere continuity of the
elements of S () on ©’, the continuity of determinant and the compactness
of ©'. Then remark R.3 implies that
2

esgg,EHnE,L(Q)E:L(@)+Eﬁn(9)H = 0(1)

sup £ || H, (9) — EH, (0)]” = 0(1)
0ce’ n

which establish the needed bounds. The result about E (6,,(0)) is derived
analogously. m
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