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1 Definition of Estimators
In what follows, when A is a matrix ‖A‖ denotes a submultiplicative matrix
norm, such as the Frobenius one (i.e. ‖A‖ =

√
trA′A). We denote with

PD (k,R) the cone of positive definite matrices of dimension k × k. When
x ∈ Rk, ‖x‖W denotes

√
x′Wx with respect to the conformal positive definite

matrix W . When W is the identity we we just write ‖x‖. Any subset of a
metric space is (by abuse of terminology) considered as a metric space when
endowed with the obvious restriction of the underlying metric. Analogously
it is considered a measurable space when endowed with the resulting Borel σ-
algebra.Oε (θ) denotes the open ε-ball around θ in a relevant metric space and
Oε (θ) its closure. For s∗ and s positive integers, with s∗ ≥ s, let a∗ = s∗−1

2

and a = s−1
2
.

The notions employed in the paper essentially rely on the characteristics
of the statistical model at hand. The following assumption sets these up.
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Assumption A.1 For a measurable space (Ω,F), the statistical model (SM)
is a family of probability distributions on F parameterized by par a function
that is onto a compact subset Θ ⊂ Rp for some p ∈ N. SM is considered
endowed with the topology of weak convergence and par−1 is continuous in
the following manner: for any θ ∈ Θ and θn converging to θ then Pn an
arbitrary member of par−1 (θn) converges to a member of par−1 (θ).

We abbreviate with θ0 = par (P0) ∈ Int (Θ), for P0 in SM. The auxiliary
estimator is denoted in the paper by βn whereas θn is the collective notation
for the indirect ones. We also employ b (θ) to denote the binding function

Assumption A.2 For B a compact subset of Rq, Qn : Ω×B → R is jointly
measurable. Moreover Qn is continuous on B for Pθ0−almost every ω ∈ Ω.

We suppress the dependence of the random elements involved on Ω, for
notational simplicity.

Definition D.1 The auxiliary estimator is defined as

βn ∈ arg min
β∈B

Qn (β)

Qn could be a likelihood function, a GMM or more generally, a distance
type criterion like the ones appearing in the following definitions.

Assumption A.3 The binding function b : Θ → B is injective and contin-
uous on Θ.

The initial estimators are denoted by θ∗n.

Assumption A.4 W ∗
n : Ω × Θ → PD (q,R) and θ∗n : Ω → B are jointly

measurable.

Definition D.2 The GMR1 estimator is defined as

θn ∈ arg min
θ∈Θ
‖βn − b (θ)‖W ∗n(θ∗n)

Lemma 1.1 Under assumptions A.1 and A.2, ‖Eθβn‖ <∞ on Θ.

Proof. ‖Eθβn − b (θ)‖ ≤ Eθ ‖βn − b (θ)‖ ≤ M1, where M1 denotes the
diameter of B, finite due to the compactness of B.

Definition D.3 The GMR2 estimator is defined as

θn ∈ arg min
θ∈Θ
‖βn − Eθβn‖W ∗n(θ∗n)
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Assumption A.5 Let Qn be differentiable on B for Pθ−almost every ω ∈ Ω.
We denote with cn the derivative of Qn except for the case where Qn =
‖cn (β)‖Wn(β∗n), where cn : Ω × B → Rl, Wn : Ω × B → PD (l,R), and
β∗n : Ω → B are jointly measurable. Moreover cn is continuous on B for
Pθ0−almost every ω ∈ Ω, cn (β) is Pθ−integrable on Θ×B and Eθ (cn (β)) is
continuous on Θ×B. Also W ∗∗

n : Ω×Θ→ PD (l,R) is jointly measurable.

Eθ (cn (βn)) denotes the quantity Eθ (cn (β)) |β=βn for notational simplic-
ity.

Definition D.4 The GT estimator is defined as

θn ∈ arg min
θ∈Θ
‖Eθ (cn (βn))‖W ∗∗n (θ∗n)

Some simple cases of almost sure (or possibly asymptotic) coincidence
of the estimators are the following. Suppose, first, that Qn (β) = ‖cn (β)‖,
cn (β) = qn − g (β) with the random element qn ∈ g (B) with Pθ probability
1 for any θ. Suppose that qn converges in probability to m (θ) under Pθ,
and g (β) and m (θ) are invertible. Then with Pθ probability 1, for any θ,
βn = g−1 (qn), b (θ) = g−1 (m (θ)), and GMR1 = m−1 (qn). Also, when
m (θ) = Eθqn then GMR1 = GT with Pθ probability 1. If moreover g
is linear then the GMR2 is also Pθ almost surely equal to the other two.
Second, when q = l, m (θ) 6= Eθqn yet Eθqn is injective, βn belongs to its
range with Pθ probability 1− o (1) and g is linear then GMR2 = GT with Pθ
probability 1 − o (1). In this case, the existence of GMR2 would imply the
existence of GT with Pθ probability 1− o (1).

2 Validity of Edgeworth Approximations
Assumptions Specific to the Validity of the Edgeworth Approximations

We denote with Dr, the r-derivative operator and with Dr (f (x0)) (xr) the
rth-linear function defined by the evaluation ofDrf at x0 evaluated at (x, ..., x)︸ ︷︷ ︸

r times

.

Let M denote a universal positive constant, independent of n and θ, not
necessarily taking the same value across and inside assumptions proofs and
results. pri,j (x) denotes the transformation of an rth dimensional vector, say
x = (x1, x2, ..., xr)

′, to a vector containing only the elements of x from the
ith to the jth coordinate, i.e. pri,j (x) = (xi, xi+1, ..., xj)

′, where naturally
1 ≤ i ≤ j ≤ r. Finally whenever the assertion "locally independent of θ"
appears in the sequel it implies "independent of θ for θ ∈ Oε (θ0)" unless
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otherwise specified. Notice that due to the fact that the spaces Θ and B
are separable and closed, suprema of real random elements over these spaces
are typically measurable (see van der Vaart and Wellner [7], example 1.7.5
p. 47 due to the theorem of measurable projections, completeness of the
underlying probability space, the compactness of Θ and the continuity of b).

Assumption A.6 βn is uniformly consistent for b (θ) with rate o
(
n−a

∗)
,

i.e.
sup
θ∈Θ

Pθ (‖βn − b (θ)‖ > ε) = o
(
n−a

∗)
,∀ε > 0.

Moreover θ∗n is uniformly consistent for θ with rate o
(
n−a

∗)
.

Assumption A.7 For j = ∗ or ∗∗ and k =

{
q if j = ∗
l if j = ∗∗ , suppose that

there exists a sequence of random elements xn : Ω→ Rm, such that W j
n (θ) =

1
n

∑
W j (xi (ω) , θ) for measurable W j : Rm×Θ→ PD (k,R), integrable with

respect to Pθ∗, such that

a) sup
θ∗∈Θ

Pθ∗
(∥∥W j

n (θ)− Eθ∗W j (θ)
∥∥ > ε

)
= o

(
n−a

∗)
, ∀ε > 0

Eθ∗W
j (θ) is Lipschitz w.r.t. θ, for any θ∗ and for the Lipschitz coeffi cient

(say) κj (θ∗) we have that supθ∗∈Θ κ
j (θ∗) < +∞.

b) For j = ∗ if p 6= q and j = ∗∗ if p 6= l, W j (x, θ) is s∗-differentiable on
Oε0 (θ0) for ε0 > ε and

sup
θ∗∈Oε(θ0)

Pθ∗

(
sup

θ∈Oε(θ0)

∥∥Ds∗+1W j
n (θ)

∥∥ > M

)
= o

(
n−a

∗)
.

Let f (x, θ) denote the vector that contains stacked all the distinct com-
ponents of W ∗ (x, θ) and W ∗∗ (x, θ) as well as their derivatives up to the
order s∗ − 1. If f (x0, θ) − Eθf (x0, θ) contains zero elements then these are
discarded. Furthermore when p = q the elements corresponding to W ∗ (x, θ)
and its derivatives are also discarded. Analogously when p = l the elements
corresponding to W ∗∗ (x, θ) and its derivatives are discarded too. Obviously
when f (x0, θ)−Eθf (x0, θ) equals zero or p = q = l, f becomes irrelevant to
what follows. Let

mn (θ) = βn − b (θ)

when f (x0, θ)− Eθf (x0, θ) is zero or p = q = l,

mn (θ) =

(
βn − b (θ)

1
n

∑
f (xi)− Eθ 1

n

∑
f (xi)

)
4



when f (x0, θ) is independent of θ yet f (x0) − Eθf (x0) is not zero and the
involved dimensions do not coincide, and

mn (θ) =

 βn − b (θ)
θ∗n − θ

1
n

∑
f (xi, θ)− Eθ 1

n

∑
f (xi, θ)


in any other case. Furthermore Ψn,s∗ (θ) denotes an Edgeworth measure of
order s∗ (see for example equations (3.7) and (3.8) of Magdalinos [5]), and
with πi−1 (z, θ) the polynomial (w.r.t. to z) in the density of Ψn,s∗ (θ) with
coeffi cient 1

n
i−1
2
, for i = 1, . . . , s∗ (notice that π0 = 1).

Assumption A.8
√
nmn (θ) has an Edgeworth expansion of order s∗ uni-

formly on Oε (θ0). Furthermore πi (z, θ) is equicontinuous on Oε (θ0) ∀z ∈
Rq, for i = 1, . . . , a∗, and if V (θ) denotes the variance matrix in the density
of Ψn,s (θ) then it is continuous on Oε (θ0) and positive definite.

The proof of the following theorem can be found in Arvanitis and Demos
[1] (Proof of Theorem 3.2).

Theorem 2.1 Suppose that:
-POLFOC Mn (θ) satisfies 0p×1 =

∑s−1
i=0

1
ni/2

∑i+1
j=0 Cijn (θ)

(
Mn (θ)j , Sn (θ)i+1−j

)
+

Rn (θ) with probability 1− o
(
n−

s−1
2

)
independent of θ where Cijn : Oε (θ0)×

Rqi+1 → Rp is (i+ 1)-linear ∀θ ∈ Oε (θ0), C00n (θ) , C01n (θ) are independent
of n and have rank p ∀θ ∈ Oε (θ0), Cijn are equicontinuous on Oε (θ0), ∀xi+1,
-LUE Sn (θ) admits a locally uniform Edgeworth expansion the polynomials
of the density of which are equicontinuous on Oε (θ0) and the variance matrix
is continuous on Oε (θ0) and positive definite,

-UAT supθ∈Θ P
(
‖Mn (θ)‖ > C ln1/2 n

)
= o

(
n−

s−1
2

)
for some C > 0 inde-

pendent of θ,
-USR supθ∈Θ P (‖Rn (θ)‖ > γn) = o

(
n−

s−1
2

)
for some real sequence γn =

o
(
n−

s−1
2

)
independent of θ.

Then Mn (θ) admits a locally uniform Edgeworth expansion he polynomials
of the density of which are equicontinuous on Oε (θ0) and the variance matrix
is continuous on Oε (θ0) and positive definite.

Existence of Edgeworth Expansions for the GMR-type Estimators

The GMR1 Case
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Assumption A.9 b (θ) is s∗+1 continuously differentiable and rankDb (θ) =
p, for all θ in Oε0 (θ0) and ε0 > ε.

Lemma 2.2 i) Under the assumptions A.1, A.2, A.3, A.4, A.6 and A.7.a
the GMR1 is uniformly consistent for θ with rate o (n−a).
ii) If additionally assumptions A.7.b, A.8 and A.9 hold then,

√
n (GMR1−θ)

has an Edgeworth expansion of order s∗ uniformly on Oε (θ0), for ε < ε0,
where ε0 as in the above assumption.

Proof : i) Due to the triangle inequality and assumption A.6 we have
that for ε > 0

sup
θ∗∈Θ

Pθ∗

(
sup
θ∈Θ
|‖βn − b (θ)‖ − ‖b (θ∗)− b (θ)‖| > ε

)
≤ sup

θ∗∈Θ

Pθ∗ (‖βn − b (θ∗)‖ > ε) = o
(
n−a

∗)
Hence for qn (θ) = βn−b (θ), q (θ∗, θ) = b (θ∗)−b (θ) and by assumption A.7.a
lemma AL.3 applies. Hence for γ (θ) = θ due to assumption A.3 lemma AL.1
also applies delivering the result.
ii) Given i), we have that θn ∈ Oε (θ) with Pθ-probability 1 − o

(
n−a

∗)
that

is locally independent of θ for any ε > 0. For some ε small enough, such
that Oε (θ) ⊂ Oε0 (θ0) (which exists due to the fact that ε0 > ε) due to
assumption A.9, we have that condition FOC of the appendix lemmas AL.4
and AL.5 is satisfied by the GMR1 estimator with Qn + ∂b′

∂θ
. Furthermore

assumption A.9 implies conditions HUB (γ (θ) = θ hence set δ = ε0) and
RANK of lemma AL.4 . Condition TIGHT, of the same lemma, follows from
A.8, as under this assumption there is C∗ > 0 locally independent of θ such
that

sup
θ∈Oε(θ0)

Pθ

(√
n ‖βn − b (θ)‖ > C∗ ln1/2 n

)
= o

(
n−a

∗)
(1)

(see lemma AL.2 of Arvanitis and Demos [1]). Hence lemma AL.4 applies
ensuring that

sup
θ∈Oε(θ0)

Pθ

(√
n ‖GMR1−θ‖ > C ln1/2 n

)
= o

(
n−a

∗)
for some C > 0 locally independent of θ. Hence condition UTIGHT of lemma
AL.5 holds. Moreover assumption A.8 implies condition UEDGE of the same
lemma for Mn (θ) =

√
nmn (θ). Due to assumption A.9 for any θ ∈ Oε (θ0)

and any θ∗ suffi ciently close to θ, ∂b
′

∂θ
(θ∗) admits a Taylor expansion of order
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s∗ − 1 around θ of the form

∂b′

∂θ
(θ∗) =

∑s∗−1

i=0

1

i!
Di∂b

′

∂θ
(θ)
(

(θ∗ − θ)i
)

+
1

(s∗ − 1)!

(
Ds∗−1∂b

′

∂θ

(
θ+
)
−Ds∗−1∂b

′

∂θ
(θ)

)(
(θ∗ − θ)s

∗−1
)

where θ+ lies between θ∗ and θ. This implies that for θn = GMR1 due to
condition UTIGHT of lemma AL.5 we have that with Pθ-probability 1 −
o
(
n−a

∗)
locally independent of θ

∂b′

∂θ
(θn) =

∑s∗−1

i=0

1

i!

1

ni/2
Di∂b

′

∂θ
(θ)
((√

n (θn − θ)
)i)

+R∗n (θn, θ)

whereR∗n (θn, θ) = 1
(s∗−1)!

1
n(s
∗−1)/2

(
Ds∗−1 ∂b′

∂θ

(
θ+
n

)
−Ds∗−1 ∂b′

∂θ
(θ)
) (

(
√
n (θn − θ))s

∗−1
)
,

and θ+
n lies between θn and θ. Now by assumption A.9

∂b′

∂θ
(θ) has full rank

for any θ ∈ Oε (θ0) and by submultiplicativity, the relation of θ+
n to θn and

condition UTIGHT

sup
θ∈Oε(θ0)

Pθ

(∥∥∥∥∥
1

(s∗−1)!
1

n(s
∗−1)/2

(
Ds∗−1 ∂b′

∂θ

(
θ+
n

)
−Ds∗−1 ∂b′

∂θ
(θ)
)
×(

(
√
n (θn − θ))s

∗−1
) ∥∥∥∥∥ > γ∗n

)

≤ sup
θ∈Oε(θ0)

Pθ

(
1

(s∗ − 1)!

1

n(s∗−1)/2
sup

θ∈Oε0 (θ0)

∥∥∥∥Ds∗ ∂b
′

∂θ
(θ)

∥∥∥∥∥∥θ+
n − θ

∥∥∥∥√n (θn − θ)
∥∥s∗−1

> γ∗n

)

≤ sup
θ∈Oε(θ0)

Pθ

(
M

(s∗ − 1)!

Cs∗

ns∗/2
lns
∗/2 n > γ∗n

)
+ o

(
n−a

∗)
which is of order o

(
n−a

∗)
for γ∗n = M

(s∗−1)!
Cs
∗

ns
∗/2 lns

∗/2 n = o
(
n−a

∗)
and locally

independent of θ. Analogously, due to assumption A.9 for any θ ∈ Oε (θ0)
and any θ∗ suffi ciently close to θ, b (θ∗) admits a Taylor expansion of order
s∗ − 1 around θ of the form

qn = βn − b (θ∗) = βn − b (θ∗)−
∑s∗

i=1

1

i!
Dib (θ)

(
(θ∗ − θ)i

)
− 1

s∗!

(
Ds∗b

(
θ+
)
−Ds∗b (θ)

) (
(θ∗ − θ)s

∗
)

where θ+ lies between θ∗ and θ. This implies that for θn we have that with
Pθ-probability 1− o

(
n−a

∗)
√
n (βn − b (θn))

=
√
n (βn − b (θ))

+
∑s∗−1

i=0

1

(i+ 1)!

1

ni/2
Di+1b (θ)

((√
n (θn − θ)

)i+1
)

+R#
n (θn, θ)
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where R#
n (θn, θ) = 1

s∗!
1

n(s
∗−1)/2

(
Ds∗b

(
θ+
n

)
−Ds∗b (θ)

) (
(
√
n (θn − θ))s

∗)
, and

θ+
n lies between θn and θ. Now by assumption A.9

∂b′

∂θ
(θ) has full rank for

any θ ∈ Oε (θ0) and so does the identity matrix in front of
√
n (βn − b (θ)),

and thereby due to submultiplicativity, the relation of θ+
n to θn and condition

UTIGHT

sup
θ∈Oε(θ0)

Pθ

(∥∥∥∥∥
1
s∗!

1
n(s
∗−1)/2

(
Ds∗b

(
θ+
n

)
−Ds∗b (θ)

)
×(

(
√
n (θn − θ))s

∗) ∥∥∥∥∥ > γ#
n

)

≤ sup
θ∈Oε(θ0)

Pθ

(
1
s∗!

1
n(s
∗−1)/2 supθ∈Oε0 (θ0)

∥∥Ds∗+1b (θ)
∥∥∥∥θ+

n − θ
∥∥

×‖
√
n (θn − θ)‖s

∗
> γ#

n

)

≤ sup
θ∈Oε(θ0)

Pθ

(
M

s∗!

Cs∗+1

ns∗/2
ln(s∗+1)/2 n > γ#

n

)
+ o

(
n−a

∗)
which is of order o

(
n−a

∗)
for γ#

n = M
s∗!

Cs
∗+1

ns
∗/2 ln(s∗+1)/2 n = o

(
n−a

∗)
and locally

independent of θ. Finally due to lemma AL.6 which applies by assumptions
A.8 and A.7 condition EXPAND of lemma AL.5 holds and the result follows
by the same lemma.�

The GMR2 Case

Assumption A.10 supθ∈Oε0 (θ0)

∥∥Ds∗Eθβn
∥∥ < M .

Lemma 2.3 i) Under the assumptions A.1, A.2, A.3, A.4, A.6 and A.7.a
the GMR2 is uniformly consistent for θ with rate o

(
n−a

∗)
.

ii) If additionally assumptions A.7.b, A.8, A.9 and A.10 hold then
√
n (GMR2−θ)

has an Edgeworth expansion of order s∗ − 1 uniformly on Oε (θ0).

Proof: For ε > 0, let E (ε, θ) =
{
ω ∈ Ω : ‖βn − b (θ)‖ > ε

2

}
∈ F , then

sup
θ∈Θ
‖Eθβn − b (θ)‖ ≤ sup

θ∈Θ
Eθ ‖βn − b (θ)‖ 1E(ε,θ) +

ε

2
.

As B is bounded, due to assumption A.2 and by assumption A.6 there exists
an n∗ such that supθ∈Θ Pθ

(
‖βn − b (θ)‖ > ε

3

)
≤ ε

2M
where M denotes the

diameter of B. Hence

sup
θ∈Θ
‖Eθβn − b (θ)‖ ≤ ε for all n ≥ n∗

and since ε is arbitrary

sup
θ∈Θ
‖Eθβn − b (θ)‖ = o (1) (2)

8



Due to the triangle inequality and assumption A.6 we have that for ε > 0

sup
θ∗∈Θ

Pθ∗

(
sup
θ∈Θ
|‖βn − Eθβn‖ − ‖b (θ∗)− b (θ)‖| > ε

)
≤ sup

θ∗∈Θ

Pθ∗

(
‖βn − b (θ∗)‖+ sup

θ∈Θ
‖Eθβn − b (θ)‖ > ε

)
= o

(
n−a

∗)
For qn (θ) = βn − Eθβn, q (θ∗, θ) = b (θ∗) − b (θ) and by assumption A.7.a
lemma AL.3 applies. Hence for γ (θ) = θ due to assumption A.3 lemma AL.1
also applies implying the result.
ii) Given i), we have that θn ∈ Oε (θ) with Pθ-probability 1 − o

(
n−a

∗)
that

is locally independent of θ for any ε > 0. For some ε small enough, such
that Oε (θ) ⊂ Oε0 (θ0) (which exists due to the fact that ε0 > ε) due to
assumption A.10, we have that condition FOC of the appendix lemmas AL.4
and AL.5 is satisfied by the GMR1 estimator with Qn + ∂Eθβ

′
n

∂θ
. Furthermore

assumption A.10 and A.9 imply conditions HUB (γ (θ) = θ hence set δ = ε0)
and RANK of lemma AL.4 due to the fact that since D2Eθβn is uniformly
bounded on Oε0 (θ0), DEθβn converges uniformly to Db (θ) due to lemma
AL.7 and therefore the RANK condition is implied by A.10 for large enough
n. Now as a∗ > a ≥ 0 we have that a∗ > 0 and there exists a C2 > 0 locally
independent of θ such that for E∗ =

{
ω ∈ Ω : ‖βn − b (θ)‖ > C2

ln1/2 n
n1/2

}
∈ F

sup
θ∈Oε(θ0)

‖Eθβn − b (θ)‖

≤ sup
θ∈Oε(θ0)

Eθ [‖βn − b (θ)‖ 1E∗ ] + sup
θ∈Oε(θ0)

Eθ

[
‖βn − b (θ)‖ 1(E∗)C

]
≤ M sup

θ∈Oε(θ0)

Pθ

(
‖βn − b (θ)‖ > C2

ln1/2 n

n1/2

)
+ C2

ln1/2 n

n1/2
sup

θ∈Oε(θ0)

Eθ1E∗

= M sup
θ∈Oε(θ0)

Pθ

(
‖βn − b (θ)‖ > C2

ln1/2 n

n1/2

)

+C2
ln1/2 n

n1/2
sup

θ∈Oε(θ0)

Pθ

(
‖βn − b (θ)‖ ≤ C2

ln1/2 n

n1/2

)

= o
(
n−a

∗)
+ C2

ln1/2 n

n1/2

(
1− o

(
n−a

∗))
= o

(
n−a

∗)
+ C2

ln1/2 n

n1/2
= O

(
ln1/2 n

n1/2

)
,

9



where the penultimate line comes from equation 1, above. Hence

sup
θ∈Oε(θ0)

‖Eθβn − b (θ)‖ = O

(
ln1/2 n

n1/2

)

and therefore

sup
θ∈Oε(θ0)

Pθ

(
‖βn − Eθβn‖ > C1

ln1/2 n

n1/2

)

≤ sup
θ∈Oε(θ0)

Pθ

(
‖βn − b (θ)‖+ ‖Eθβn − b (θ)‖ > C1

ln1/2 n

n1/2

)

≤ sup
θ∈Oε(θ0)

Pθ

(
‖βn − b (θ)‖+O

(
ln1/2 n

n1/2

)
> C1

ln1/2 n

n1/2

)
= o

(
n−a

∗)
Hence due to A.8 and lemma AL.2 of Arvanitis and Demos [1] there exist
C1 > 0 large enough and locally independent of θ for which

sup
θ∈Oε(θ0)

Pθ

(
‖βn − Eθβn‖ > C1

ln1/2 n

n1/2

)
= o

(
n−a

∗)
.

Hence lemma AL.4 applies ensuring that

sup
θ∈Oε(θ0)

Pθ

(√
n ‖GMR2−θ‖ > C ln1/2 n

)
= o

(
n−a

∗)
for some C > 0 locally independent of θ, hence condition UTIGHT of
lemma AL.5 holds. Moreover assumption A.8 along with the fact that the
support of βn − b (θ) is uniformly bounded by O3η (0) for any η greater
or equal than the diameter of B, and the fact that

√
n (βn − Eθβn) ad-

mits a locally uniform Edgeworth expansion of order s∗ − 1 (see lemma 4.1
of Arvanitis and Demos [1]) imply condition UEDGE of lemma AL.5 for

Mn (θ) =
√
n

(
mn (θ)

βn − Eθβn

)
with order s∗− 1. Due to assumption A.10 for

any θ ∈ Oε (θ0) and any θ∗ suffi ciently close to θ,
∂Eθβ

′
n

∂θ
(θ∗) admits a Taylor

expansion of order s∗ − 1 around θ of the form

∂Eθ∗β
′
n

∂θ
=

∑s∗−2

i=0

1

i!
Di∂Eθβ

′′
n

∂θ

(
(θ∗ − θ)i

)
+

1

(s∗ − 2)!

(
Ds∗−2∂Eθ+β

′′
n

∂θ
−Ds∗−1∂Eθβ

′′
n

∂θ

)(
(θ∗ − θ)s

∗−1
)

10



where θ+ lies between θ∗ and θ. This implies that for θn = GMR2 due to
condition UTIGHT of lemma AL.5 we have that with Pθ-probability 1 −
o
(
n−a

∗)
locally independent of θ

∂Eθnβ
′
n

∂θ
=
∑s∗−2

i=0

1

i!

1

ni/2
Di∂Eθnβ

′
n

∂θ
(θ)
((√

n (θn − θ)
)i)

+R∗n (θn, θ)

whereR∗n (θn, θ) = 1
(s∗−2)!

1
n(s
∗−2)/2

(
Ds∗−2

∂E
θ+n
β′n

∂θ
−Ds∗−1 ∂Eθβ

′
n

∂θ

)(
(
√
n (θn − θ))s

∗−2
)
,

and θ+
n lies between θn and θ. Now by assumption A.10, by submultiplica-

tivity, the relation of θ+
n to θn and condition UTIGHT

sup
θ∈Oε(θ0)

Pθ


∥∥∥∥∥∥∥

1
(s∗−2)!

1
n(s
∗−2)/2

(
Ds∗−2

∂E
θ+n
β′n

∂θ
−Ds∗−1 ∂Eθβ

′
n

∂θ

)
×(

(
√
n (θn − θ))s

∗−2
)

∥∥∥∥∥∥∥ > γ∗n


≤ sup

θ∈Oε(θ0)

Pθ

(
1

(s∗ − 2)!

1

n(s∗−2)/2
sup

θ∈Oε0 (θ0)

∥∥∥∥Ds∗−1∂Eθβ
′
n

∂θ

∥∥∥∥∥∥θ+
n − θ

∥∥∥∥√n (θn − θ)
∥∥s∗−2

> γ∗n

)

≤ sup
θ∈Oε(θ0)

Pθ

(
M

(s∗ − 2)!

Cs∗

n(s∗−1)/2
ln(s∗−1)/2 n > γ∗n

)
+ o

(
n−a

∗)
which is of order o

(
n−a

∗)
for γ∗n = M

(s∗−2)!
Cs
∗

n(s
∗−1)/2 ln(s∗−1)/2 n = o

(
n−a

∗)
and

locally independent of θ. Analogously, due to assumption A.9 for any θ ∈
Oε (θ0) and any θ∗ suffi ciently close to θ, Eθ∗βn admits a Taylor expansion
of order s∗ − 1 around θ of the form

qn = βn − Eθ∗βn = βn − Eθβn −
∑s∗−1

i=1

1

i!
DiEθβn

(
(θ∗ − θ)i

)
− 1

(s∗ − 1)!

(
Ds∗−1Eθ+βn −Ds∗−1Eθβn

) (
(θ∗ − θ)s

∗
)

where θ+ lies between θ∗ and θ. This implies that for θn we have that with
Pθ-probability 1− o

(
n−a

∗)
√
n (βn − Eθnβn)

=
√
n (βn − Eθβn)

+
∑s∗−2

i=0

1

(i+ 1)!

1

ni/2
Di+1Eθβn

((√
n (θn − θ)

)i+1
)

+R#
n (θn, θ)

whereR#
n (θn, θ) = 1

(s∗−1)!
1

n(s
∗−2)/2

(
Ds∗−1Eθ+βn −Ds∗−1Eθβn

) (
(
√
n (θn − θ))s

∗−1
)
,

and θ+
n lies between θn and θ. Now by the previous for large enough n

11



∂Eθβ
′
n

∂θ
(θ) has full rank for any θ ∈ Oε (θ0) and so does the identity matrix in

front of
√
n (βn − Eθβn), and thereby due to submultiplicativity, the relation

of θ+
n to θn and condition UTIGHT of lemma AL.5

sup
θ∈Oε(θ0)

Pθ

(∥∥∥∥∥
1

(s∗−1)!
1

n(s
∗−2)/2

(
Ds∗−1Eθ+βn −Ds∗−1Eθβn

)
×(

(
√
n (θn − θ))s

∗−1
) ∥∥∥∥∥ > γ#

n

)

≤ sup
θ∈Oε(θ0)

Pθ

(
1

(s∗−1)!
1

n(s
∗−2)/2 supθ∈Oε0 (θ0)

∥∥Ds∗−1Eθβn
∥∥∥∥θ+

n − θ
∥∥

×‖
√
n (θn − θ)‖s

∗−1
> γ#

n

)

≤ sup
θ∈Oε(θ0)

Pθ

(
M

(s∗ − 1)!

Cs∗

n(s∗−1)/2
lns
∗/2 n > γ#

n

)
+ o

(
n−a

∗)
which is of order o

(
n−a

∗)
for γ#

n = M
(s∗−1)!

Cs
∗

n(s
∗−1)/2 lns

∗/2 n = o
(
n−a

∗)
and

locally independent of θ. Finally due to lemma AL.6 which applies by as-
sumptions A.8 and A.7 condition EXPAND of lemma AL.5 holds and the
result follows by the same lemma.�
We denote with kiβ (z, θ) = zπi−1 (z, θ) and with I

V

(
kiβ (z, θ)

)
=
∫
Rq kiβ (z, θ)ϕV (θ) (z) dz

where πi−1 (z, θ) and V (θ) as in assumption A.8.

Assumption A.11 I
V

(
kiβ (z, θ)

)
is s∗ continuously differentiable for i =

1, . . . , s∗ − 1 over Oε (θ0).

Lemma 2.4 If assumptions A.8, A.9 and A.11 hold for s∗ > s then for any
sequence θ+

n for which

sup
θ∈Oε(θ0)

Pθ

(√
n
∥∥θ+

n − θ
∥∥ > M ln1/2 n

)
= o

(
n−a

∗)
we have that for any ε∗ < ε

sup
θ∈Oε∗ (θ0)

Pθ
(∥∥√n (Eθ+n βn − Eθβn)− An (θ)

∥∥ > γn
)

= o
(
n−a

∗)
where

An (θ) =
∑s

i=1

1

n
i−1
2 i!

Di

(
b (θ) +

∑s−i

j=1

I
V

(
kjβ (z, θ)

)
n
j
2

)(√
n
(
θ+
n − θ

)i)
γn = o (n−a) independent of θ, using the convention that when s − i = 0,
then

∑s−i
j=1 is empty.

12



Proof. By assumption A.8, lemma 3.1, below, adding subtracting
√
n

(
b (θ) +

∑s
i=1

IV (kiβ (z,θ))
n
i
2

)
and
√
n

(
b
(
θ+
n

)
+
∑s

i=1

IV (kiβ(z,θ+n ))
n
i
2

)
, we get

√
n
(
Eθ∗nβn − Eθβn

)
− An (θ) =

√
n

(
Eθ∗nβn − b

(
θ+
n

)
−
∑s

i=1

IV (kjβ(z,θ+n ))
n
i
2

)
−
√
n

(
Eθβn − b (θ)−

∑s
i=1

IV (kiβ (z,θ))
n
i
2

)
+

√
n
(
b
(
θ+
n

)
− b (θ)−

∑s
i=1

1
i!
Dib (θ)

((
θ+
n − θ

)i))
+Bn where

Bn =
∑s

i=1

IV (kiβ(z,θ+n ))

n
i−1
2

−
∑s

i=1

IV (kiβ (z,θ))

n
i−1
2

−
∑s

i=1
1
i!

∑s−i
j=1 D

i IV (kjβ (z,θ))

n
j−1
2

((
θ+
n − θ

)i)
.

Employing the mean value theorem for IV
(
kiβ
(
z, θ+

n

))
, and for θ++

n such that∥∥θ++
n − θ

∥∥ < ∥∥θ+
n − θ

∥∥, we get Bn =

=
∑s

i=1

(
1

n
i−1
2

∑s−i
m=1

1
m!
DmIV

(
kiβ (z, θ)

) ((
θ+
n − θ

)m)− 1
i!

∑s−i
j=1 D

i IV (kjβ (z,θ))

n
j−1
2

((
θ+
n − θ

)i))
+∑s

i=1
1

n
i−1
2

1
(s−i+1)!

Ds−i+1IV
(
kiβ (z, θ)

) ((
θ++
n − θ

)s−i+1
)
. Collecting terms we

get:

Bn =
∑s

i=1

1

n
i−1
2

1

(s− i+ 1)!
Ds−i+1IV

(
kiβ (z, θ)

) ((
θ++
n − θ

)s−i+1
)
.

Taking into account that θ+
n ∈ Oε (θ0) with probability 1 − o

(
n−a

∗)
and

employing the triangular inequality we have that, for s < s∗,

sup
θ∈Oε(θ0)

Pθ
(∥∥√n (Eθ+n βn − Eθβn)− An (θ)

∥∥ > γn
)

≤ sup
θ∈Oε(θ0)

Pθ

(
sup

θ∈Oε(θ0)

√
n

∥∥∥∥∥Eθβn − b (θ)−
∑s

i=1

IV
(
kiβ (z, θ)

)
n
i
2

∥∥∥∥∥ > γn
6

)

+
∑s

i=1 sup
θ∈Oε(θ0)

Pθ

(
1

n
i−1
2

‖Bn‖ >
γn
3s

)
+ sup

θ∈Oε(θ0)

Pθ

(√
n

∥∥∥∥b (θ+
n

)
− b (θ)−

∑s
i=1

1

i!
Dib (θ)

((
θ+
n − θ

)i)∥∥∥∥ > γn
3

)
+ o

(
n−a

∗)
.

Now we have that

an =
√
n

∥∥∥∥∥Eθβn − b (θ)−
∑s

i=1

IV
(
kiβ (z, θ)

)
n
i
2

∥∥∥∥∥ = o
(
n−a
)

independent of θ, due to lemma 3.1.
Now, due to the continuity of Ds−i+1IV

(
kiβ (z, θ)

)
, assumption A.11, and
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the assumption of the asymptotic behavior of θ+
n we get

sup
θ∈Oε(θ0)

Pθ

(
1

n
i−1
2

‖Bn‖ >
γn
3s

)

≤ sup
θ∈Oε(θ0)

Pθ

(
1

n
i−1
2

1

(s− i+ 1)!
sup

θ∈Oε(θ0)

∥∥Ds−i+1IV
(
kiβ (z, θ)

)∥∥ ∥∥θ+
n − θ

∥∥s−i+1
>
γn
3s

)

≤ sup
θ∈Oε(θ0)

Pθ

(
ln

s−i+1
2 n

n
s
2

1

(s− i+ 1)!
sup

θ∈Oε(θ0)

∥∥Ds−i+1IV
(
kiβ (z, θ)

)∥∥ > γn
3s

)
+ o

(
n−a

∗)
= o

(
n−a

∗)
provided that γn ≥ ln

s−i+1
2 n

n
s
2

3s supθ∈Oε(θ0)‖Ds−i+1IV (kiβ (z,θ))‖
(s−i+1)!

.

Furthermore using the same reasoning as above

sup
θ∈Oε(θ0)

Pθ

(√
n

∥∥∥∥b (θ+
n

)
− b (θ)−

∑s
i=1

1

i!
Dib (θ)

(
(θ∗n − θ)

i
)∥∥∥∥ > γn

3

)

≤ sup
θ∈Oε(θ0)

Pθ

(
√
n
∥∥θ+

n − θ
∥∥s+1

>
(s+ 1)!γn

3 supθ∈Oε(θ0) ‖Ds+1b (θ)‖

)
+ o

(
n−a

∗)
≤ sup

θ∈Oε(θ0)

Pθ

(
ln

s+1
2 n

n
s
2

>
(s+ 1)!γn

3 supθ∈Oε(θ0) ‖Ds+1b (θ)‖

)
+ o

(
n−a

∗)
= o

(
n−a

∗)
when γn ≥

3 supθ∈Oε(θ0)‖Ds+1b(θ)‖
(s+1)!

ln
s+1
2 n

n
s
2
. Hence for

γn = max

(
3 supθ∈Oε(θ0)‖Ds+1b(θ)‖

(s+1)!
ln
s+1
2 n

n
s
2

, 6an,
ln
s−i+1
2 n

n
s
2

3s supθ∈Oε(θ0)‖Ds−i+1IV (kiβ (z,θ))‖
(s−i+1)!

, i = 1, . . . , s

)
the result follows for large enough n.

Lemma 2.5 Suppose that p = q and assumptions A.1, A.2, A.3, A.4, A.6,
A.7, A.8, A.9 and A.11 hold for s∗ > s. i) If supθ∈Oε0 (θ0) ‖D2Eθβn‖ < M

then
√
n (GMR2−θ) has an Edgeworth expansion of order s uniformly on

Oε∗ (θ0) for any ε∗ < ε.
ii) if βn = b (GMR1) with probability 1 − o (n−a) uniformly on Oε (θ0) and
βn = EGMR2βn with probability 1−o (n−a) uniformly onOε (θ0) then

√
n (GMR2−θ)

has an Edgeworth expansion of order s uniformly on Oε∗ (θ0) for any ε∗ < ε.

Proof. i) Notice that the uniform consistency follow for the GMR1 and
GMR2 as in the first parts of lemmas 2.2, 2.3. Assumption A.9 along
with i) imply that for r = 1, 2, supθ∈Oε(θ0) ‖Dr (Eθβn − b (θ))‖ < M , which
in turn means that Dr−1 (Eθβn − b (θ)) are uniformly Lipschitz on Oε (θ0),
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and therefore uniformly equicontinuous on the same ball. This implies the
commutativity of the limit, with respect to n and the derivative operator,
uniformly over Oε (θ0). This along with the second part of assumption
A.9, i.e. rankDb (θ) = p for all θ in Oε0 (θ0), and continuity imply that
rankDEθβn = p, for all θ in Oε0 (θ0) for n large enough. As now p = q,
by the definition of GMR2 we get that βn = EGMR2βn with probability
1 − o

(
n−a

∗)
uniformly on Oε (θ0). This implies condition FOC of lemma

AL.5. Furthermore by the second part of lemma 2.2 we have that

sup
θ∈Oε(θ0)

Pθ

(√
n ‖GMR1−θ‖ > M ln1/2 n

)
= o

(
n−a

∗)
(3)

Hence with probability 1 − o
(
n−a

∗)
locally independent of θ, applying the

mean value theorem we have that

b (GMR1) = b (GMR2) +
∂b/
(
θ+
n

)
∂θ

(GMR1−GMR2) ,

where θ+
n is such that

∥∥θ+
n −GMR2

∥∥ < ‖GMR1−GMR2‖. It follows that
with Pθ-probability 1− o

(
n−a

∗)
locally independent of θ

GMR1−GMR2 =

(
∂b/
(
θ+
n

)
∂θ

)−1

(b (GMR1)− b (GMR2)) .

As now p = q, by the definition of GMR1 we get that b (GMR1) = βn
with probability 1 − o

(
n−a

∗)
uniformly on Oε (θ0). Hence with probability

1− o
(
n−a

∗)
uniformly on Oε (θ0)

‖GMR1−GMR2‖ ≤ M ‖βn − b (GMR2)‖
≤ M (‖βn − EGMR2βn‖+ ‖EGMR2βn − b (GMR2)‖)

≤ M ‖EGMR2βn − b (GMR2)‖ = O

(
1

n

)
and the last equality is true (as βn has a uniform Edgeworth expansion
on Oε (θ0), assumption A.8, and apply lemma 3.1). Taking into account
equation 3 we get that, for some C > 0, locally independent of θ

sup
θ∈Oε(θ0)

Pθ

(√
n ‖GMR2−θ‖ > C ln1/2 n

)
= o

(
n−a

∗)
.

This implies condition UTIGHT of lemma AL.5. It also, along with lemmas
2.4 and 3.1, implies that for any ε∗ < ε

sup
θ∈Oε∗ (θ0)

Pθ
(∥∥√n (βn − EGMR2βn)− Γn (θ)

∥∥ > γn
)

= o
(
n−a
)
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where γn = o (n−a) independent of θ and

Γn (θ) =
√
n (βn − Eθβn)−

∑s−1
i=1

1

n
i
2

IV
(
kiβ (z, θ)

)
−
∑s

i=1

1

n
i−1
2 i!

Di

(
b (θ) +

∑s−i

j=1

IV
(
kjβ (z, θ)

)
n
j
2

)(√
n (GMR2−θ)i

)
which validates condition EXPAND of lemma AL.5 for Qn = W j

n = Idp×p.
Moreover assumption A.8 along with the fact that the support of βn − b (θ)
is uniformly bounded by O3η (0) for any η greater or equal than the diameter
of B, and lemma 4.1 of Arvanitis and Demos [1] imply condition UEDGE

of lemma AL.5 for Mn (θ) =
√
n

(
mn (θ)

βn − Eθβn

)
with order s∗ − 1. Hence

the conditions of lemma AL.5 are satisfied and the result follows. ii) follows
the same way as i) except now ‖βn − EGMR2βn‖ is zero with probability
1− o

(
n−a

∗)
independent of θ.

Existence of Edgeworth Expansion for the GT Estimator

We first consider two cases which link the asymptotic behaviors of the three
estimators.

Lemma 2.6 A. Suppose that p = q = l, EGT (cn (βn)) = 0l with probability
1 − o

(
n−a

∗)
independent of θ and Eθ (cn (β)) = 0l iff β = b (θ). i) If the

provisions of lemma 2.2.i hold then the GT is uniformly consistent for θ with
rate o (n−a). ii) If the provisions of lemma 2.2.ii hold then

√
n (GT−θ) has

an Edgeworth expansion of order s∗ uniformly on Oε (θ0) which coincides
with the one of lemma 2.2.
B. Suppose that q = l, cn (β) = qn − β for qn an appropriate q-dimensional
random element and W ∗

n = W ∗∗
n (Pθ almost everywhere for all θ). i) If the

provisions of lemma 2.3.i hold then the GT is uniformly consistent for θ
with rate o (n−a). ii) If the provisions of lemma 2.3.ii or the ones of lemma
2.5.i or ii hold then

√
n (GT−θ) has an Edgeworth expansion of order s∗

uniformly on Oε (θ0) which coincides with the expansions of lemmas 2.3 or
2.5.i or ii respectively.

Proof: A. From the assumptions we have that

EGTcn (β) = 0p iff β = b (GT)

hence the GT equivalently satisfies

βn − b (GT) = 0p
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which defines the GMR1 estimator in these special circumstances. Hence
under these special assumptions we have that GMR1 = GT with probability
1−o

(
n−a

∗)
independent of θ. The rest are trivial consequences of lemma 2.2.

B. Similarly this special assumption implies that βn = qn (Pθ almost surely
for all θ). Hence Eθcn (β) |β=βn = Eθqn − βn = Eθβn − βn. This and the
assumed coincidence of the weighting matrices involved along with lemmas
2.3 or 2.5 i) or ii) imply the result.�
In a more general case, due to the definition of the particular estimator,

we utilize the following two assumptions concerning the asymptotic behavior
of cn.

Assumption A.12 Let Qn = ‖cn (β)‖Wn(β∗n) and

‖cn (β)− cn (β′)‖ ≤ κn ‖β − β′‖ , for all β, β′ (4)

supθ∈Θ Eθκn = O (1) and

sup
θ∈Θ

Pθ

(
sup
β∈B
‖cn (β)− c (θ, β)‖ > ε

)
= o

(
n−a

∗)
,∀ε > 0 (5)

where c (θ, β) is continuous on B and equals zero iff β = b (θ) for any θ.
Furthermore

sup
θ∗∈Θ

lim sup
n
Eθ∗ ‖cn (β)‖2 < +∞, for all β. (6)

Assumption A.13 For ϕ = (θ′, β′)
′, ϕ0 as before and η large enough for

Oη (ϕ0) ⊃ Oε0 (θ0)×Oε′ (b (θ0)), rank
(

limn→∞
∂Eθcn(b(θ))

∂θ′

)
= p, rank

(
limn→∞

∂Eθcn(b(θ))
∂β′

)
=

q on Oε0 (θ0), supϕ∈Oη(ϕ0)

∥∥Ds∗+1Eθcn (β)
∥∥ < M .

Lemma 2.7 i) Under the assumptions A.1, A.2, A.3, A.4, A.6, A.7.a and
A.12 the GT is uniformly consistent for θ with rate o (n−a).
ii) If additionally c (θ, β) = Eθcn (β) and assumptions A.7.b, A.8 and A.13
hold then

√
n (GT−θ) has an Edgeworth expansion of order s∗ uniformly on

Oε (θ0).

Proof: i) By assumption A.12.4, we have that for ε > 0

sup
θ∗∈Θ

Pθ∗

(
sup
θ∈Θ
‖Eθcn (βn)− Eθcn (b (θ∗))‖ > ε

)
≤ sup

θ∗∈Θ

Pθ∗

((
sup
θ∈Θ

Eθκn

)
‖βn − b (θ∗)‖ > ε

)
= o

(
n−a

∗)
17



and the equality is due to assumption A.6. Moreover due to A.12.5-6 and
uniform integrability we obtain that

sup
θ∈Θ
‖Eθcn (b (θ∗))− c (θ, b (θ∗))‖ = o (1)

These via the triangle inequality imply that

sup
θ∗∈Θ

Pθ∗

(
sup
θ∈Θ
‖Eθcn (βn)− c (θ, b (θ∗))‖ > ε

)
= o

(
n−a

∗)
Hence for qn (θ) = Eθcn (βn), q (θ∗, θ) = c (θ, b (θ∗)) and by assumptions
A.7.a lemma AL.3 applies. Hence for γ (θ) = θ due to assumptions A.3, A.12
lemma AL.1 also applies proving the result.
ii) Given i), we have that θn ∈ Oε (θ) with Pθ-probability 1 − o

(
n−a

∗)
that

is locally independent of θ for any ε > 0. For some ε small enough, such that
Oε (θ) ⊂ Oε0 (θ0) (which exists due to the fact that ε0 > ε) due to assumption
A.13, we have that condition FOC of lemma AL.4 (in the Appendix) is
satisfied by the GT estimator for Qn = ∂Eθcn(βn)′

∂θ
. Furthermore assumption

A.13 implies conditions HUB (γ (θ) = θ hence set δ = ε0) and RANK of the
same lemma. Condition TIGHT follows from A.8 lemma AL.2 of Arvanitis
and Demos [1] and as Eθcn (b (θ)) = 0 the fact that

sup
θ∈Oε(θ0)

Pθ

(
‖Eθcn (βn)‖ > C1

ln1/2 n

n1/2

)

≤ sup
θ∈Oε(θ0)

Pθ

(
Eθ ‖cn (βn)− cn (b (θ))‖ > C1

ln1/2 n

n1/2

)

≤ sup
θ∈Oε(θ0)

Pθ

(
‖βn − b (θ)‖ > C1

supθ∈Oε(θ0) Eθ (κn)

ln1/2 n

n1/2

)
imply that there exist C1 > 0 large enough locally independent of θ for which
the last term in the previous display is of order o

(
n−a

∗)
. Hence lemma AL.4

applies ensuring that

sup
θ∈Oε(θ0)

Pθ

(√
n ‖GT−θ‖ > C ln1/2 n

)
= o

(
n−a

∗)
for some C > 0 independent of θ. Hence condition UTIGHT of lemma
AL.5 holds. Moreover assumption A.8 implies condition UEDGE of the
same lemma for Mn (θ) =

√
nmn (θ). Due to assumption A.13 for any

ϕ =

(
θ

b (θ)

)
for any θ ∈ Oε0 (θ0) and any ϕ∗ =

(
θ∗
ϕ∗

)
suffi ciently close
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to ϕ, ∂Eθ∗cn(β∗)
′

∂θ
admits a Taylor expansion of order s∗ − 1 around ϕ of the

form

∂Eθ∗cn (β∗)
′

∂θ

=
∂Eθ∗cn (b (θ∗))

′

∂θ

+

s∗−1∑
i1+i2=1

1

i1!i2!
Di1,i2

(
∂Eθcn (b (θ))′

∂θ

)(
(β∗ − b (θ))i1 , (θ∗ − θ)i2

)
+

1

(s∗ − 1)!

(
Ds∗−1

(
∂Eθ+cn

(
β+
)′

∂θ

)
−Ds∗−1

(
∂Eθcn (b (θ))′

∂θ

))
(

(ϕ∗ − ϕ)s
∗−1
)

where ϕ+ =

(
θ+

β+

)
lies between ϕ∗ and ϕ. This implies that for θn = GT

due to conditions UTIGHT and EXPAND we have that with Pθ-probability
1− o

(
n−a

∗)
that is independent of θ

∂Eθncn (βn)′

∂θ

=
∂Eθcn (b (θ))′

∂θ

+
s∗−1∑

i1+i2=1

1

i1!i2!
Di1,i2

(
∂Eθcn (b (θ))′

∂θ

)(
(βn − b (θ))i1 , (θn − θ)i2

)
+R∗n (θn, θ)

whereR∗n (θn, θ) = 1
(s∗−1)!

(
Ds∗−1

(
∂E

θ+n
cn(β+n )

′

∂θ

)
−Ds∗−1

(
∂Eθcn(b(θ))′

∂θ

))(
(ϕn − ϕ)s

∗−1
)
,

and θ+
n , β

+
n lie between θn and θ and βn and b (θ) respectively. Due to as-

sumptions A.13, A.8, lemma AL.2 of Arvanitis and Demos [1] and by sub-
multiplicativity, the relation of θ+

n to θn and condition UTIGHT

sup
θ∈Oε(θ0)

Pθ


∥∥∥∥∥∥∥

1
(s∗−1)!

1
n(s
∗−1)/2

(
Ds∗−1

(
∂E

θ+n
cn(β+n )

′

∂θ

)
−Ds∗−1

(
∂Eθcn(b(θ))′

∂θ

))
×(

(ϕn − ϕ)s
∗−1
)

∥∥∥∥∥∥∥ > γ∗n


≤ sup

θ∈Oε(θ0)

Pθ

 2s
∗−1

(s∗−1)!
1

n(s
∗−1)/2 supϕ∈Oη(ϕ0)

∥∥∥Ds∗ ∂Eθcn(β)′

∂θ

∥∥∥×(∥∥θ+
n − θ

∥∥+
∥∥β+

n − b (θ)
∥∥) (‖√n (θn − θ)‖s

∗−1
+ ‖βn − b (θ)‖s

∗−1
)
> γ∗n


≤ sup

θ∈Oε(θ0)

Pθ

(
2s
∗−1M

(s∗ − 1)!

maxs
∗

(C,C+)

ns∗/2
lns
∗/2 n > γ∗n

)
+ o

(
n−a

∗)
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which is of order o
(
n−a

∗)
for γ∗n = 2s

∗−1M
(s∗−1)!

maxs
∗
(C,C+)

ns
∗/2 lns

∗/2 n = o
(
n−a

∗)
and

independent of θ. Furthermore, due to the same assumption and the fact
that c (θ, b (θ)) = 0 we have that

qn = Eθ∗cn (β∗) =

s∗∑
i1+i2=1

1

i1!i2!
Di1,i2Eθcn (b (θ))

(
(β∗ − b (θ))i1 , (θ∗ − θ)i2

)
+

1

(s∗ − 1)!

(
Ds∗−1

(
∂Eθ+cn

(
β+
)′

∂θ

)
−Ds∗−1

(
∂Eθcn (b (θ))′

∂θ

))(
(ϕ∗ − ϕ)s

∗−1
)

where θ+ lies between θ∗ and θ. Hence with Pθ-probability 1−o
(
n−a

∗)
locally

independent of θ
√
nEθncn (βn)

=
s∗−1∑

i1+i2=0

1

(i1 + 1)! (i2 + 1)!

1

ni1/2
1

ni2/2
D(i1+1),(i2+1)Eθcn (b (θ))((√

n (βn − b (θ))
)i1+1

, (θn − θ)i2+1
)

+R#
n (θn, θ)

whereR#
n (θn, θ) = 1

s∗!
1

n(s
∗−1)/2

(
Ds∗Eθ+n cn

(
β+
n

)
−Ds∗Eθcn (b (θ))

) (
(
√
n (ϕn − ϕ))

s∗
)
,

and θ+
n lies between θn and θ. Hence analogously to the previous

sup
θ∈Oε(θ0)

Pθ

(∥∥∥∥∥
1
s∗!

1
n(s
∗−1)/2

(
Ds∗Eθ+n cn

(
β+
n

)
−Ds∗Eθcn (b (θ))

)
×(

(
√
n (ϕn − ϕ))

s∗
) ∥∥∥∥∥ > γ#

n

)

≤ sup
θ∈Oε(θ0)

Pθ

(
1
s∗!

1
n(s
∗−1)/2 supϕ∈Oη(ϕ0)

∥∥Ds∗+1Eθcn (β)
∥∥

×
(∥∥θ+

n − θ
∥∥+

∥∥β+
n − b (θ)

∥∥) (‖√n (θn − θ)‖s
∗

+ ‖βn − b (θ)‖s
∗
)
> γ#

n

)

≤ sup
θ∈Oε(θ0)

Pθ

(
2s
∗
M

s∗!

maxs
∗+1 (C,C+)

ns∗/2
ln(s∗+1)/2 n > γ#

n

)
+ o

(
n−a

∗)
which is of order o

(
n−a

∗)
for γ#

n = 2s
∗
M

s∗!

maxs
∗+1(C,C+)
ns
∗/2 ln(s∗+1)/2 n = o

(
n−a

∗)
and independent of θ. Then due to assumption A.13 and the fact that
Eθcn (β) = c (θ, β), ∂Eθcn(b(θ))′

∂θ
, ∂Eθcn(b(θ))′

∂β
are of full rank for any θ ∈ Oε (θ0).

Finally due to lemma AL.6 which applies by assumptions A.8 and A.7 con-
dition EXPAND holds and the result follows by the same lemma.�

3 Validity of 1st and 2nd Moment Expansions
Lemma 3.1 Suppose that K is a m-linear real function on Rw, the support
of an Rw valued random element (say) ζn is bounded by O√nρ (0) for some
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ρ > 0, and ζn admits an Edgeworth expansion of order s
∗ = 2a+m+ 1 then∣∣∣∣∫

Rq
K (zm)

(
dPn −

(
1 +

∑s−1

i=1

πi (z)

n
i
2

)
ϕV (z) dz

)∣∣∣∣ = o
(
n−a
)

where Pn, and
(

1 +
∑s

i=1

πi(z)

n
i
2

)
ϕV (z) denote the distribution of ζn and the

density of the analogous Edgeworth measure of order s = 2a+ 1 respectively.
Moreover if Pn depends on θ, and πi (z) are continuous on Oε (θ0) for any z,
V is continuous on Oε (θ0) and the expansion is uniformly valid on Oε (θ0),
the approximation holds uniformly on Oε (θ0).

Proof. Let Qn denote the measure with density
(

1 +
∑s−1

i=1

πi(z)

n
i
2

)
ϕV (z).

Since 2a + m + 1 > 2a + 1, we have that supA∈BC |Pn (A)−Qn (A)| =
O (n−a−η), where η > 0. Hence

na
∣∣∣∣∫
Rq
K (xm) (dPn − dQn)

∣∣∣∣ ≤ na

∣∣∣∣∣
∫
Oc(lnn)ε (0)

K (xm) (dPn − dQn)

∣∣∣∣∣
+na

∣∣∣∣∣
∫
Rq\Oc(lnn)ε (0)

K (xm) dPn

∣∣∣∣∣+ na

∣∣∣∣∣
∫
Rq\Oc(lnn)ε (0)

K (xm) dQn

∣∣∣∣∣
≤ naM (lnn)mε

∫
Oc(lnn)ε (0)

|dPn − dQn|+ na
∫
Rq\Oc(lnn)ε (0)

|K (xm)| (dPn + |dQn|)

≤ M (lnn)mε sup
A∈BC

na |Pn (A)−Qn (A)|+ na
∫
Rq\Oc(lnn)ε (0)

|K (xm)| (dPn + |dQn|)

Due to the hypothesis for the support of Pn

na
∫
Rq\Oc(lnn)ε (0)

|K (xm)| dPn

= na
∫

[Rq\Oc(lnn)ε (0)]∩O√nρ(0)

|K (xm)| dPn + na
∫

[Rq\Oc(lnn)ε (0)]∩(O√nρ(0))
c
|K (xm)| dPn

= na
∫

[Rq\Oc(lnn)ε (0)]∩O√nρ(0)

|K (xm)| dPn = na
∫
O√nρ(0)\Oc(lnn)ε (0)

|K (xm)| dPn

≤ na+mβρmqm
∫
Rq

1‖x‖>c(lnn)εdPn

Hence

na
∣∣∣∣∫
Rq
xm (dPn − dQn)

∣∣∣∣ ≤M (lnn)mε sup
A∈BC

na |Pn (A)−Qn (A)|

+na+mβρmqmP (‖ζn‖ > c (lnn)ε) + na
∫
Rq\Oc(lnn)ε (0)

|K (xm)| |dQn| .
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As supA∈BC n
a |Pn (A)−Qn (A)| = O (n−η) for η > 0, we have that

(lnn)2ε sup
A∈BC

na |Pn (A)−Qn (A)| = o (1)

and na+m
2 ρmqmP (‖ζn‖ > c (lnn)ε) = o (1) if ε ≥ 1

2
and c ≥

√
2a+m+ 1

by lemma 2 of Magdalinos [5]. Finally na
∫
Rq\Oc(lnn)ε (0)

|K (xm)| |dQn| = o (1)

due to Gradshteyn and Ryzhik [4] formula 8.357. For the uniform case first
notice that

sup
θ∈Oε(θ0)

Pθ

(
‖ζn‖ > M ln1/2 n

)
= o

(
n−a

∗)
This is due to the fact that the set

{
x ∈ Rq : ‖x‖ ≤M ln1/2 n

}
has boundary

of Lebesgue measure zero and

sup
θ∈Oε(θ0)

∫
‖x‖>M ln1/2 n

(
1 +

∑s∗

i=1

1

n
i
2

|πi (x, θ)|
)
ϕV (θ) (x) dx

≤ sup
θ∈Oε(θ0)

∫
‖z‖> M

λmax(θ)
ln1/2 n

(
1 +

∑s∗

i=1

1

n
i
2

∣∣πi (V 1/2 (θ) z, θ
)∣∣)ϕ (z) dz

≤
∫
‖z‖> M

λmax(θ∗) ln1/2 n

(
1 +

∑s∗

i=1

1

n
i
2

∣∣πi (V 1/2 (θ∗i ) z, θ
∗
i

)∣∣)ϕ (x) dx

where λmax (θ) denotes the maximum absolute eigenvalue of V 1/2 (θ) and θ∗i ∈
Oε (θ0) exist for all i = 1, . . . , s∗ due to the continuity and are independent of
z due to the positivity and the fact that πi are polynomials in x, and θ

∗ exists
due to continuity of V and the compactness of Oε (θ0). For M ≥ s∗λmax (θ∗)
the result follows from lemma 2 of Magdalinos [5]. The rest follows in the
same spirit of the first part.

Remark R.1 Notice that in the case that the support of ζn is not bounded
the previous result would hold for s∗ = 2a+m+ 2. This follows easily from
the previous proof by letting ρ = lnε n (ε ≥ 1/2) and by the fact that the
Edgeworth approximation is uniform w.r.t. the Borel algebra.

In the following we suppress the dependence on θ and z where possi-
ble for notational convenience. For the rest of this section we denote by
b = b (θ), b,j is the jth element of b, W ∗ = EθW

∗ (θ), W ∗
j,j′ is the (j, j′) ele-

ment ofW ∗, and analogously forW ∗∗ and C = ∂b′

∂θ
W ∗ ∂b

∂θ′ . z denotes a variable
with values in the Euclidean space of dimension equal to the dimension of
the random vector mn (θ) in assumption A.8, kiβ (z, θ) = πi−1 (z, θ) pr1,q (z),
for any i = 1, . . . , s∗, k1θ∗ (z, θ) = prq+1,p+q (z) if θ∗n − θ appears in the
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vector mn (θ), otherwise it is 0q. kiw∗ (z, θ) is the symmetric q × q ma-
trix, defined as follows: for j′ ≥ j, (kiw∗ (z, θ))

j,j′ = zq where q is the po-
sition of (W ∗

n (θ)− EθW ∗ (θ))j,j′ if the latter appears in mn (θ) otherwise
it is zero. Analogously, kiw∗∗ (z, θ) is the symmetric l × l matrix, defined
as follows: for j′ ≥ j, (kiw∗∗ (z, θ))

j,j′ = zq where q is the position of
(W ∗∗

n (θ)− EθW ∗∗ (θ))j,j′ if the latter appears in mn (θ) otherwise it is zero.

3.1 Valid 2nd order Bias approximation for the Indirect estimators
GMR1 Estimator

Lemma 3.2 Let θn denote the GMR1 estimator. If assumptions A.1, A.2,
A.3, A.4, A.6 and A.7, A.8, A.9 and A.10 hold with s∗ ≥ 3 then uniformly
over θ ∈ Oε (θ0) ∥∥∥∥Eθ√n (θn − θ)−

ξ1 (θ)√
n

∥∥∥∥ = o
(
n−

1
2

)
where

ξ1 (θ) = C−1∂b
′

∂θ
W ∗IϕV ∗

(
k2β

)
−1

2
C−1∂b

′

∂θ
W ∗IϕV ∗

([(
C−1∂b

′

∂θ
W ∗k1β

)′
∂bj
∂θ∂θ′

C−1∂b
′

∂θ
W ∗k1β

]
j=1,...,q

)

+C−1IϕV ∗

 [(
C−1 ∂b′

∂θ
W ∗k1β

)′ ∂2b′

∂θ∂θj

]
j=1,...,p

W ∗ (θ)

+∂b′

∂θ
k1w∗ + ∂b′

∂θ

[
∂
∂θ′W

∗
j,j′k1θ∗

]
j,j′=1,...,q

(Idq − ∂b

∂θ′
C−1∂b

′

∂θ
W ∗
)
k1β

 ,

where C = ∂b′

∂θ
W ∗ ∂b

∂θ′ .

Proof. Our assumptions and lemmas 2.2, 3.1 ensure the validity of the mean
approximation. Then the relevant moment approximation can be obtained if√
n (βn − b (θn)) is approximated by (see theorem 3.1 of Arvanitis and Demos

[1])

√
n (βn − b (θ))− ∂b

∂θ′
√
n (θn − θ)−

1

2
√
n

[√
n (θn − θ)′

∂bj
∂θ∂θ′

√
n (θn − θ)

]
j=1,...,q

Moreover W ∗
n (θ∗n) is appropriately approximated by

W ∗
n (θ) +

1√
n

[
∂

∂θ/
W ∗
n (θ)j,j′

√
n (θ∗n − θ)

]
j,j=1,...,q
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that is by

W ∗ (θ) +
1√
n
k1w∗ +

1√
n

[
∂

∂θ/
W ∗ (θ)j,j′ k1θ∗

]
j,j′=1,...,q

and analogously ∂b′(θn)
∂θ

is appropriately approximated by

∂b′

∂θ
+

1√
n

[√
n (θ∗n − θ)

′ ∂
2bj

∂θ∂θ′

]
j=1,...,l

hence by
∂b′

∂θ
+

1√
n

[√
n (θn − θ)′

∂2b′

∂θ∂θj

]
j=1,...,p

Therefore an appropriate approximation for
√
n (θn − θ) is obtained by in-

verting∂b′
∂θ
W ∗ (θ) +

1√
n


[√

n (θn − θ)′ ∂2b′

∂θ∂θj

]
j=1,...,p

W ∗ (θ)

+∂b′

∂θ
k1w∗ + ∂b′

∂θ

[
∂

∂θ/
W ∗ (θ)j,j′ k1θ∗

]
j,j′=1,...,q

×
(
√
n (βn − b (θ))− ∂b

∂θ′
√
n (θn − θ)−

1

2
√
n

[√
n (θn − θ)′

∂bj
∂θ∂θ′

√
n (θn − θ)

]
j=1,...,q

)

and for C = ∂b′

∂θ
W ∗ ∂b

∂θ′ ,
√
n (θn − θ) is approximated by

C−1∂b
′

∂θ
W ∗ (θ)

√
n (βn − b (θ))

+
1√
n
C−1


[(
C−1 ∂b′

∂θ
W ∗ (θ) k1β

)′ ∂2b′

∂θ∂θj

]
j=1,...,p

W ∗ (θ)

+∂b′

∂θ
k1w∗ + ∂b′

∂θ

[
∂

∂θ/
W ∗ (θ)j,j′ k1θ∗

]
j,j′=1,...,q

(Idq − ∂b

∂θ′
C−1∂b

′

∂θ
W ∗ (θ)

)
k1β

− 1

2
√
n
C−1∂b

′

∂θ
W ∗ (θ)

[(
C−1∂b

′

∂θ
W ∗ (θ) k1β

)′
∂bj
∂θ∂θ′

C−1∂b
′

∂θ
W ∗ (θ) k1β

]
j=1,...,q

.

Integrating with respect to
(

1 + π1(z,θ)√
n

)
ϕV ∗(θ) (z), noting that k1β (z, θ) = z,

k2β (z, θ) = zπ1 (z, θ) we obtain that∥∥∥∥Eθ√n (θn − θ)−
ξ1 (θ)√
n

∥∥∥∥ = o
(
n−

1
2

)
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where

ξ1 (θ) = C−1∂b
′

∂θ
W ∗IϕV ∗

(
k2β

)
−1

2
C−1∂b

′

∂θ
W ∗IϕV ∗

([(
C−1∂b

′

∂θ
W ∗k1β

)′
∂bj
∂θ∂θ′

C−1∂b
′

∂θ
W ∗k1β

]
j=1,...,q

)

+C−1IϕV ∗

 [(
C−1 ∂b′

∂θ
W ∗k1β

)′ ∂2b′

∂θ∂θj

]
j=1,...,p

W ∗ (θ)

+∂b′

∂θ
k1w∗ + ∂b′

∂θ

[
∂
∂θ′W

∗
j,j′k1θ∗

]
j,j′=1,...,q

(Idq − ∂b

∂θ′
C−1∂b

′

∂θ
W ∗
)
k1β

 ,

where the dependences of W ∗ (θ) and b (θ) on θ have been suppressed.
It follows trivially.

Corollary 1 When W ∗ is independent of x and θ and b (θ) is affi ne then

ξ1 (θ) = C−1∂b
′

∂θ
W ∗IV

(
k2β

)
GMR2 Estimator

Lemma 3.3 Let θn denote the GMR2 estimator. If assumptions A.1, A.2,
A.3, A.4, A.6 and A.7, A.8, A.9, A.10 and A.11 hold for s∗ ≥ 4 then
uniformly over Oε∗ (θ0) for any ε∗ < ε∥∥∥∥Eθ√n (θn − θ)−

ξ2 (θ)√
n

∥∥∥∥ = o
(
n−

1
2

)
where

ξ2 (θ) = ξ1 (θ)− C−1∂b
′

∂θ
W ∗IV

(
k2β

)
Proof. The assumptions and lemmas 2.2, 3.1 ensure the validity of the
mean approximation uniformly over Oε∗ (θ0). Furthermore from lemma AL.7
we get that supθ∈Oε∗ (θ0)

∥∥DEθβn −Db (θ)− 1
n
DIϕV ∗

(
k2β

)
(θ)
∥∥ = o (1) (re-

call that IϕV ∗
(
k1β

)
= 0). Then again from theorem 3.1 of Arvanitis and

Demos [1] we get that the relevant moment approximation can be obtained
if
√
n (βn − Eθnβn) is approximated by

√
n (βn − b (θ))−

IϕV ∗
(
k2β

)
√
n

−
(
∂b

∂θ′
+

1

n

∂IϕV ∗
(
k2β

)
∂θ′

)
√
n (θn − θ)

− 1

2
√
n

[
√
n (θn − θ)′

∂
(
b+ 1

n
IϕV ∗

(
k2β

))
j

∂θ∂θ′
√
n (θn − θ)

]
j=1,...,q
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W ∗
n (θ∗n) is the same as the proof of lemma 3.2 before and analogously ∂Eθnβn

∂θ

is appropriately approximated by

∂
(
b+ 1

n
IϕV ∗

(
k2β

))′
∂θ

+
1√
n

[
√
n (θn − θ)′

∂2
(
b+ 1

n
IϕV ∗

(
k2β

))′
∂θ∂θj

]
j=1,...,p

hence by
∂b′

∂θ
+

1√
n

[√
n (θn − θ)′

∂2b′

∂θ∂θj

]
j=1,...,p

In this respect an approximation for
√
n (θn − θ) is

C−1∂b
′

∂θ
W ∗√n (βn − b (θ))

+
1√
n
C−1


[(
C−1 ∂b′

∂θ
W ∗ (θ) k1β

)′ ∂2b′

∂θ∂θj

]
j=1,...,p

W ∗

+∂b′

∂θ
k1w∗ + ∂b′

∂θ

[
∂

∂θ/
W ∗ (θ)j,j′ k1θ∗

]
j,j′=1,...,q

(Idq − C−1∂b
′

∂θ
W ∗ (θ)

)
k1β

− 1√
n
C−1∂b

′

∂θ
W ∗

[
IϕV ∗

(
k2β

)
+

1

2

[√
n (θn − θ)′

∂bj
∂θ∂θ′

√
n (θn − θ)

]
j=1,...,q

]

Integrating with respect to
(

1 + π1(z,θ)√
n

)
ϕV ∗(θ) (z), noting that k1β (z, θ) = z,

k2β (z, θ) = zπ1 (z, θ) we obtain that∥∥∥∥Eθ√n (θn − θ)−
ξ2 (θ)√
n

∥∥∥∥ = o
(
n−

1
2

)
where

ξ2 (θ) = −1

2
C−1∂b

′

∂θ
W ∗IϕV ∗

([
k′1βW

∗ ∂b

∂θ′
C−1 ∂bj

∂θ∂θ′
C−1∂b

′

∂θ
W ∗k1β

]
j=1,...,q

)

+C−1IϕV ∗


[
k′1βW

∗ ∂b
∂θ′C

−1 ∂2b′

∂θ∂θj

]
j=1,...,p

W ∗

+∂b′

∂θ
k1w∗ + ∂b′

∂θ

[
∂

∂θ/
W ∗
j,j′k1θ∗

]
j,j′=1,...,q

(Idq − C−1∂b
′

∂θ
W ∗
)
k1β

 ,

where the dependences ofW ∗ (θ) and b (θ) on θ have been suppressed. Taking
into account the expression of ξ1 (θ) in lemma 3.2 we get the result.
The following corollary is trivial and establishes general conditions under

which the GMR2 estimator is second order unbiased.

Corollary 2 When W ∗ is independent of x and θ and b (θ) is affi ne then
ξ2 (θ) = 0p.
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GT Estimator Denoting withD = ∂b′

∂θ
∂c(θ,b)
∂β′ W

∗∗ (θ) ∂c(θ,b)
∂β′

∂b
∂θ′ , E = ∂b′

∂θ
∂c(θ,b)
∂β′ W

∗∗ (θ),

Hj=
∂b′

∂θ

∂2cj(θ,b)

∂β∂β′
∂b
∂θ′−

[
∂cj(θ,b)

∂β′
∂2b

∂θ′∂θr

]
r=1,...,p

, J =k1w∗∗+
[

∂

∂θ/
W ∗∗ (θ)j,j′ k1θ∗

]
j,j′=1,...,l

,

J ∗ =
(
∂c(θ,b)
∂β′

∂b
∂θ′D

−1E− Idl

)
∂c(θ,b)
∂β′ and q1β = D−1E ∂c(θ,b)

∂β′ k1β we obtain the fol-
lowing lemma.

Lemma 3.4 Using A.12 suppose that Eθcn (β) = c (θ, β). Furthermore let
A.1, A.2, A.3, A.4, A.6, A.7, A.8, A.13 hold for s∗ ≥ 3, then uniformly on
Oε (θ0) ∥∥∥∥Eθ√n (θn − θ)−

ξ3 (θ)√
n

∥∥∥∥ = o
(
n−

1
2

)
where

ξ3 (θ) = D−1E ∂c (θ, b)

∂β′
IV
(
k2β

)
+

1

2
D−1E

[
IV
(
k′1β

∂2cj (θ, b)

∂β∂β′
k1β

)]
j=1,...,l

−D−1E
[
IV
(
q′1β

∂b′

∂θ

∂2cj (θ, b)

∂β∂β′
k1β

)]
j=1,...,l

+
1

2
D−1E

[
IV
(
q′1βHjq1β

)]
j=1,...,l

+D−1IV

([
Hjq1β −

∂b′

∂θ

∂2cj (θ, β)

∂β∂β′
|bk1β

]
j=1,...,l

W ∗∗ (θ)J ∗k1β

)

−D−1∂b
′

∂θ

∂c′ (θ, b)

∂β
IV
(
JJ ∗k1β

)
.

Proof: The assumptions and lemmas 2.2, 3.1 ensure the validity of the
mean approximation. Then theorem 3.1 of Arvanitis and Demos implies that
the relevant moment approximation can be obtained as follows. Due to the
fact that c (θ, b (θ)) = 0l we obtain, by the implicit function theorem, that

∂c (θ, β)

∂β′
|b
∂b

∂θ′
= −∂c (θ, β)

∂θ′
|b

Moreover as ∂c(θ,b(θ))
∂θ′ = 0lxp we have, by the same theorem, that for any j,

we obtain that
∂2cj (θ, β)

∂β∂θ′
|b = −∂

2cj (θ, β)

∂β∂β′
|b
∂b

∂θ′
,
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and
∂

∂θ′

(
∂cj (θ, β)

∂θ
|b +

∂b′

∂θ

∂cj (θ, β)

∂β
|b
)

=
∂2cj (θ, β)

∂θ∂θ′
|b

+
∂2cj (θ, β)

∂θ∂β′
|b
∂b

∂θ′
+

∂

∂θ′

(
∂b′

∂θ

∂cj (θ, β)

∂β
|b
)

=
∂2cj (θ, β)

∂θ∂θ′
|b +

∂2cj (θ, β)

∂θ∂β′
|b
∂b

∂θ′
+

[
∂2b′

∂θ∂θj′

∂cj (θ, β)

∂β
|b
]
j′=1,...,p

=
∂2cj (θ, β)

∂θ∂θ′
|b −

∂b′

∂θ

∂2cj (θ, β)

∂β∂β′
|b
∂b

∂θ′
+

[
∂2b′

∂θ∂θj′

∂cj (θ, β)

∂β
|b
]
j′=1,...,p

and therefore
∂2cj (θ, β)

∂θ∂θ′
|b =

∂b′

∂θ

∂2cj (θ, β)

∂β∂β′
|b
∂b

∂θ′
−
[
∂2b′

∂θ∂θj′

∂cj (θ, β)

∂β
|b
]
j′=1,...,p

Now
√
nc (θn, βn) =

∂c (θ, b)

∂β′
√
n (βn − b)−

∂c (θ, b)

∂β′
∂b

∂θ′
√
n (θn − θ)

+
1

2
√
n

[
tr
√
n (βn − b)

√
n (βn − b)

/ ∂
2cj (θ, b)

∂β∂β′

]
j=1,...,l

+
1√
n

[
tr
√
n (βn − b)

√
n (θn − θ)/

∂2cj (θ, β)

∂β∂θ′

]
j=1,...,l

+
1

2
√
n

[
tr
√
n (θn − θ)

√
n (θn − θ)/

∂2cj (θ, β)

∂θ∂θ′

]
j=1,...,l

and it follows that
√
nc (θn, βn) =

∂c (θ, b)

∂β′
k1β −

∂c (θ, b)

∂β′
∂b

∂θ′
√
n (θn − θ)

+
1

2
√
n

[
trk1βk

′
1β

∂2cj (θ, b)

∂β∂β′

]
j=1,...,l

− 1√
n

[
trk1β

√
n (θn − θ)/

∂2cj (θ, β)

∂β∂β′
|b
∂b

∂θ′

]
j=1,...,l

+
1

2
√
n

tr√n (θn − θ)
√
n (θn − θ)/

 ∂b′

∂θ

∂2cj(θ,β)

∂β∂β′ |b
∂b
∂θ′

−
[

∂2b′

∂θ∂θj′

∂cj(θ,β)

∂β
|b
]
j′=1,...,p


j=1,...,l

Moreover W ∗∗
n (θ∗n) is appropriately approximated by

W ∗∗
n (θ∗n) = W ∗∗

n (θ) +
1√
n

[
∂

∂θ/
W ∗∗
n (θ)rj

√
n (θ∗n − θ)

]
r,j=1,...,l
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that is by

W ∗∗
n (θ∗n) = W ∗∗ (θ) +

1√
n
k1w∗∗ +

1√
n

[
∂

∂θ/
W ∗∗ (θ)j,j′ k1θ∗

]
j,j′=1,...,l

and analogously ∂c′(θn,βn)
∂θ

is appropriately approximated by

∂c′ (θ, b)

∂θ
+

1√
n

[
∂2cj (θ, β)

∂θ∂β′
|b
√
n (βn − b)

]′
j=1,...,l

+
1√
n

[
∂2cj (θ, β)

∂θ∂θ′
|b
√
n (θn − θ)

]/
j=1,...,l

that is by

∂c′ (θn, βn)

∂θ
= −∂b

′

∂θ

∂c′ (θ, b)

∂β
− 1√

n

[
∂b′

∂θ

∂2cj (θ, β)

∂β∂β′
|bk1β

]
j=1,...,l

+
1√
n

 ∂b′

∂θ

∂2cj(θ,β)

∂β∂β′ |b
∂b
∂θ′

−
[
∂cj(θ,β)

∂β′ |b
∂2b

∂θ′∂θj′

]
j′=1,...,p

√n (θn − θ)


j=1,...,l

.

0 = −∂b′

∂θ
∂c′(θ,b)
∂β

W ∗∗ (θ) ∂c(θ,b)
∂β′ k1β

+ 1√
n



−
[
∂b′

∂θ

∂2cj(θ,β)

∂β∂β′ |bk1β

]
j=1,...,l

W ∗∗ (θ)

+

 ∂b′

∂θ

∂2cj(θ,β)

∂β∂β′ |b
∂b
∂θ′

−
[
∂cj(θ,β)

∂β′ |b
∂2b

∂θ′∂θj′

]
j′=1,...,p

√n (θn − θ)


j=1,...,l

W ∗∗ (θ)

−∂b′

∂θ
∂c′(θ,b)
∂β

k1w∗∗ − ∂b′

∂θ
∂c′(θ,b)
∂β

[
∂

∂θ/
W ∗∗ (θ)j,j′ k1θ∗

]
j,j′=1,...,l


∂c(θ,b)
∂β′ k1β

+ ∂b′

∂θ
∂c′(θ,b)
∂β

W ∗∗ (θ) ∂c(θ,b)
∂β′

∂b
∂θ′
√
n (θn − θ)

− 1√
n



−
[
∂b′

∂θ

∂2cj(θ,β)

∂β∂β′ |bk1β

]
j=1,...,l

W ∗∗ (θ)

+

 ∂b′

∂θ

∂2cj(θ,b)

∂β∂β′
∂b
∂θ′

−
[
∂cj(θ,b)

∂β′
∂2b

∂θ′∂θj′

]
j′=1,...,p

√n (θn − θ)


j=1,...,l

W ∗∗ (θ)

−∂b′

∂θ
∂c′(θ,b)
∂β

k1w∗∗ − ∂b′

∂θ
∂c′(θ,b)
∂β

[
∂

∂θ/
W ∗∗ (θ)j,j′ k1θ∗

]
j,j′=1,...,l


× ∂c(θ,b)

∂β′
∂b
∂θ′
√
n (θn − θ)

− 1
2
√
n
∂b′

∂θ
∂c′(θ,b)
∂β

W ∗∗ (θ)
[
trk1βk

′
1β

∂2cj(θ,b)

∂β∂β′

]
j=1,...,l

+ 1√
n
∂b′

∂θ
∂c′(θ,b)
∂β

W ∗∗ (θ)
[
trk1β

√
n (θn − θ)/ ∂b

′

∂θ

∂2cj(θ,β)

∂β∂β′ |b
]
j=1,...,l
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− 1
2
√
n
∂b′

∂θ
∂c′(θ,b)
∂β

W ∗∗ (θ)

tr√n (θn − θ)
√
n (θn − θ)/

 ∂b′

∂θ

∂2cj(θ,β)

∂β∂β′ |b
∂b
∂θ′

−
[

∂2b′

∂θ∂θj′

∂cj(θ,β)

∂β
|b
]
j′=1,...,p


j=1,...,l

E = ∂b′

∂θ
∂c′(θ,b)
∂β

W ∗∗ (θ), It follows that
√
n (θn − θ) = D−1E ∂c(θ,b)

∂β′ k1β

− 1√
n
D−1



−
[
∂b′

∂θ

∂2cj(θ,β)

∂β∂β′ |bk1β

]
j=1,...,l

W ∗∗ (θ)

+

 ∂b′

∂θ

∂2cj(θ,β)

∂β∂β′ |b
∂b
∂θ′

−
[
∂cj(θ,β)

∂β′ |b
∂2b

∂θ′∂θj′

]
j′=1,...,p

√n (θn − θ)


j=1,...,l

W ∗∗ (θ)

−∂b′

∂θ
∂c′(θ,b)
∂β

k1w∗∗ − ∂b′

∂θ
∂c′(θ,b)
∂β

[
∂

∂θ/
W ∗∗ (θ)j,j′ k1θ∗

]
j,j′=1,...,l


∂c(θ,b)
∂β′ k1β

+ 1√
n
D−1



−
[
∂b′

∂θ

∂2cj(θ,β)

∂β∂β′ |bk1β

]
j=1,...,l

W ∗∗ (θ)

+

 ∂b′

∂θ

∂2cj(θ,β)

∂β∂β′ |b
∂b
∂θ′

−
[
∂cj(θ,β)

∂β′ |b
∂2b

∂θ′∂θj′

]
j′=1,...,p

√n (θn − θ)


j=1,...,l

W ∗∗ (θ)

−∂b′

∂θ
∂c′(θ,b)
∂β

k1w∗∗ − ∂b′

∂θ
∂c′(θ,b)
∂β

[
∂

∂θ/
W ∗∗ (θ)j,j′ k1θ∗

]
j,j′=1,...,l


× ∂c(θ,b)

∂β′
∂b
∂θ′
√
n (θn − θ) + 1

2
√
n
D−1E

[
trk1βk

′
1β

∂2cj(θ,b)

∂β∂β′

]
j=1,...,l

− 1√
n
D−1E

[
tr
(
D−1E ∂c(θ,b)

∂β′ k1β

)′
∂b′

∂θ

∂2cj(θ,β)

∂β∂β′ |bk1β

]
j=1,...,l

+ 1
2
√
n
D−1E

tr√n (θn − θ)
√
n (θn − θ)/

 ∂b′

∂θ

∂2cj(θ,β)

∂β∂β′ |b
∂b
∂θ′

−
[

∂2b′

∂θ∂θj′

∂cj(θ,β)

∂β
|b
]
j′=1,...,p


j=1,...,l

,

where D = ∂b′

∂θ
∂c′(θ,b)
∂β

W ∗∗ (θ) ∂c(θ,b)
∂β′

∂b
∂θ′ and E = ∂b′

∂θ
∂c′(θ,b)
∂β

W ∗∗ (θ). It follows

that
√
n (θn − θ) = D−1E ∂c(θ,b)

∂β′ k1β

+ 1√
n
D−1


−
[
∂b′

∂θ

∂2cj(θ,β)

∂β∂β′ |bk1β

]
j=1,...,l

W ∗∗ (θ)

+

 ∂b′

∂θ

∂2cj(θ,β)

∂β∂β′ |b
∂b
∂θ′

−
[
∂cj(θ,β)

∂β′ |b
∂2b

∂θ′∂θj′

]
j′=1,...,p

D−1E ∂c(θ,b)
∂β′ k1β


j=1,...,l

W ∗∗ (θ)

J
∗k1β

− 1√
n
D−1 ∂b′

∂θ
∂c′(θ,b)
∂β
JJ ∗k1β + 1

2
√
n
D−1E

[
trk1βk

′
1β

∂2cj(θ,b)

∂β∂β′

]
j=1,...,l

− 1√
n
D−1E

[
tr
(
D−1E ∂c(θ,b)

∂β′ k1β

)′
∂b′

∂θ

∂2cj(θ,β)

∂β∂β′ |bk1β

]
j=1,...,l

+ 1
2
√
n
D−1E

trD−1E ∂c(θ,b)
∂β′ k1β

(
D−1E ∂c(θ,b)

∂β′ k1β

)′ ∂b′

∂θ

∂2cj(θ,β)

∂β∂β′ |b
∂b
∂θ′

−
[

∂2b′

∂θ∂θj′

∂cj(θ,β)

∂β
|b
]
j′=1,...,p


j=1,...,l

where J =k1w∗∗+
[

∂

∂θ/
W ∗∗ (θ)j,j′ k1θ∗

]
j,j′=1,...,l

, J ∗ =
(
∂c(θ,b)
∂β′

∂b
∂θ′D

−1E− Idl

)
∂c(θ,b)
∂β′ .
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Again as
[

∂2b′

∂θ∂θj′

∂cj(θ,b)

∂β

]
j′=1,...,p

=
[
∂cj(θ,b)

∂β′
∂2b

∂θ′∂θr

]
r=1,...,p

√
n (θn − θ) = D−1E ∂c (θ, b)

∂β′
k1β

+
1

2
√
n
D−1E

[
k′1β

∂2cj (θ, b)

∂β∂β′
k1β

]
j=1,...,l

− 1√
n
D−1E

[
q′1β

∂b′

∂θ

∂2cj (θ, b)

∂β∂β′
k1β

]
j=1,...,l

+
1

2
√
n
D−1E

[
q′1βHjq1β

]
j=1,...,l

+
1√
n
D−1

[
Hjq1β −

∂b′

∂θ

∂2cj (θ, β)

∂β∂β′
|bk1β

]
j=1,...,l

W ∗∗ (θ)J ∗k1β

− 1√
n
D−1∂b

′

∂θ

∂c′ (θ, b)

∂β
JJ ∗k1β

where D = ∂b′

∂θ
∂c′(θ,b)
∂β

W ∗∗ (θ) ∂c(θ,b)
∂β′

∂b
∂θ′ , E = ∂b′

∂θ
∂c′(θ,b)
∂β

W ∗∗ (θ), J =k1w∗∗ +[
∂

∂θ/
W ∗∗ (θ)j,j′ k1θ∗

]
j,j′=1,...,l

, J ∗ =
(
∂c(θ,b)
∂β′

∂b
∂θ′D

−1E− Idl

)
∂c(θ,b)
∂β′ , q1β = D−1E ∂c(θ,b)

∂β′ k1β

,Hj=
∂b′

∂θ

∂2cj(θ,b)

∂β∂β′
∂b
∂θ′−

[
∂cj(θ,b)

∂β′
∂2b

∂θ′∂θr

]
r=1,...,p

. Integrating the above w.r.t.
(

1 + π1(z,θ)√
n

)
ϕV (θ) (z)

we get the result.�

Corollary 3 When W ∗ is independent of x and θ and b (θ) is affi ne then

ξ3 (θ) = D−1E ∂c (θ, b)

∂β′
IV
(
k2β

)
+

1

2
√
n
D−1E

[
IV
(
k′1β

∂2cj (θ, b)

∂β∂β′
k1β

)]
j=1,...,l

+
1

2
√
n
D−1E

[
IV
(
q′1β

∂b′

∂θ

∂2cj (θ, b)

∂β∂β′

(
∂b

∂θ′
q1β − 2k1β

))]
j=1,...,l

+
1√
n
D−1IV

([
∂b′

∂θ

∂2cj (θ, b)

∂β∂β′

(
∂b

∂θ′
q1β − k1β

)]
j=1,...,l

W ∗∗ (θ)J ∗k1β

)
.

Moreover, even under the scope of stochastic weighting, when p = q = l and
b (θ) is affi ne, then ξ3 (θ) =

(
∂b
∂θ′

)−1 IV
(
k2β

)
.

Proof. When W ∗∗ is independent of x and θ and b (θ) is affi ne then J =0

and Hj=
∂b′

∂θ

∂2cj(θ,b)

∂β∂β′
∂b
∂θ′ . Hence by integrating w.r.t.

(
1 + π1(z,θ)√

n

)
ϕV (θ) (z) the
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following expression

D−1E ∂c (θ, b)

∂β′
k1β +

1

2
√
n
D−1E

[
k′1β

∂2cj (θ, b)

∂β∂β′
k1β

]
j=1,...,l

+
1

2
√
n
D−1E

[
q′1β

∂b′

∂θ

∂2cj (θ, b)

∂β∂β′

(
∂b

∂θ′
q1β − 2k1β

)]
j=1,...,l

+
1√
n
D−1

[
∂b′

∂θ

∂2cj (θ, b)

∂β∂β′

(
∂b

∂θ′
q1β − k1β

)]
j=1,...,l

W ∗∗ (θ)J ∗k1β

we get the result. On the other hand, when p = q = l and b (θ) is affi ne then

D−1E =
(
∂c(θ,b)
∂β′

∂b
∂θ′

)−1

, J ∗ = 0, q1β =
(
∂b
∂θ′

)−1
k1β , q1β =

(
∂b
∂θ′

)−1
k1β , and

Hj=
∂b′

∂θ

∂2cj(θ,b)

∂β∂β′
∂b
∂θ′ . Hence we the expression is(

∂b

∂θ′

)−1

k1β ,

and integrating the above w.r.t.
(

1 + π1(z,θ)√
n

)
ϕV (θ) (z) we get the result.

Lemma 3.5 i). Under the assumptions in lemma 2.6.A and for s∗ ≥ 3 we
have that ξ1 (θ) = ξ3 (θ) uniformly over Oε (θ0).
ii) Under the assumptions in lemma 2.6.B and for s∗ ≥ 4 we have that
ξ2 (θ) = ξ3 (θ) uniformly over Oε (θ0).

Proof of Lemma 3.5. i). The result follows from lemmas 2.6.A and 3.2.
Notice that as p = q = l, we have that C−1 ∂b′

∂θ
W ∗ =

(
∂b
∂θ′

)−1
. ii). The result

follows from lemmas 2.6.B and 3.3.

3.2 MSE 2nd order Approximations for the Indirect Estimators
Lemma 3.6 Let θn denote either the GMR1, or the GMR2 estimator. If
W ∗ (x, θ) is independent of x and θ, b is affi ne and assumptions A.1, A.2,
A.3, A.4, A.6 and A.7, A.8, A.9 hold for s∗ ≥ 5 then, for any ε∗ < ε∥∥∥∥Eθ (n (θn − θ) (θn − θ)′

)
−H1 (θ)− H2 (θ)√

n

∥∥∥∥ = o
(
n−1/2

)
where

H1 (θ) = C−1∂b
′

∂θ
W ∗V (θ)W ∗ ∂b

∂θ′
C−1

H2 (θ) = C−1∂b
′

∂θ
W ∗IV

(
k2βk

′
1β

)
W ∗ ∂b

∂θ′
C−1
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Proof. For both estimators we have that due to lemma 3.1, theorem 3.1 of
Arvanitis and Demos [1] along with the approximations employed in lemmas
3.2, 3.3

Eθ
(
n (θn − θ) (θn − θ)′

)
=

∫
Rq
C−1∂b

′

∂θ
W ∗

(
k1β (z, θ) +

k2β (z, θ)
√
n

)(
k1β (z, θ) +

k2β (z, θ)
√
n

)′
W ∗ ∂b

∂θ′
C−1ϕV (θ) (z) dz,

where k1β (z, θ) = z, k2β (z, θ) = zπ1 (z, θ). Keeping the relevant order terms,
the result follows.

Lemma 3.7 Let θn denote the GT estimator. If W ∗∗ (x, θ) is independent
of x and θ, b is affi ne, Eθcn (β) = c (θ, β) and assumptions A.1, A.2, A.3,
A.4, A.6, A.7, A.8, and A.13 hold for s∗ ≥ 4 then, uniformly on Oε (θ0)∥∥∥∥Eθ (n (θn − θ) (θn − θ)′

)
−H1 (θ)− H2 (θ)√

n

∥∥∥∥ = o
(
n−1/2

)
where

H1 (θ) = D−1E ∂c (θ, b)

∂β′
V (θ)

∂c′ (θ, b)

∂β
E ′D−1

H2 (θ) = D−1E ∂c (θ, b)

∂β′
IV
(
k2βk

′
1β

) ∂c′ (θ, b)
∂β

E ′D−1

Proof. Again we have that due to lemma 3.1, theorem 3.1 of Arvanitis and
Demos [1] along with the approximations used in lemma 3 whenW ∗∗ is inde-
pendent of x and θ and b (θ) is affi ne, we get from the proof of lemma 3 that

we have to integrate w.r.t.
(

1 + π1(z,θ)√
n

)
ϕV (θ) (z) the following expression:

D−1E ∂c(θ,b)
∂β′ k1βk

′
1β

(
D−1E ∂c(θ,b)

∂β′

)′
+ 1

2
√
n
D−1E

[
k′1β

∂2cj(θ,b)

∂β∂β′ k1β

]
j=1,...,l

k′1β

(
D−1E ∂c(θ,b)

∂β′

)′
+ 1

2
√
n
D−1E

[
q′1β

∂b′

∂θ

∂2cj(θ,b)

∂β∂β′

(
∂b
∂θ′ q1β − 2k1β

)]
j=1,...,l

k′1β

(
D−1E ∂c(θ,b)

∂β′

)′
+ 1√

n
D−1

[
∂b′

∂θ

∂2cj(θ,b)

∂β∂β′

(
∂b
∂θ′ q1β − k1β

)]
j=1,...,l

W ∗∗ (θ)J ∗k1βk
′
1β

∂c′(θ,b)
∂β
E ′D−1

+ 1
2
√
n
D−1E ∂c(θ,b)

∂β′ k1β



([
k′1β

∂2cj(θ,b)

∂β∂β′ k1β

]
j=1,...,l

)′
E ′([

q′1β
∂b′

∂θ

∂2cj(θ,b)

∂β∂β′

(
∂b
∂θ′ q1β − 2k1β

)]
j=1,...,l

)′
E ′

k′1β (W ∗∗ (θ)J ∗)′
([

∂b′

∂θ

∂2cj(θ,b)

∂β∂β′

(
∂b
∂θ′ q1β − k1β

)]
j=1,...,l

)′

D
−1,
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where k1β (z, θ) = z. and q1β = D−1E ∂c(θ,b)
∂β′ z. Now notice that∫

Rq D
−1E ∂c(θ,b)

∂β′ k1βk
′
1β

(W ∗∗ (θ)J ∗)′
([

∂b′

∂θ

∂2cj(θ,b)

∂β∂β′

(
∂b
∂θ′ q1β − k1β

)]
j=1,...,l

)′
ϕV (z) dz =

0 as it involves the integral of (z)3, which is zero-mean normally distributed.

Hence by integrating the above expression w.r.t.
(

1 + π1(z,θ)√
n

)
ϕV (θ) (z) we

get: Eθ
(
n (θn − θ) (θn − θ)′

)
=
∫
Rq D

−1E ∂c(θ,b)
∂β′ k1βk

′
1β

(
D−1E ∂c(θ,b)

∂β′

)′ (
1 + π1(z,θ)√

n

)
ϕV (z) dz

and taking into account that k1β (z, θ) = z, k2β (z, θ) = zπ1 (z, θ) and that∫
Rp D

−1E ∂c(θ,b)
∂β′ k1βk

′
1β

(
D−1E ∂c(θ,b)

∂β′

)′
ϕV (z) dz = D−1E ∂c(θ,b)

∂β′ V (θ)
(
D−1E ∂c(θ,b)

∂β′

)′
we get the result.

4 Recursive GMR2
Let θ(0

n denote any consistent estimator of θ.

Definition D.5 Let ζ ∈ N, the recursive ζ − GMR2 estimator (denoted by
θ(ζ
n ) is defined in the following steps:

1. θ(1
n = arg minθ

∥∥∥θ(0
n − Eθθ(0

n

∥∥∥,
2. for ζ > 1 θ(ζ

n = arg minθ

∥∥∥θ(ζ−1
n − Eθθ(ζ−1

n

∥∥∥.
Using the results of the previous section, we are now able to prove the

following lemma.

Lemma 4.1 Suppose that assumptions A.6, A.8, A.11 hold for θ(0
n for s

∗ ≥
2ζ+4. Moreover suppose that Eθ supθ∈Oε(θ0) ‖nsn‖

2 < +∞ and Eθ supθ∈Oε(θ0)

∥∥nHn

∥∥ <
+∞ for all θ ∈ Oε (θ0) and

√
nsn (θ) admits a locally uniform Edgeworth ex-

pansion of order 6. Then the ζ − GMR2 estimator is of order s = 2ζ + 1
unbiased and has the same MSE with the (ζ − 1) − GMR2, up to 2ζ order,
uniformly over Oε∗ (θ0) for any ε∗ < ε.

Proof. First notice that in any step of the procedure the binding function
is the identity. Next the o

(
n−a

∗)
uniform consistency of θ(0

n ensures the
analogous for any step of the recursion. Then validity of the Edgeworth
expansion for

√
nsn (θ) along with lemma 3.1 and remark R.1 imply that

sup
θ∈Oε(θ0)

E
∥∥nsn (θ) s′n (θ) + EHn (θ)

∥∥2
= O (1)
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and since by the same lemma supθ∈Oε(θ0) E
∥∥∥(θ(0

n − θ
)∥∥∥2

= O
(

1
n

)
andEθ supθ∈Oε(θ0) ‖nsn‖

2 <

+∞ and Eθ supθ∈Oε(θ0)

∥∥nHn

∥∥ < +∞ we have that supθ∈Oε(θ0)

∥∥∥D2Eθθ
(1
n

∥∥∥ <
M . Hence lemma 2.5 applies and accordingly θ(1

n admits a locally uniform
Edgeworth expansion of order s∗. Given this the exact same reasoning im-
plies the same result for θ(h

n for any h. Moreover assumption A.11 follows
for the expansions in every step of the procedure due to the previous. The
proof for the moment approximations for the case h = 1 follows easily. Using
induction, let us assume that the result holds for some h, i.e. assume that
the appropriate expression for

√
n
(
θ(h
n − θ

)
is given by:

Eθ
√
n
(
θ(h
n − θ

)
=

1

n
2h+1
2

IV (k2h+2) +
1

n
2h+2
2

IV (k2h+3) + o
(
n−

2h+2
2

)
.

uniformly over Oε (θ0). Hence for θ ∈ Oε (θ0), by lemma 2.4 it follows that

√
n
(
E
θ
(h+1
n

θ(h
n − Eθθ(h

n

)
−

Idp +
1

n
2h+2
2

∂IV
(
k
/
2h+2

)
∂θ

√n(θ(h+1
n − θ

)
is bounded by a real sequence of order o

(
n−

2h+3
2

)
that is independent of

θ, with Pθ-probability 1 − o
(
n−

2h+3
2

)
independent of θ. The h + 1st-step

GMR2 estimator satisfies with Pθ-probability 1− o
(
n−

2h+3
2

)
independent of

θ, θ(h
n = E

θ
(h+1
n

θ(h
n . Hence lemma 3.1 and Theorem 3.1 of Arvanitis and Demos

[1] imply that the required approximation would be given by the integration
of the Edgeworth density in the hth step of the following approximation

√
n
(
θ(h
n − θ

)
−
(

1

n
2h+1
2

IV (k2h+2) +
1

n
2h+2
2

IV (k2h+3)

)
This integration gives

1

n
2h+1
2

IV (k2h+2) +
1

n
2h+2
2

IV (k2h+3)

−
(

1

n
2h+1
2

IV (k2h+2) +
1

n
2h+2
2

IV (k2h+3)

)
+ o

(
n−

2h+2
2

)
as
∫
Rp

(
1 +

∑2h+2
i=1

πi(z,θ)

ni/2

)
ϕV (θ) (z) dz = 1 + o

(
n−

2h+2
2

)
due to the validity

of the Edgeworth approximation of the distribution of
√
n
(
θ(h
n − θ

)
and the

result follows. For the MSE approximation the result follows analogously, by

simply noticing that
(

Idp + 1

n
2h+2
2

∂IV
(
k
/
2h+2

)
∂θ

)−1

= Idp +o (1).
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5 Examples and Monte Carlo Experiments
Here we present an analytic proof the GARCH (1, 1) example only.

5.1 The GARCH(1,1) Case
Consider the set of stationary ergodic and covariance stationary processes
defined by the recursion

y2
j = ε2

jhj

hj = θ1 (1− θ2 − θ3) +
(
θ2ε

2
j−1 + θ3

)
hj−1

where the (εj) are iid, Eε0 = 0, Eε2
0 = 1, Eε28

0 < +∞ the distribution of ε0

admits a positive continuous density and θ = (θ1, θ2, θ3)′ ∈ Θ =
[
η
ω
, ηω

]
×[

η
α
, ηα

]
×
[
η
β
, ηβ

]
where η

ω
, η

α
, η

β
> 0 and for any θ ∈ Θ, E (θ2ε

2
0 + θ3)

14
<

1.
Let

b (θ) =

(
θ1,

θ2 (1− (θ2 + θ3) θ3)

1− 2θ2θ3 − θ2
3

, θ2 + θ3

)′
and for some compact B ⊇ b (Θ) and cn (β) =

((
y2, ρ̂1,

ρ̂2
ρ̂1

)
− β

)′
define

βn ∈ arg min
β∈B

1

2
‖cn (β)‖2

where y2 = 1
n

∑n
j=1 y

2
j , ρ̂i =

1
n

∑n
j=1(y2t y2t−i)−(y2)

2

1
n

∑n
j=1(y4t )−(y2)

2 . Furthermore define

GMR1 ∈ arg min
θ∈Θ

1

2
‖βn − b (θ)‖2 .

Now employing the GMR2 estimator, treating the GMR1 as an auxiliary
one, we get the 1 − GMR2 estimator. Again, the Eθ (GMR1) needs to be
evaluated.

Proposition 4 If the distribution of ε0 admits a positive and continuous
density then βn and GMR1 admit 4th order valid Edgeworth expansions, uni-
formly over Θ. Furthermore if the distribution of ε0 is standard normal, then
GMR2, 1−GMR2 and GT admit 4th order valid Edgeworth expansions, uni-
formly over any compact subset of Θ.
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Proof: For any θ ∈ × let Xj (θ) =
(
y2
j y4

j y2
j y

2
j−1 y2

j y
2
j−2

)′
, and

Sn (θ) = 1√
n

∑n
i=1 (Xi (θ)− EX0 (θ)). Then as E (θ2ε

2
0 + θ3)

14
< 1, the

monotonicity of h w.r.t. θ and a dominated convergence argument imply
that E

(
ymj (θ)

)
exists and is continuous on Θ for any m = 1, . . . , 24. There-

fore supθ∈×E ‖X0 (θ)‖7 < +∞ establishing A.2-M in Arvanitis and Demos
[1]. This also implies that if the formal Edgeworth expansion is valid, the
polynomials of its density are equicontinuous functions of these moments and
the covariance matrix is continuous on Θ and positive definite. The valid-
ity of the the formal Edgeworth expansion follows from the verification of
conditions A.2-WD, A.3-CPD and A.3-NDD in Arvanitis and Demos [1] (for
details see proposition 1 in Arvanitis and Demos [1]).

Let us define the function fact that f (x) =
(
x1,

x3−x21
x2−x21

,
x4−x21
x2−x21

)
which is

continuous. A 4th order Taylor expansion of f -which is independent of θ-
around E (X0 (θ)) of gives

√
n

((
y2, ρ̂1,

ρ̂2

ρ̂1

)′
− b′ (θ)

)
=
∑3

i=0

1

ni/2
D(i+1)f (E (X0 (θ))) (Sn (θ))i+1+Rn (θ)

where

Rn (θ) =
1

n3/2

(
D4f

(
R+
n (θ)

)
(Sn (θ))4 −D4f (E (X0 (θ))) (Sn (θ))4)

R+
n (θ) lies between 1

n

∑n
j=1Xj (θ) andE (X0 (θ)) with probability 1−o

(
n−

3
2

)
that does not depend on θ. Due to the continuity of D4f on some compact
neighborhood of E (X0 (θ)) we have that

‖Rn (θ)‖ ≤ ‖R
+
n (θ)‖ ‖Sn (θ)‖4

n3/2

Hence the definition of R+
n (θ), along with the fact that Sn (θ) has a valid

Edgeworth expansion uniformly on Θ proposition, and lemmas AL.2 and 3.3
in Arvanitis and Demos [1] imply that the result will hold if∑3

i=0

1

ni/2
D(i+1)f (E (X0 (θ))) (Sn (θ))i+1

admits the relevant Edgeworth expansion. But this holds due to the fact that
Df (E (X0 (θ))) has rank 3 for any θ. Hence by theorem 3.1 in Arvanitis and

Demos [1] it follow that
√
n
((
y2, ρ̂1,

ρ̂2
ρ̂1

)
− b (θ)

)
− b′ (θ) admits a locally

uniform Edgeworth expansion of order 4. As now βn =
(
y2, ρ̂1,

ρ̂2
ρ̂1

)
with
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probability 1 − o
(
n−

s−2
2

)
that does not locally depend on θ, by lemma 3.3

in Arvanitis and Demos [1] we get
√
n (βn − b (θ)) admits a locally uniform

Edgeworth expansion of order 4 with Edgeworth polynomials that are, locally
on Θ, equicontinuous functions.
Let us call GMR1 by θn. Initially observe that due to the first part, for

some Θ∗ =
[
η∗
ω
, η∗ω

]
×
[
η∗
α
, η∗α

]
×
[
η∗
β
, η∗β

]
where 0 < η∗

m
< η

m
, η∗m > ηm for

m = ω, α, β, such that Int (Θ) ⊃ Θ∗ ⊃ Θ′

sup
θ∈O(θ0,δ)

P
(
βn (θ) ∈ O (θ0, δ

∗)
)

= 1− o
(
n−

s−2
2

)
and it is easy to see that ∂b

∂θ′ has full rank for any θ in O (θ0, δ
∗), hence

with probability 1− o
(
n−

3
2

)
that does not locally depend on θ, θn satisfies

βn = b (θn). The mean value theorem along with the constant full rank and
continuity of ∂b

∂θ′ on Θ′ imply that for some c > 0 independent of θ

sup
θ∈O(θ0,δ)

P
(√

n ‖θn − θ‖ ≤ c
√
n ‖βn − b (θ)‖

)
= 1− o

(
n−

3
2

)
which along with lemma AL.2 in Arvanitis and Demos [1] imply that for
some C∗ > 0 independent of θ

sup
θ∈O(θ0,δ)

P
(√

n ‖θn − θ‖ > C∗ ln1/2 n
)

= o
(
n−

s−2
2

)
A Taylor expansion of b (θn) around b (θ) of order 4 implies that

03×1 =
√
n (βn − b (θ)) +

√
n
∑3

i=0

1

ni/2
D(i+1)b (θ)

(√
n (θn − θ)

)i+1
+Rn (θ)

where

Rn (θ) =
1

n3/2

(
D4b

(
θ+
n

) (√
n (θn − θ)

)4 −D4b (θ)
(√

n (θn − θ)
)4
)

θ+
n lies between θn and θ with probability 1− o

(
n−

3
2

)
that does not depend

on θ. Due to the continuity of D4b (θ) on some compact neighborhood of θ
we have that

‖Rn (θ)‖ ≤
∥∥θ+

n − θ
∥∥ ‖√n (θn − θ)‖4

n3/2

Hence due to the definition of θ+
n , the fact that θn is uniformly tight, the

uniform expansion of βn and the constant full rank of the Jacobian of b and
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application of theorem 3.2 in Arvanitis and Demos [1] delivers the result for
θn.
Let us now call GMR2 as θ∗n. Notice first that uniform consistency of βn

to b (θ) along with the boundeness of Θ imply by uniform integrability that

sup
θ∈Θ
|Eθβn − b (θ)| = o (1) (7)

hence for any ε > 0

sup
θ∗∈Θ

P

(
sup
θ∈Θ
||βn − Eβn (θ)| − |b (θ∗)− b (θ)|| > ε

)
≤ sup

θ∗∈Θ

P (|βn − b (θ∗)|+ o (1) > ε) = o
(
n−

3
2

)
due to the analogous consistency of βn. Hence

sup
θ∗∈Θ

P (θ∗n ∈ O (θ∗, ε) ∩Θ) = 1− o
(
n−

3
2

)
for any ε > 0. Then from lemma AL.9 and lemma 2.5 we obtain that

sup
θ∗∈Θ′′

P
(√

n |θ∗n − θ| > C ln1/2 n
)

= o
(
n−

3
2

)
(8)

for some appropriate C > 0. Now by recursive examination it is easy to see
that Ehm0 (θ) is 4 times continuously differentiable for any θ in Θ′′ for all
m = 1, . . . , 5. This along the analogous differentiability of f imply that the
πi there are also 4 times continuously differentiable for any θ in Θ′′ for any
z ∈ R. Then dominated convergence implies the same for I

V
(ki (z, θ)) for

all i = 1, . . . , 3. Then lemma 2.4 along with lemma AL.9 imply that
∂Eθ∗n (βn)

∂θ

converges to ∂b(θ)
∂θ′ for any θ in Θ′′ with probability 1− o

(
n−

3
2

)
independent

of θ, hence with the same probability θ∗n satisfies βn = Eθ∗nθn. Hence with

probability 1− o
(
n−

3
2

)
independent of θ, θ∗n satisfies

0 =
√
n (βn − Eθθ∗n) + An (θ) +Rn (θ)

where supθ∈Θ′′ P (‖Rn (θ)‖ > o (n−1)) = o
(
n−3/2

)
. The result follows from 8,

proposition AL.8, lemma AL.2 and theorem 3.2 in Arvanitis and Demos [1].
Notice that by the definition of cn (β) we have that Eθ (cn (βn)) = Eθβn−βn,
i.e. GT = GMR2.
Finally, the case of 1−GMR2 follows in complete analogy to the previous

by simply replacing in the previous proof any invocation to f with b−1 (ϕ) =(
ϕ1,

1−ϕ23−
√

(1−(2ϕ2−ϕ3)2)(1−ϕ23)
2(ϕ2−ϕ3)

,
−(1−2ϕ2ϕ3+ϕ23)+

√
(1−(2ϕ2−ϕ3)2)(1−ϕ23)

2(ϕ2−ϕ3)

)
and of b

with the identity. �
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Appendix-General Proofs
The following are a collection of helpful results that are frequently used in
the proofs of the main results.

Lemma AL.1 Suppose that:
-UUC

sup
θ∈Θ

Pθ

(
sup
β∈B
|cn (β)− c (θ, β)| > ε

)
= o

(
n−a
)
, ∀ε > 0

-AB c (θ, β) is jointly continuous and γ (θ) = arg minβ∈B c (θ, β), then

sup
θ∈Θ

Pθ (‖βn − γ (θ)‖ > ε) = o
(
n−a
)
, ∀ε > 0

where βn ∈ arg minβ∈B cn (β).

Proof. For ε > 0 independent of θ, and for any β for which

‖β − γ (θ)‖ > ε

there must exist a δ > 0 such that

c (θ, β)− c (θ, γ (θ)) > δ

due to the compactness of B the continuity of c (θ, ·) and the uniqueness of
b (θ) as a minimizer of c (θ, β) for any θ. The compactness of Θ×B and the
joint continuity of c implies that it can be chosen independent of θ. Suppose
that this is not the case which implies that infθ∈Oε(θ0) δ = 0. Then there
exists a sequence θm in Θ for which, for any ε > 0 there exists an m (ε) such
that c (θm, β) − c (θm, γ (θ)) < ε for all m ≥ m (ε). Due to compactness θm
can be chosen convergent, say to θ∗. Then due to the joint continuity of c
and the continuity of b we have that c (θ∗, βn) − c (θ∗, γ (θ∗)) = 0 which is
impossible if β 6= γ (θ∗) due to the property of γ. Hence

sup
θ∈Θ

Pθ (‖βn − γ (θ)‖ > ε)

≤ sup
θ∈Θ

Pθ (|c (θ, βn)− c (θ, γ (θ))| > δ)

≤ sup
θ∈Θ

Pθ

(
sup
β∈B
|cn (β)− c (θ, β)| > δ

2

)
= o

(
n−a

∗)
which implies the result.
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Lemma AL.2 Let assumptions A.7.a and A.6 hold. Then for j = ∗, ∗∗

sup
θ∈Θ

Pθ
(∥∥W j

n (θ∗n)− EθW j (θ)
∥∥ > ε

)
= o

(
n−a

∗)
,∀ε > 0

Furthermore, there exists K > 0 for which

sup
θ∈Θ

Pθ
(∥∥W j

n (θ∗n)
∥∥ > K

)
= o

(
n−a

∗)
Proof. Assumptions A.6, A.7a) and the triangle inequality imply that for
any ε > 0

sup
θ∈Θ

Pθ
(∥∥W j

n (θ∗n)− EθW j (θ)
∥∥ > ε

)
(9)

≤ sup
θ∈Θ

Pθ

(∥∥W j
n (θ∗n)− EθW j (θ∗n)

∥∥ > ε

2

)
+ sup

θ∈Θ
Pθ

(∥∥EθW j (θ∗n)− EθW j (θ)
∥∥ > ε

2

)
≤ o

(
n−a

∗)
+ sup

θ∈Θ
Pθ

(∥∥EθW j (θ∗n)− EθW j (θ)
∥∥ > ε

2

)
by assumption A.7.a)

≤ o
(
n−a

∗)
+ sup

θ∈Θ
Pθ

(
κ∗ (θ) ‖θ∗n − θ‖ >

ε

2

)
by assumption A.7.a)

= o
(
n−a

∗)
by assumption A.6

due to the fact that supθ∈Θ κ
j (θ) < +∞. Now for K > supθ∈Θ ‖EθW j (θ)‖ >

0 which exists due to assumption A.7.a) and ε = K − supθ∈Θ ‖EθW j (θ)‖we
have that

sup
θ∈Θ

Pθ
(∥∥W j

n (θ∗n)
∥∥ > K

)
= sup

θ∈Θ
Pθ
(∥∥W j

n (θ∗n)
∥∥ > ε+

∥∥EθW j (θ)
∥∥)

= sup
θ∈Θ

Pθ
(∥∥W j

n (θ∗n)
∥∥− ∥∥EθW j (θ)

∥∥ > ε
)

≤ sup
θ∈Θ

Pθ
(∥∥W j

n (θ∗n)− EθW j (θ)
∥∥ > ε

)
= o

(
n−a

∗)
.

Lemma AL.3 Suppose that

cn (β) =

√
q′n (β)W j

n (θ∗n) qn (β)

for some appropriate random element qn where W j
n, θ

∗
n satisfy assumptions

A.7.a, A.6 and for q an appropriate jointly continuous function on Θ×B

sup
θ∈Θ

Pθ
(
supβ∈B ‖qn (β)− q (θ, β)‖ > ε

)
= o

(
n−a

∗)
,∀ε > 0

Then AL.1.UUC holds for c (θ, β) =
√
q′ (θ, β)EθW j (θ) q (θ, β) which is

jointly continuous.
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Proof. Due to the triangle inequality the submultiplicativity and the monotonic-
ity of the square root, we have pointwise that

|cn (β)− c (θ, β)|

=

∣∣∣∣cn (β)±
√
q′ (θ, β)W j

n (θ∗n) q (θ, β)− c (θ, β)

∣∣∣∣
≤ ‖q′n (β)− q (θ, β)‖W j

n(θ∗n) +
√∣∣q′ (θ, β)

(
W j
n (θ∗n)− EθW j (θ)

)
q (θ, β)

∣∣
≤ ‖q′n (β)− q (θ, β)‖W j

n(θ∗n) + ‖q′ (θ, β)‖
√∥∥W j

n (θ∗n)− EθW j (θ)
∥∥

≤ ‖q′n (β)− q (θ, β)‖
√∥∥W j

n (θ∗n)
∥∥+ ‖q (θ, β)‖

√∥∥W j
n (θ∗n)− EθW j (θ)

∥∥
therefore

sup
θ∈Θ

Pθ
(
supβ∈B ‖cn (β)− c (θ, β)‖ > ε

)
≤ sup

θ∈Θ
Pθ

(
supβ∈B ‖q′n (β)− q (θ, β)‖

√∥∥W j
n (θ∗n)

∥∥ > ε

2

)
+ sup

θ∈Θ
Pθ

(
sup(θ,β)∈Θ×B ‖q (θ, β)‖

√∥∥W j
n (θ∗n)− EθW j (θ)

∥∥ > ε

2

)
Now continuity of q and compactness ofΘ×B imply that sup(θ,β)∈Θ×B ‖q (θ, β)‖ <
M . Furthermore, for c =

√
K and K as in lemma AL.2, that applies due to

assumptions A.7.a and A.6, we have that the right hand side of the previous
inequality is bounded by

sup
θ∈Θ

Pθ

(
supβ∈B ‖q′n (β)− q (θ, β)‖ > ε

2c

)
+ sup

θ∈Θ
Pθ

(∥∥W j
n (θ∗n)− EθW j (θ)

∥∥ >√ ε

2M

)
and AL.1.UUC follows due to the hypotheses and lemma AL.2. The joint
continuity follows from the hypothesis for q and the the fact that EθW j (θ)
is continuous due to A.7.a.

Lemma AL.4 Suppose W j
n, θ

∗
n satisfy assumptions A.7, A.6, βn and γ (θ)

are as in lemma AL.1, γ is continuous on Oε (θ0) and that:
-FOC βn satisfies

∂q′n (βn)

∂β
W j
n (θ∗n) qn (βn) = 0

with Pθ-probability 1− o
(
n−a

∗)
that is independent of θ,

-HUB for some δ,M > 0 independent of θ such that γ
(
Oε (θ0)

)
⊂ Oδ (γ (θ0))
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and for all i, supθ∈Oε(θ0) Pθ

(
supβ∈Oδ(γ(θ0))

∥∥∥∂2q′n (βn)

∂β∂βi

∥∥∥ > M
)

= o
(
n−a

∗)
,

-RANK for any β ∈ Oδ (γ (θ0)), ∂qn(β)
∂β′ is of full rank with Pθ-probability

1− o
(
n−a

∗)
that is independent of θ and,

-TIGHT for some C > 0 independent of θ, supθ∈Oε(θ0) Pθ

(√
n ‖qn (γ (θ))‖ > C ln1/2 n

)
=

o
(
n−a

∗)
, then

sup
θ∈Oε(θ0)

Pθ

(√
n ‖βn − γ (θ)‖ > C+ ln1/2 n

)
= o

(
n−a

∗)
for some C+ > 0 independent of θ.

Proof. Due to AL.4.HUB-RANK, A.7 and the mean value theorem we have
that with Pθ-probability 1− o

(
n−a

∗)
that is independent of θ

∂q′n (b (θ))

∂β
W j
n (θ∗n)

√
nqn (γ (θ)) + An

√
n ‖βn − γ (θ)‖ = 0

with

An =

[
∂2q′n

(
β+
n

)
∂β∂βi

W j
n (θ∗n) qn

(
β+
n

)]
i

+
∂q′n

(
β+
n

)
∂β

W j
n (θ∗n)

∂qn
(
β+
n

)
∂β′

where β+
n lies between βn and γ (θ). We have that due to submultiplicativity∥∥∥∥∂q′n (γ (θ))

∂β
W j
n (θ∗n)

√
nqn (γ (θ))

∥∥∥∥
≤

∥∥∥∥∂q′n (γ (θ))

∂β

∥∥∥∥∥∥W j
n (θ∗n)

∥∥√n ‖qn (γ (θ))‖

and due to AL.4.HUB we have that ∂q′n(γ(θ))
∂β

is asymptotically equi-Lipschitz
and therefore there exists some constant m∗ > 0, independent of θ for which

sup
θ∈Oε(θ0)

Pθ

(
sup

θ∈Oε(θ0)

∥∥∥∥∂q′n (γ (θ))

∂β

∥∥∥∥ > m∗

)
= o

(
n−a

∗)
furthermore assumptions A.7, A.6 along with lemma AL.2 imply that there
exists K > 0 independent of θ for which

sup
θ∈Oε(θ0)

Pθ
(∥∥W j

n (θ∗n)
∥∥ > K

)
= o

(
n−a

∗)
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hence due to AL.4.TIGHT

sup
θ∈Oε(θ0)

Pθ

(∥∥∥∥∂q′n (b (θ))

∂β
W j
n (θ∗n)

√
nqn (γ (θ))

∥∥∥∥ > C∗ ln1/2 n

)
= o

(
n−a

∗)
for any C∗ ≥ C

m∗K which is obviously independent of θ. Furthermore, due
to AL.4.HUB and the mean value theorem with Pθ-probability 1− o

(
n−a

∗)
that is independent of θ

qn
(
β+
n

)
= qn (γ (θ)) +

∂q′n
(
β++
n

)
∂β

(
β+
n − b (θ)

)
where β++

n lies between β+
n and γ (θ). As before due to the definitions of

β+
n , β

++
n and due to AL.4.TIGHT

sup
θ∈Oε(θ0)

Pθ

(∥∥∥∥∥∂q′n
(
β++
n

)
∂β

∥∥∥∥∥ > m∗

)
= o

(
n−a

∗)
,

sup
θ∈Oε(θ0)

Pθ
(∥∥β+

n − γ (θ)
∥∥ > ε

)
= o

(
n−a

∗)
for any ε > 0

and due to AL.4.TIGHT

sup
θ∈Oε(θ0)

Pθ
(∥∥qn (β+

n

)∥∥ > ε
)

= o
(
n−a

∗)
,∀ε > 0

which furthermore along with AL.4.HUB and lemma AL.2 imply that

sup
θ∈Oε(θ0)

Pθ

(∥∥∥∥∥
[
∂2q′n

(
β+
n

)
∂β∂βi

W j
n (θ∗n) qn

(
β+
n

)]
i

∥∥∥∥∥ > ε

)
= o

(
n−a

∗)
,∀ε > 0

Also, AL.4.RANK via the Weierstrass theorem which implies that with Pθ-
probability 1 − o

(
n−a

∗)
that is independent of θ, infβ∈Oδ(b(θ)) rank ∂q′n(β)

∂β

is full. A.7 imply that, with Pθ-probability 1 − o
(
n−a

∗)
that is indepen-

dent of θ supθ∈Oε(θ0) Pθ
(
λmin
n < k

)
= o

(
n−a

∗)
for some k > 0 indepen-

dent of θ, where λmin
n denotes the smallest absolute eigenvalue of W j

n (θ∗n).
These imply that with Pθ-probability 1 − o

(
n−a

∗)
that is independent of θ

supθ∈Oε(θ0) Pθ
(
µmin
n < k∗

)
= o

(
n−a

∗)
for some k∗ > 0 independent of θ, where

µmin
n denotes the smallest absolute eigenvalue of

(
∂q′n(β+n )

∂β
W j
n (θ∗n)

∂qn(β+n )
∂β′

)
.

Hence with Pθ-probability 1 − o
(
n−a

∗)
that is independent of θ, A−1

n exists

and is of the form
(
∂q′n(β+n )

∂β
W j
n (θ∗n)

∂qn(β+n )
∂β′

)−1

+Bn, with supθ∈Oε(θ0) Pθ (‖Bn‖ > ε) =
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o
(
n−a

∗)
for any ε > 0. Furthermore due to the fact that

(
∂q′n(β+n )

∂β
W j
n (θ∗n)

∂qn(β+n )
∂β′

)−1

is symmetric we have that∥∥∥∥∥∥
(
∂q′n

(
β+
n

)
∂β

W j
n (θ∗n)

∂qn
(
β+
n

)
∂β′

)−1
∥∥∥∥∥∥ ≤ r

(µmin
n )2

where r is the rank of the matrix. Hence for an ε > 0

sup
θ∈Oε(θ0)

Pθ
(∥∥A−1

n

∥∥ > c
)

≤ sup
θ∈Oε(θ0)

Pθ

(
r

(µmin
n )2 + ε > c

)
+ o

(
n−a

∗)
≤ sup

θ∈Oε(θ0)

Pθ

(
r

(k∗)2 + ε > c

)
+ o

(
n−a

∗)
= o

(
n−a

∗)
for any c ≥ r

(k∗)2
+ ε. These imply that

sup
θ∈Oε(θ0)

Pθ

(√
n ‖βn − γ (θ)‖ > C+ ln1/2 n

)
≤ sup

θ∈Oε(θ0)

Pθ

(∥∥A−1
n

∥∥∥∥∥∥∂q′n (b (θ))

∂β
W j
n (θ∗n)

√
nqn (γ (θ))

∥∥∥∥ > C+ ln1/2 n

)
+ o

(
n−a

∗)
≤ sup

θ∈Oε(θ0)

Pθ

(∥∥∥∥∂q′n (b (θ))

∂β
W j
n (θ∗n)

√
nqn (γ (θ))

∥∥∥∥ > C+

c
ln1/2 n

)
+ o

(
n−a

∗)
which is o

(
n−a

∗)
for any C+ ≥ cC∗.

Lemma AL.5 Suppose that:
-FOC βn satisfies

Qn (βn)W j
n (θ∗n) qn (βn) = 0

with Pθ-probability 1− o
(
n−a

∗)
that is independent of θ,

-UTIGHT There exists a C+ > 0 independent of θ for which

sup
θ∈Oε(θ0)

Pθ

(√
n ‖βn − γ (θ)‖ > C+ ln1/2 n

)
= o

(
n−a

∗)
-UEDGE There exists a random element Mn (θ) with values in an Euclid-
ean space, containing the elements of

√
n (θ∗n − θ), the distribution of which

admits a uniform over Oε (θ0) Edgeworth expansion Ψn,s (θ). The ith poly-
nomial, say, πi (z, θ) of Ψn,s (θ) is equicontinuous on Oε (θ0) ∀z ∈ Rq, for
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i = 1, . . . , s − 2, and if Σ (θ) denotes the variance matrix in the density of
Ψn,s (θ) then it is continuous on Oε (θ0) and positive definite.
-EXPAND The following hold with Pθ-probability 1 − o

(
n−a

∗)
that is inde-

pendent of θ

Qn (βn) =
s∗−1∑
i=0

1

ni/2

∑i

j=0
C∗ijn (θ)

(
Mn (θ)j , Sn (θ)i−j

)
+R∗n (βn, θ)

W j
n (θ∗n) =

s∗−1∑
i=0

1

ni/2
C∗∗in (θ)

(
Mn (θ)i

)
+R∗∗n (θ∗n, θ)

√
nqn (βn) =

s∗−1∑
i=0

1

ni/2

∑i+1

j=0
C#
ijn

(θ)
(
Mn (θ)j , Sn (θ)i+1−j

)
+R#

n

(
β̃n, θ

)
where Sn (θ) =

√
n (βn − γ (θ)), C∗ijn : Oε (θ0) × Rqi → Rp, C∗∗in : Oε (θ0) ×

Rqi → Rp are i-linear, Cijn : Θ × Rqi+1 → Rp is (i+ 1)-linear ∀θ ∈ Oε (θ0),
C∗00n, C

∗∗
0n, C

#
00n (θ) , C#

01n (θ) are independent of n and have full rank ∀θ ∈
Oε (θ0), C∗in, C

∗∗
in , C

#
ijn
are equicontinuous on Oε (θ0), and

sup
θ∈Oε(θ0)

Pθ
(∥∥Rl

n

∥∥ > γln
)

= o
(
n−a

∗)
, l = ∗, ∗∗,#

for real sequence γln = o
(
n−a

∗)
independent of θ, for , l = ∗, ∗∗,#.

Then
√
n (βn − γ (θ)) admits a locally uniform Edgeworth expansion, Ψ∗n,s (θ),

over Oε (θ0). The ith polynomial, say, π∗i (z, θ) of the density of Ψ∗n,s (θ) is
equicontinuous on Oε (θ0) ∀z ∈ Rq, for i = 1, . . . , s−2, and if Σ∗ (θ) denotes
the variance matrix in the density of Ψ∗n,s (θ) then it is continuous on Oε (θ0)
and positive definite.

Proof. Due to conditions UTIGHT and EXPAND condition FOC implies
that with Pθ-probability 1− o

(
n−a

∗)
that is independent of θ(

s∗−1∑
i=0

1

ni/2

∑i

j=0
C∗ijn (θ)

(
Mn (θ)j ,

(√
n (βn − γ (θ))

)i−j)
+R∗n (βn, θ)

)
×(

s∗−1∑
i=0

1

ni/2
C∗∗in (θ)

(
Mn (θ)i

)
+R∗∗n (θ∗n, θ)

)
×(

s∗−1∑
i=0

1

ni/2

∑i+1

j=0
C#
ijn

(θ)
(
Mn (θ)j ,

(√
n (βn − γ (θ))

)i+1−j
)

+R#
n (βn, θ)

)
= 0
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Gathering terms of the same order we obtain that with Pθ-probability 1 −
o
(
n−a

∗)
that is independent of θ

s∗−1∑
i=0

1

ni/2

∑i+1

j=0
Cijn (θ)

(
Mn (θ)j ,

(√
n (βn − γ (θ))

)i+1−j
)

+Rn (βn, θ
∗
n, θ) = 0

with C00n (θ) = C∗00n (θ)C∗∗0n (θ)C#
00n (θ), C01n (θ) = C∗00n (θ)C∗∗00n (θ)C#

01n (θ)
which are obviously independent of n and of full rank,

Cijn (θ) =
∑

j0+j1+j2=j,i0+i1+j1=i

C∗i0j0n (θ)C∗∗j1n (θ)C#
i1j2n

(θ)

which is obviously equicontinuous on Oε (θ0). Moreover Rn (βn, θ
∗
n, θ) is a

sum containing terms of the form

An =
1

n(i0+i1+j1)/2
C∗i0j0n (θ)

(
Mn (θ)j0 ,

(√
n (βn − γ (θ))

)i0−j0)C∗∗j1n (θ)
(
Mn (θ)j1

)
×

C#
i1j2n

(θ)
(
Mn (θ)j2 ,

(√
n (βn − γ (θ))

)i1+1−j2
)

for which i1 + i2 + j1 > s∗ − 1. Due to equicontinuity which along with
the compactness of Oε (θ0) imply that the C functions and thereby their
products have uniformly bounded coeffi cients, and the submultiplicativity
we have that for some M > 0 independent of θ

‖An‖ ≤
M

n(i0+i1+j1)/2

∥∥√n (βn − γ (θ))
∥∥i0+i1+1−j1−j2 ‖Mn (θ)‖j1+j2

hence due to UTIGHT, UEDGE which along with lemma AL.2 of Arvanitis
and Demos [1] imply the existence of a constant C > 0 independent of θ for
which

sup
θ∈Oε(θ0)

Pθ (‖An‖ > γn)

≤ sup
θ∈Oε(θ0)

Pθ

(
M

n(i0+i1+j1)/2

∥∥√n (βn − γ (θ))
∥∥i0+i1+1−j1−j2 ‖Mn (θ)‖j1+j2 > γn

)

≤ o
(
n−a

∗)
+ sup

θ∈Oε(θ0)

Pθ

(
M (C+)

i0+i1+1−j1−j2 Cj1+j2

n(i0+i1+j1)/2
ln

i1+i2+1
2 n > γn

)

which is of order o
(
n−a

∗)
for γn =

M(C+)
i0+i1+1−j1−j2Cj1+j2

n(i0+i1+j1)/2
ln

i1+i2+1
2 n = o

(
n−a

∗)
and is obviously independent of θ. Furthermore Rn (βn, θ) contains terms of
the form

Bn =
R∗n (βn, θ)

n(i1+i2)/2
C∗∗i1n (θ)

(
Mn (θ)i1

)
C#
i2jn

(θ)
(
Mn (θ)j ,

(√
n (βn − γ (θ))

)i2+1−j
)
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and of the form

Γn =
R∗n (βn, θ)

ni1/2
C∗∗i1n (θ)

(
Mn (θ)i1

)
R#
n (βn, θ)

and of the form

∆n =
1

n(i1+i2)/2
C∗i1j0n (θ)

(
Mn (θ)j0 ,

(√
n (βn − γ (θ))

)i1−j0)R∗∗n (θ∗n, θ)

×C#
i2j2n

(θ)
(
Mn (θ)j2 ,

(√
n (βn − γ (θ))

)i2+1−j2
)

and of the form

En =
1

ni1/2
C∗i1j0n (θ)

(
Mn (θ)j0 ,

(√
n (βn − γ (θ))

)i1−j0)R∗∗n (θ∗n, θ)R
#
n (βn, θ)

for any compatible i0, i1, i2, j, j1, j2 and finally the term

Zn = R∗n (βn, θ)R
∗∗
n (θ∗n, θ)R

#
n (βn, θ)

and using the same arguments as before along with condition EXPAND, we
have that

sup
θ∈Oε(θ0)

Pθ (‖Bn‖ > γn)

≤ sup
θ∈Oε(θ0)

Pθ

(
M

n(i1+i2)/2
‖R∗n (βn, θ)‖ ‖Mn (θ)‖i1

∥∥√n (βn − γ (θ))
∥∥i2+1−j

> γn

)

≤ o
(
n−a

∗)
+ sup

θ∈Oε(θ0)

Pθ

(
M (C+)

i2+1−j
Ci1

n(i1+i2)/2
ln

i1+i2−j+1
2 nγ∗n > γn

)

which is of order o
(
n−a

∗)
for γn =

M(C+)
i2+1−jCi1

n(i1+i2)/2
ln

i1+i2−j+1
2 nγ∗n = o

(
n−a

∗)
and is obviously independent of θ, and

sup
θ∈Oε(θ0)

Pθ (‖Γn‖ > γn)

≤ sup
θ∈Oε(θ0)

Pθ

(
M

ni1/2
‖R∗n (βn, θ)‖ ‖Mn (θ)‖i1

∥∥R#
n (βn, θ)

∥∥ > γn

)
≤ o

(
n−a

∗)
+ sup

θ∈Oε(θ0)

Pθ

(
MCi1

ni1/2
ln

i1
2 nγ∗nγ

#
n > γn

)
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which is of order o
(
n−a

∗)
for γn = MCi1

ni1/2
ln

i1
2 nγ∗nγ

#
n = o

(
n−a

∗)
and is obvi-

ously independent of θ, and

sup
θ∈Oε(θ0)

Pθ (‖∆n‖ > γn)

≤ sup
θ∈Oε(θ0)

Pθ

(
M

n(i1+i2)/2

∥∥√n (βn − γ (θ))
∥∥i1+i2+1−j0−j2 ‖Mn (θ)‖j0+j2 ‖R∗∗n (θ∗n, θ)‖ > γn

)

≤ o
(
n−a

∗)
+ sup

θ∈Oε(θ0)

Pθ

(
MCj0+j2 (C+)

i1+i2+1−j0−j2

n(i1+i2)/2
ln

i1+i2+1
2 nγ∗∗n > γn

)

which is of order o
(
n−a

∗)
for γn =

MCj0+j2(C+)
i1+i2+1−j0−j2

n(i1+i2)/2
ln

i1+i2+1
2 nγ∗∗n =

o
(
n−a

∗)
and is obviously independent of θ and

sup
θ∈Oε(θ0)

Pθ (‖En‖ > γn)

≤ sup
θ∈Oε(θ0)

Pθ

(
M

ni1/2
‖Mn (θ)‖j0

∥∥√n (βn − γ (θ))
∥∥i1−j0 ‖R∗∗n (βn, θ)‖

∥∥R#
n (βn, θ)

∥∥ > γn

)

≤ o
(
n−a

∗)
+ sup

θ∈Oε(θ0)

Pθ

(
M (C+)

i1−j0 Cj0

ni1/2
ln

i1
2 nγ∗∗n γ

#
n > γn

)

which is of order o
(
n−a

∗)
for γn =

M(C+)
i1−j0Cj0

ni1/2
ln

i1
2 nγ∗∗n γ

#
n = o

(
n−a

∗)
and

is obviously independent of θ and finally

sup
θ∈Oε(θ0)

Pθ (‖Zn‖ > γn)

≤ sup
θ∈Oε(θ0)

Pθ
(
‖R∗∗n (βn, θ)‖ ‖R∗∗n (θ∗n, θ)‖

∥∥R#
n (βn, θ)

∥∥ > γn
)

≤ sup
θ∈Oε(θ0)

Pθ
(
γ∗nγ

∗∗
n γ

#
n > γn

)
which is of order o

(
n−a

∗)
for γn = γ∗nγ

∗∗
n γ

#
n = o

(
n−a

∗)
and is obviously inde-

pendent of θ. Hence there exists a real sequence γn = o
(
n−a

∗)
independent

of θ for which

sup
θ∈Oε(θ0)

Pθ (‖Rn (βn, θ
∗
n, θ)‖ > γn) = o

(
n−a

∗)
The result follows then from theorem 3.2 of Arvanitis and Demos [1].

Lemma AL.6 Under assumptions A.7 and A.8 condition EXPAND hold
for W j

n (θ∗n) where Mn (θ) =
√
nmn (θ).

50



Proof. Due to assumption A.7.b for any θ ∈ Oε (θ0) and any θ∗ suffi ciently
close to θ, W j

n (θ∗) admits a Taylor expansion of order s∗− 1 around θ of the
form

W j
n (θ∗) =

∑s∗−1

i=0

1

i!
DiW j

n (θ)
(

(θ∗ − θ)i
)

+
1

(s∗ − 1)!

(
Ds∗−1W j

n

(
θ+
)
−Ds∗−1W j

n (θ)
) (

(θ∗ − θ)s
∗−1
)

where θ+ lies between θ∗ and θ. Due to the assumption A.8 the elements of√
n (θ∗ − θ) are in Mn (θ). Furthermore there exist Ki (θ) i-linear functions

such that the coeffi cients of
√
n (DiW j

n (θ)−Ki (θ)) are also in Mn (θ). Due
to assumption A.7.b the elements of Ki (θ) can be identified as the uniform
probability limits of the corresponding elements of DiW j

n (θ) and thereby are
continuous on Oε (θ0). Obviously K0 (θ) = EθW

j
n (θ) due to A.7.a. The pre-

vious along with lemma AL.2 of Arvanitis and Demos [1] imply the existence
of a constant C > 0 independent of θ for which

sup
θ∈Oε(θ0)

Pθ

(√
n ‖θ∗n − θ‖ > C ln1/2 n

)
= o

(
n−a

∗)
hence we obtain that with probability 1− o

(
n−a

∗)
that is independent of θ

W j
n (θ∗n) = EθW

j
n (θ) +

∑s∗−1

i=1

1

i!

1

ni/2
Ki (θ)

((√
n (θ∗n − θ)

)i)
+
∑s∗−1

i=1

1

i!

1

ni/2
√
n
(
Di−1W j

n (θ)−Ki−1 (θ)
) ((√

n (θ∗n − θ)
)i)

+R∗∗n (θ∗n, θ)

with

R∗∗n (θ∗n, θ) =
1

(s∗ − 1)!

1

n
s∗−1
2

(
Ds∗−1W j

n

(
θ+
)
−Ds∗−1W j

n (θ)
) ((√

n (θ∗n − θ)
)s∗−1

)
+

1

(s∗ − 1)!

1

n
s∗
2

√
n
(
Ds∗−1W j

n (θ)−Ks∗−1 (θ)
) ((√

n (θ∗n − θ)
)s∗−1

)
Furthermore due to submultiplicativity, A.7.b, A.8 and lemma AL.2 of Ar-
vanitis and Demos [1] there exist M,C > 0 and independent of θ such that

sup
θ∈Oε(θ0)

Pθ (‖R∗∗n (θ∗n, θ)‖ > γ∗∗n )

≤ sup
θ∈Oε(θ0)

Pθ

∥∥∥∥∥∥
1

(s∗−1)!
1

n
s∗−1
2

(
Ds∗−1W j

n

(
θ+
)
−Ds∗−1W j

n (θ)
)
×(

(
√
n (θ∗n − θ))

s∗−1
) ∥∥∥∥∥∥ > γ∗∗n

2


+ sup

θ∈Oε(θ0)

Pθ

∥∥∥∥∥∥
1

(s∗−1)!
1

n
s∗
2

√
n
(
Ds∗−1W j

n (θ)−Ks∗−1 (θ)
)
×(

(
√
n (θ∗n − θ))

s∗−1
) ∥∥∥∥∥∥ > γ∗∗n

2
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which is less than or equal to

sup
θ∈Oε(θ0)

Pθ

(
1

n
s∗−1
2

supθ∈Oε0 (θ0)

∥∥Ds∗W j
n (θ)

∥∥ ‖θ∗n − θ‖×
‖
√
n (θ∗n − θ)‖

s∗−1
> γ∗∗n

2

)

+ sup
θ∈Oε(θ0)

Pθ

(
1

n
s∗
2

∥∥√n (Ds∗−1W j
n (θ)−Ks∗−1 (θ)

)∥∥×
‖
√
n (θ∗n − θ)‖

s∗−1
> γ∗∗n

2

)

≤ o
(
n−a

∗)
+ sup

θ∈Oε(θ0)

Pθ

(
1

(s∗ − 1)!

M

n
s∗
2

lns
∗/2 n >

γ∗∗n
2

)
+ sup

θ∈Oε(θ0)

Pθ

(
1

(s∗ − 1)!

Cs∗

n
s∗
2

lns
∗/2 n >

γ∗∗n
2

)

which is of order o
(
n−a

∗)
when γ∗∗n = 1

(s∗−1)!

2 max(M,Cs
∗
)

n
s∗
2

lns
∗/2 n = o

(
n−a

∗)
independent of θ. Hence due to the rank condition on EθW j

n (θ) from as-
sumption A.7.a the result follows.

Lemma AL.7 For real valued functions fn, f defined on Θ′ ⊇ Θ, suppose
that: supθ∈Θ |fn − f | = o (1), and supθ∈Θ ‖D2fn‖ , supθ∈Θ ‖D2f‖ < M . Then
supθ∈Θ ‖Dfn −Df‖ = o (1).

Proof. For any with θm 6= θ and Di = ∂
∂θi
for any i

sup
θ∈Θ
|Difn (θ)−Dif (θ)|

≤ sup
θ∈Θ

∣∣∣∣Difn (θ)− fn (θm)− fn (θ)

|θim − θ|

∣∣∣∣+ sup
θ∈Θ

∣∣∣∣f (θm)− f (θ)

|θim − θ|
−Dif (θ)

∣∣∣∣
+ sup

θ∈Θ

∣∣∣∣fn (θm)− f (θm)

|θim − θ|

∣∣∣∣+ sup
θ∈Θ

∣∣∣∣fn (θ)− f (θ)

|θim − θ|

∣∣∣∣
which is less than or equal

2M ‖θm − θ‖+
1

cm

(
sup
θ∈Θ
|fn (θm)− f (θm)|+ sup

θ∈Θ
|fn (θ)− f (θ)|

)
where cm = minθ∈Θ |θim − θ| which exists due to the compactness of Θ and
continuity and it is different from zero due to the definition of θm, which
converges as n→∞ to

2M ‖θm − θ‖
letting then θm → θ we obtain the needed result.

52



Lemma AL.8 Suppose that
√
nmn (θ) admits a locally uniform Edgeworth

expansion, say Ψn,s (θ), of order s over Θ′, the polynomials of the density
of which, say, πi (z, θ) of Ψn,s (θ) are equicontinuous on Θ ∀z ∈ Rq, for
i = 1, . . . , s − 1, and V (θ) denotes the variance matrix in the density of
Ψn,s (θ) then it is continuous on Θ and positive definite. Let the random
element

√
nγn (θ) be comprised by elements of

√
nmn (θ) such that its support

is bounded by
√
nΓ for Γ a bounded set of some Euclidean space. Then

√
nm∗n (θ) =

√
n

(
mn (θ)

γn (θ)− Eγn (θ)

)
admits a locally uniform Edgeworth

expansion of order s − 1 over O (θ0, δ), the polynomials of the density of
which are equicontinuous, as well.

Proof. As
√
nγn (θ) is part of

√
nmn (θ) (a projection) we have that

√
nγn (θ)

admits a locally uniform Edgeworth expansion of order s over Θ′ (see lemma
AL.1 in Arvanitis and Demos [1]), the polynomials of the density of which
are equicontinuous on Θ. Due to lemma 3.1, above, we have that

sup
θ∈Θ′

∣∣∣∣∣√nEθγn −
∫
R
z

(
1 +

s−2∑
i=1

πi (z, θ)

ni/2

)
ϕV (θ) (z) dz

∣∣∣∣∣
= sup

θ∈Θ′

∣∣∣∣√nEθγn −∑s−2

i=1

I
V

(ki (z, θ))

ni/2

∣∣∣∣ = o
(
n−

s−2
2

)
where

(
1 +

∑s−2
i=1

πi(z,θ)

ni/2

)
ϕV (θ) (z) denotes the density of the Edgeworth dis-

tribution truncated up to the O
(
n−

s−2
2

)
order, i.e. of the (obviously) valid

locally uniform Edgeworth expansion of order s − 1, ki (z, θ) = zπi (z, θ)
and I

V
(ki (z, θ)) =

∫
R ki (z, θ)ϕV (θ) (z) dz. Using the fact that the πi’s are

equicontinuous on Θ it is easy to see that so do the I
V

(ki (z, θ)). It is also

obvious that the random vector
√
nln (θ) =

√
n

(
mn (θ)
γn (θ)

)
admits a locally

uniform Edgeworth expansion of order s − 1 over Θ′, the polynomials of
the density (say π∗i ) of which are equicontinuous on Θ. Consider the vector
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vn =

(
0dim(mn)∑s−2
i=1

I
V

(ki(z,θ))

ni/2

)
. For an arbitrary Borel set A due to the previous

P
(√

nm∗n (θ) ∈ A
)

= P
(√

nln (θ) ∈ A+ vn + o
(
n−

s−2
2

))

=

∫
A∩Hcn(C)

1 +
s−3∑
i=1

π∗i

(
z +

(
0dim(mn)∑s−2
i=1

I
V

(ki(z,θ))

ni/2

)
+ o

(
n−

s−2
2

)
, θ

)
ni/2


×ϕV (θ)

(
z +

(
0dim(mn)∑s−2
i=1

I
V

(ki(z,θ))

ni/2

)
+ o

(
n−

s−2
2

))
dz + o

(
n−

s−2
2

)
where Hc

n (C) analogously to the relevant term in the proof of theorem 3.1
in Arvanitis Demos [1]. Expanding and holding terms of relevant order,

by noticing that the πi are polynomial in z, and that the o
(
n−

s−2
2

)
are

independent of θ we obtain the needed result.
The second auxiliary result is the only one employing the assumption of

normality.

Lemma AL.9 Suppose that
√
n (ϕn − b (θ)) and

√
n (θn − θ) admit locally

uniform Edgeworth expansions of order s over Θ′ the polynomials of the
densities of which, say, πi (z, θ) are equicontinuous on Θ′ ∀z ∈ R3, for i =
1, . . . , s − 1, and the distribution of ε0 is standard normal. Then E (ϕn (θ))
and E (θn (θ)) are two times differentiable on Θ′ and for any θ ∈ Θ′ and
any sequence θn 6= θ with values in Θ′ such that ‖θn − θ‖ ≤ C ln1/2 n

n1/2
for

C > 0, i = 1, 2
∥∥∥∂Min (θn)

∂θ′ −Ki (θ)
∥∥∥ = o (1) where M1n (θ) = E (ϕn (θ)),

M2n (θ) = E (θn (θ)), K1 = ∂b
∂θ′ , K2 = idR3.

Proof. Consider first the case of E (ϕn (θ)). Let σ (ε0) the smallest sub
σ-algebra of F w.r.t. the ε0 , ε−1, . . . are measurable. We have that

E (ϕn (θ)) = E (E (ϕn (θ) /σ (ε0)))

Now notice that

E (ϕn (θ) /σ (ε0)) =

∫
Rn
ϕn

1√
(2π)n

∏n
j=1 hi (θ)

exp

(
−1

2

∑n

i=1

y2
j (θ)

hj (θ)

)
dz
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and the differentiability result would follow via the dominated convergence
theorem if

E

(
sup
θ∈Θ′
‖sn (θ)‖

)
and E

(
sup
θ∈Θ′
‖Hn (θ)‖

)
are finite where sn (θ) +

∑n
j=1

(
ε2
j − 1

)
1

hj(θ)

∂hj(θ)

∂θ
,Hn (θ) +

∑n
j=1

(
ε2
j − 1

)
1

hj(θ)

∂2hj(θ)

∂θ∂θ′ −∑n
j=1

(
2ε2

j − 1
)

1
h2j (θ)

∂hj(θ)

∂θ

∂hj(θ)

∂θ′ , sn (θ) = 1
n
sn (θ), Hn (θ) = 1

n
Hn (θ). First no-

tice that hj (θ) ≥ η
ω

(
1− ηα − ηβ

)
+ c∗ and due to the fact that

∂hj (θ)

∂θ1

= (1− θ2 − θ3) +
(
θ2ε

2
j−1 + θ3

) ∂hj−1 (θ)

∂θ1

∂hj (θ)

∂θ2

= −θ1 + ε2
j−1hj−1 (θ) +

(
θ2ε

2
j−1 + θ3

) ∂hj−1 (θ)

∂θ2

∂hj (θ)

∂θ3

= −θ1 + hj−1 (θ) +
(
θ2ε

2
j−1 + θ3

) ∂hj−1 (θ)

∂θ3

hence

E

(
sup
θ∈Θ′

∥∥∥∥∑n

j=1

(
ε2
j − 1

) 1

hj (θ)

∂hj (θ)

∂θ

∥∥∥∥)
≤ 1

c∗

∑n

j=1
E1/2

∣∣ε2
j − 1

∣∣2E1/2 sup
θ∈Θ′

∥∥∥∥∂hj (θ)

∂θ

∥∥∥∥2

and for θ∗ =
(
η∗ω, η

∗
α
, η∗

β

)′
it is easy to see that

E sup
θ∈Θ′

∥∥∥∥∂hj (θ)

∂θ

∥∥∥∥2

≤ E

∥∥∥∥∂hj (θ∗)

∂θ

∥∥∥∥2

< +∞

Furthermore, since

∂2hj (θ)

∂θ2
1

= 0

∂2hj (θ)

∂θ2
2

= −θ1 + ε2
j−1

∂hj (θ)

∂θ2

+ ε2
j−1

∂hj−1 (θ)

∂θ2

+
(
θ2ε

2
j−1 + θ3

) ∂hj−1 (θ)

∂θ2
2

∂2hj (θ)

∂θ2
3

= −θ1 + 2
∂hj−1 (θ)

∂θ3

+
(
θ2ε

2
j−1 + θ3

) ∂2hj−1 (θ)

∂θ2
3

∂2hj (θ)

∂θ1∂θ2

= −1 + ε2
j−1

∂hj−1 (θ)

∂θ1

+
(
θ2ε

2
j−1 + θ3

) ∂hj−1 (θ)

∂θ1∂θ2

∂2hj (θ)

∂θ1∂θ3

= −1 +
∂hj−1 (θ)

∂θ1

+
(
θ2ε

2
j−1 + θ3

) ∂2hj (θ)

∂θ1∂θ3
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we have that

E

(
sup
θ∈Θ′

∥∥∥∥∑n

j=1

(
ε2
j − 1

) 1

hj (θ)

∂2hj (θ)

∂θ∂θ′

∥∥∥∥)
≤ 1

c∗

∑n

j=1
E1/2

∣∣ε2
j − 1

∣∣2E1/2

∥∥∥∥∂2hj (θ∗)

∂θ∂θ′

∥∥∥∥2

< +∞

and

E

(
sup
θ∈Θ′

∥∥∥∥∑n

j=1

(
2ε2

j − 1
) 1

h2
j (θ)

∂hj (θ)

∂θ

∂hj (θ)

∂θ′

∥∥∥∥)
≤ 1

c2
∗

∑n

j=1
E1/2

∣∣2ε2
j − 1

∣∣2E1/2

∥∥∥∥∂hj (θ∗)

∂θ

∥∥∥∥4

< +∞

Next notice that for any θ in Θ′ any i = 1, . . . , 3, and any sequence θn as
described above we have that∥∥∥∥∂E (ϕn (θn))

∂θi
− ∂b (θ)

∂θi

∥∥∥∥
≤ 2 sup

θ∗∈Θ′

∥∥∥∥∂2E (ϕn (θ∗))

∂θi∂θ
′

∥∥∥∥ ‖θn − θ‖+

∥∥∥∥E (ϕn (θn))− E (ϕn (θ))

θin − θi
− ∂b (θ)

∂θi

∥∥∥∥
Then lemma 2.4, above, implies that due to the behavior of θn the last term
on the right hand side of the last display is o (1). Hence the result would

follow if supθ∗∈Θ′′

∥∥∥∂2E(ϕn(θ∗))
∂θi∂θ

′

∥∥∥ = o
( √

n

ln1/2 n

)
. The previous along with an

application of the Cauchy-Schwarz and the triangle inequalities imply that
for any i

sup
θ∈Θ′

∥∥∥∥∂2E (ϕn (θ))

∂θi∂θ
′

∥∥∥∥
≤ sup

θ∈Θ′
E1/2 ‖ϕn (θ)− θ‖2

×
(

sup
θ∈Θ′

E1/2 ‖sn (θ) s′n (θ)− EHn (θ)‖2
+ sup

θ∈Θ′
E1/2 ‖Hn (θ)− EHn (θ)‖2

)
Furthermore, due to assumed Edgeworth approximation for

√
n (ϕn (θ)− θ),

and the fact that s ≥ 5 lemma 3.1 along with theorem 3.1 in Arvanitis Demos
[1] imply that supθ∈Θ′ E

1/2 ‖(ϕn − b (θ))‖2 = O
(

1√
n

)
. Hence the result would

follow if

sup
θ∈Θ′

E
∥∥nsn (θ) s′n (θ) + EHn (θ)

∥∥2
= o

( n

lnn

)
sup
θ∈Θ′

E
∥∥Hn (θ)− EHn (θ)

∥∥2
= o

( n

lnn

)
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From the proof of Lemma A.1 of Corradi and Inglesias [2], we can prove
that

√
n (S∗n (θ)− E (S∗n (θ))), where S∗n contains stacked the elements of sn

and Hn admits a locally uniform Edgeworth expansion of order s − 3 over
Θ′ by establishing the conditions A2.M-WD and A3.EL-CPD in Arvanitis
Demos [1] through the provision of bounds being independent of θ using the
compactness of Θ′ and condition A3.NDD in Arvanitis Demos [1] using the
result of the referenced proof, the P almost everywhere continuity of the
elements of S∗n (θ) on Θ′, the continuity of determinant and the compactness
of Θ′. Then remark R.3 implies that

sup
θ∈Θ′

E
∥∥nsn (θ) s′n (θ) + EHn (θ)

∥∥2
= O (1)

sup
θ∈Θ′

E
∥∥Hn (θ)− EHn (θ)

∥∥2
= O

(
1

n

)
which establish the needed bounds. The result about E (θn (θ)) is derived
analogously.
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