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Abstract

Food security is a key issue in sustainability studies. In this paper we propose a general
framework for providing detailed probabilistic socioeconomic scenarios as well as predic-
tions across scenarios, concerning food security. Our methodology is based on the Bayesian
probabilistic prediction model of world population (Raftery et al [10]) and on data driven
prediction models for food demand and supply and its dependence on key drivers such as
population and other socioeconomic and climate indicators(e.g. GDP, temperature, etc).
For the purpose of risk quantification, concerning food security, we integrate the use of re-
cently developed convex risk measures involving model uncertainty (Papayiannis et al [8],
[9]) and propose a methodology for providing estimates and predictions across scenarios, i.e.
when there is uncertainty as to which scenario is to be realized. Our methodology is illus-
trated by studying food security for the 2020-2050 horizon in the context of the SSP-RCP
scenarios, for Egypt and Ethiopia.

Keywords: food security; probabilistic projections; risk quantification; shared socioeconomic
pathways scenarios;

1 Introduction

Food systems represent the food value chain – from input supply and production of crops, live-
stock, fish, and other agricultural commodities to transportation, processing, retailing, whole-
saling, and preparation of foods to consumption and disposal. A sustainable food system (SFS)
is a food system that delivers food security and nutrition for all in such a way that the economic,
social and environmental bases to generate food security and nutrition for future generations
are not compromised. This means that: (a) it is profitable throughout (economic sustainabil-
ity), (b) it has broad-based benefits for society (social sustainability), and (c) it has a positive
or neutral impact on the natural environment (environmental sustainability). The transition
to sustainable food systems lies at the heart of the United Nations’ Agenda 2030 and the 17
Sustainable Development Goals1 (SDGs), which call for major transformations in agriculture
and food systems in order to end hunger, achieve food security and improve nutrition by 2030.

Food sufficiency is a key issue in sustainability studies. One of the key factors in the study
of food sufficiency is evidently population, since food demand sufficient for subsistence clearly

1
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depends in an inelastic way on the population as well as on its detailed age structure. Not
much can be made from a policy perspective on that, except perhaps on campaigns concerning
people awareness on population control. On the other hand, another important factor in food
sufficiency is food supply. This is a factor in which, apart from population, the economy plays
an important role as well (e.g. through proper planning of the economic sectors involved in food
production and/or distribution) and where science can greatly assist (e.g. by adopting modern
and more efficient modes of agriculture or breeding etc).

Trustworthy predictions of food demand and food supply in a sufficiently long time horizon
are very important in determining future food balance and will be of great help to policy makers.
Predicting a potential food shortage on a sufficiently long horizon, provides policy makers
the luxury of adopting long term measures combining a portfolio of production restructuring
policies, international trade treaties, adoption of scientific measures or modern technologies etc,
which may efficiently alleviate the risk of future food shortage. Such trustworthy predictions
will inevitably rely upon predictions of the future population trends, and these predictions
are expected to be the key drivers of food demand and supply. Such predictions must be
probabilistic in nature (i.e. provide the distribution of the relevant random variable - e.g. food
demand or supply - which gives full information of the trends along with their validity, rather
than point estimates which carry less information concerning the predictions) and should also
take into account model uncertainty, which is endemic especially when long term predictions
are involved, for which the stochastic factors that affect them may be partially known.

It is the aim of this paper to provide probabilistic predictions of food demand and supply
using as a starting point the detailed Bayesian probabilistic prediction model of the world pop-
ulation proposed by Raftery and his coworkers (see e.g., [10]). This model provides detailed
information on the future world population and its age structure. Building on that, and using
the detailed predictions concerning the future age structure for the population as well as the
minimal required calories consumption per age group, we propose a model for the food con-
sumption required for subsistence as well as a Cobb-Douglas type model for the food supply,
involving population, GDP and environmental factors. Calibrating these models on past data
from the period 1990-2019 and combining them with the Bayesian population model we provide
probabilistic projections for food consumption and supply in the horizon 2030-2050 compatible
with the standard SSP and RCP scenarios. To properly take into account the effects of model
uncertainty we further propose a convex risk measure approach to the estimation of important
quantities indicating possible food shortage such as for instance the difference between supply
and consumption. Finally, the problem concerning the sensitivity of the projections on the SSP-
RCP scenario chosen is addressed, by proposing a methodology for providing projections which
are robust with respect to the scenario that materializes. Such considerations are important
especially for long term effects and measures that have to be predicted and implemented long
before the actual scenario that materializes has been fully clarified. Such prior estimates are
based on the concept of Fréchet utilities or risk measures ([8], [9]) and allows one to obtain a
robust estimation of the future values of the quantities of interest across scenarios.

The proposed methodology is applied in two major countries from the upper Nile river basin,
Egypt and Ethiopia, constructing probabilistic socio-economic scenarios and then deriving food
security risk valuations for each SSP-RCP scenario and across.

2 A general probabilistic socio-economic modelling framework
for food security

2.1 Probabilistic population modelling

Population growth and evolution is a key factor driving many socioeconomic indices, including
economic growth, production, environmental issues, food and water demand etc. In this respect,
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demographics must be the starting point for any socioeconomic modeling study. In this section
we present some key results concerning scenario development for future population growth.

2.1.1 The main probabilistic population model

The state of the art model concerning world population is the probabilistic population model of
Raftery and coworkers (see e.g., [10]). This model takes into account the inherent uncertainty
of the phenomenon and its effects on future population projections using a Bayesian hierar-
chical model. The model is based on the natural evolution of the population phenomenon as
characterized by the standard population model employed by the United Nations (UN),

(1) Pc(t) = Pc(t− 1) +Bc(t)−Dc(t) +Mc(t)

where Pc(t) denotes the population of country c at time t (corresponding either to a single
year or a 5-year period), Bc(t) stands for the number of births (which depends on the total
fertility rate), Dc(t) denotes the number of deaths (which depends on the life expectancy) and
Mc(t) measures the net international migration. Uncertainty is introduced into the model by
assuming that various key demographic processes such as fecundity, mortality etc are subject
to random factors which subsequently through an appropriate hierarchical procedure can be
introduced in (1), leading to the introduction of uncertainty in the fundamental quantities of
interest such as Pc(t), or its breakdown into age groups and sex for various future times t.
Based on an extensive database of past world population data, the fundamental law (1), and
the principles of Bayesian statistics, the probabilistic features of the uncertainty factors driving
the population fluctuations are recovered. Then, using this information, the fundamental law
(1) is iterated forward and used to obtain estimates for the future evolution of the quantities of
interest. The estimates incorporate in a dynamically consistent fashion the effects of uncertainty
as documented at least from the past data, and thus provide uncertainty consistent predictions
for the future.

Figure 1: The probabilistic population modeling procedure

One of the key features of the model is this: it allows for quantities related to population
projections to be random variables characterized by a probability distribution rather than point
estimates. In particular, rather than producing a point estimate for a population related quan-
tity P (t) at time t (P can represent for example population for a particular age group or sex,
or quantities such as fertility etc) the model, based on possible realizations of the uncertainty
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factors driving the phenomenon, treats P (t) as a random variable, and produces (dynamically)
a set of possible realizations {P (j)(t) : j = 1, . . . , n}, which allow us to obtain approximations
for the probability distribution of the random variable P (t). Then, using this probability dis-
tribution one characterizes the quantity P (t) with quantities carrying more information about
it rather than just a point estimate, such as for example its percentiles at certain confidence
levels or conditional means. These different realizations

Π := {P j(t) : t = T0, . . . , T, j = 1, . . . , n},

where T0 < T are two selected time horizons, will be referred to as trajectories, with {P j(t) :
t = T0, . . . , T} for fixed j representing a particular realization (i.e. a particular possible path)
for the evolution of population in the time interval [T0, T ] in the future. Clearly, only one of the
above paths in Π, if any, will materialize. However, the set of paths Π provides us with impor-
tant information concerning the probability of occurrence of paths with certain characteristics
and allows for prediction of future population trends as well as the formulation of scenarios
concerning these trends.

The following information on the structure of the probabilistic population model must be
introduced here in order to make the SSP scenario generation procedure described in Section
2.1.2 more clear. In particular, the model of Raftery et al [11], relies on model (1), however treats
separately the components Bc(t) and Dc(t) according to the probabilistic modeling approach
mentioned above, using estimates and projections for the net migration from the UN base (or
other databases) and then combines these approaches in order to construct projections per
country or regionally by simulating trajectories. First, a hierarchical model is constructed for
the Total Fertility Rate (TFR) component which provides projections for the fertility rates
distribution at the country level and then the number of births distribution according to the
approach presented in [1]. Then, this information is used to feed and build an hierarchical model
for the Life Expectancy (e0) component according to the approach presented in [11], which is
used to provide projections for life expectancy distributions of females and males per country at
the various age-groups as well as to provide the mortality rates distribution on each age-group
by gender. Next, available projections for migration (MIG), and in particular net migration
per country, are collected by UN database and other data providers (like Wittgenstein Center2

and are used as input to complete the required components for the population model (1). Note
that there are similar hierarchical modeling approaches in the literature (e.g. [2]) however the
lack or insufficiency of migration data for all the countries of interest makes the implementation
of this model yet infeasible. At the final step, all the above components are combined and
aggregated by the general population model (1) to provide the future population projections in
terms of trajectories (possible scenarios) or distributions if conditioned to certain time instants.
Note the above modeling task is implemented to the statistical software R3 through the related
package bayesPop described in detail in [12]. The whole modeling task is illustrated in Figure
(1).

2.1.2 Socio-economics scenarios building and population projections

The concept of scenario making concerning future events has infiltrated environmental eco-
nomics and has become a fundamental tool in the analysis. An important set of scenarios used
frequently in analyses are the Sustainable Socio-economic Pathways scenarios (SSPs), which
set certain plausible assumptions for key quantities (such as growth or fertility) in the future
for certain parts of the world. One characteristic of these scenarios is that they are phrased in
a qualitative fashion (see Table 1 and 2) so that they have to be transcribed to quantitative
counterparts if they are to be used in concrete models.

2
http://www.wittgensteincentre.org

3
https://www.r-project.org/
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Country Fertility Life Migration
groupings expectancy

SSP1: HiFert Low High Medium
rapid development LoFert Low High Medium

Rich-OECD Medium High Medium
SSP2: HiFert Medium Medium Medium
medium LoFert Medium Medium Medium

Rich-OECD Medium Medium Medium
SSP3: HiFert High Low Low
stalled development LoFert High Low Low

Rich-OECD Low Low Low
SSP4: HiFert High Low Medium
inequality LoFert Low Medium Medium

Rich-OECD Low Medium Medium
SSP5: HiFert Low High High
conventional development LoFert Low High High

Rich-OECD High High High

Table 1: Shared Socio-economic Pathways (SSP) definitions

An important step in our approach is the transcription of the various Sustainable Socio-
economic Pathways scenarios (SSPs) in the probabilistic setting in order to provide the popu-
lation projections under each one of these directions. This approach divides the possible states
of the world into five qualitative scenarios (rapid development, medium development, stalled
development, inequality and conventional development) according to the levels of specific de-
mographic characteristics and specifically fertility, life expectancy (or mortality), migration and
education. Since the population projection method we follow does not take into account the
education levels we omit this factor for the purposes of this work since does not directly affect
the population evolution from the Bayesian model’s perspective. Each country’s SSP scenario
may differ depending on its grouping as (a) high fertility country (HiFert), (b) low fertility
country (LoFert) or (c) Rich-OECD country4. Specifications of the various SSPs with respect
to the country groupings, as described in [6], are illustrated in Table 1.

One serious drawback of defining the scenarios in the above fashion is the inability to specify
concretely what exactly is meant by low, medium and high. This lack of quantitative definition
of the scenarios makes them difficult to apply in environmental modeling. However, as we show
in this section, the probabilistic approach to modeling (such as for example the population model
described in Section 2.1.1) can be very well blended with SSP qualitative scenarios, providing
a concrete and realistic framework for scenario building, in which the various categories Low,
Medium and High are endogenously and consistently selected by the dynamics and the evolution
of the system under study.

More concretely, using the population modeling approach discussed in the previous section,
the fertility and life expectancy components for each country of interest are provided in terms
of the samples of trajectories created under the underlying probabilistic models. Therefore, the
definition of the thresholds that separate Low, Medium and High scenarios, as mentioned in
Table 1 specifications, for each one of these quantities should be done according to the observed
(from the simulated sample, i.e. the components trajectories) variation. If the year 2100 is
the time horizon we set, then the empirical distribution of the quantity of interest, as obtained
from the simulated trajectories, can be used to define and quantify the various intensity levels
corresponding to each scenario.

In particular, if we need to determine three different intensity levels, low, medium and high,
then the 33% and 66% quantiles for fertility rate and life expectancy of the whole sample’s

4
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distribution at the terminal time 2100 can serve as the discrimination thresholds. According to
this rule, a trajectory is assigned to the high scenario if at the terminal year 2100 the observation
for the corresponding quantity lies on the top 66% of the empirical distribution. Similarly, for
the other levels. One advantage of this methodology is that the corresponding levels for the
scenarios are not preassigned but are determined endogenously by the history and dynamics
of the data from the population model. Repeating the above procedure for all trajectories, we
end up with three sub-samples each corresponding to different possible realizations of the low,
medium and high scenario. These sub-samples can be used to provide statistical information,
such as moments, variability, etc. within scenarios. A possible question to this procedure could
be about the validity of the initial sample and its ability to represent all possible future states of
the world. Since the Bayesian model relies on the observed data from previous periods and takes
into account possible relations of the country or region under study with all other countries and
regions of the world, then any reasonable scenario (with respect to the data that have been
collected up to the time the projection task is executed) should be amenable to simulation.
Then, using a sufficiently large number of simulated trajectories, e.g. 100,000 trajectories,
should guarantee that the results are reliable.

Let us describe the filtering rule that is incorporated for the classification of the initial
sample of trajectories into different subgroups for each one of fertility rate and life expectancy
simulated paths. In particular, from the induced distribution of the simulated TFR values for
a country at a terminal time horizon T the various level scenarios are defined according to the
rule:

• Low TFR scenario: all trajectories with TFR value lower than the 33% quantile value
at time t = T

• Medium TFR scenario: all trajectories with TFR value larger than the 33% quantile
value and lower than the 66% quantile value at time t = T

• High TFR scenario: all trajectories with TFR value larger than the 66% quantile value
at time t = T

Similarly, from the simulated life expectancy paths for a country at time T the scenarios are
defined according to the rule:

• Low e0 scenario: all trajectories with e0 value lower than the 33% quantile value at
time t = T

• Medium e0 scenario: all trajectories with e0 value larger than the 33% quantile value
and lower than the 66% quantile value at time t = T

• High e0 scenario: all trajectories with e0 value larger than the 66% quantile value at
time t = T

Migration levels could be defined in the same manner if a probabilistic approach had been
used, however in our case we use the deterministic net migration projections under each SSP
scenario as provided by Wittgenstein Center database which are already discriminated to three
intensity levels low, medium and high for each country.

In this manner, assigning each one of the countries of interest in the appropriate Country
Grouping, country’s specifications regarding fertility, life expectancy and migration for each
one of the SSPs scenarios are set. Then, in order to construct a sufficient database for each
SSP scenario, simulation of population trajectories for all countries of interest are drawn from
population model (1) under each SSP’s specifications defined by the aforementioned rules. For
example, for a country belonging to the HiFert grouping, as mentioned in Table 1, the SSP2
scenario consist of the TFR trajectories that belong to the Medium TFR scenario, the e0
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Figure 2: Median, 10% and 90% quantile fertility rate and life expectancy trajectories under
low, medium and high level scenarios

trajectories that belong to the Medium e0 scenario and the net migration projection under the
medium scenario. These three components, integrated by the population model (1) will provide
the population trajectories that consist the SSP2 scenario for this country in a probabilistic
manner, in the sense that we are able to compute quantiles, moments, etc. for the certain
population dimensions for this country.

Figure 3: Median probabilistic population projections under each SSP scenario for Egypt and
Ethiopia.

2.1.3 Generation of SSP compatible socio-economic and environmental parame-
ters

Population is clearly the key driver for an economy’s evolution. Building scenarios representing
different pathways for the population evolution, offers a vehicle for the estimation of socio-
economic quantities that depend mostly on population like labour force, gross domestic product
(GDP) and others. There are several macroeconomic models that can provide such predictions
based on population projections and provide projections for various socio-economic indicators of
interest under the SSP scenarios. In this paper, the MaGE model [4] is employed for this purpose
which based on UN database and IIASA5 estimates provides projections up to year 2100 for the
socio-economic activities of all countries of the world (being a global model) under each one of
the SSP scenarios. Based on the strategy described in Section 2.1.2, MaGE model is employed by
substituting its population inputs with the conditional means for population under each socio-
economic scenario in order to provide estimates for GDP taking into account simultaneously all

5
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economies of the world (under the perspective of MaGE model). This task could be done per
population trajectory from the population scenario database, however such a task is extremely
expensive in computational time and it would be required a new macroeconomic model to
be built from scratch. Therefore, for the purposes of this work we use the projections (non-
probabilistic ones) for GDP provided by MaGE for each one of the scenarios having in mind
the possible limitations and drawbacks from this approach.

Scenario Emissions Level Temperature Change Mitigation Measures
RCP1.9 Best-case between 1− 1.5oC Extremely stringent
RCP2.6 Low between 1.5− 2oC Very stringent
RCP4.5 Medium - Low between 2.5− 3oC Less stringent
RCP6.0 Medium - High between 3− 3.5oC Very loose
RCP7.0 High up to 4oC until 2100 Extremely loose
RCP8.5 Worst-case up to 5oC until 2100 No mitigation

Table 2: Representative Concentration Pathways (RCP) definitions

Since we are investigating food security issues, we should take into account environmental
quantities like temperature, precipitation, etc since they directly affect water stress of countries
and agricultural operations which is depicted in the the respective domestic production figures.
The so called Representative Concentration Pathways (RCPs) determine scenarios regarding
the increase on the mean temperature on the planet by the horizon 2100 taking into account
the environmental policies that are to be or not to be adopted. These scenarios are divided by
the levels of the increase concerning the mean temperature in the planet and the intensity of the
mitigation measures that have to be adopted per scenario and some standard RCP scenarios
are illustrated in Table 2.

Scenario Name SSP scenario RCP scenario
SSP1-1.9 SSP1 RCP 1.9
SSP1-2.6 SSP1 RCP 2.6
SSP2-4.5 SSP2 RCP 4.5
SSP3-7.0 SSP3 RCP 7.0
SSP4-6.0 SSP4 RCP 6.0
SSP5-8.5 SSP5 RCP 8.5

Table 3: The list of the SSP-RCP scenarios investigated in this work

The cutting-edge approach in creating realistic scenarios for the future states of the world,
is to blend the concept of SSPs with that of RCPs. With a first glance, one would naively
provide 30 different SSP-RCP scenarios, however this is not exactly the case since both types of
scenarios, although referring to different target quantities, are not independent. The Coupled
Model Intercomparison Project6 (CMIP) studies these climate scenarios by integrating different
environmental models and using very dense databases. Some mixed-type scenarios (SSP-RCP)
that are up to now well tested and available are illustrated in Table 3. In order to provide
food security evaluations in a framework which is compatible with both the socio-economic and
climate pathways we perform estimations according to the six scenarios illustrated in Table 3.

2.2 Probabilistic projections on food demand and supply

In this section we propose a statistical model that may provide probabilistic projections on food
demand and supply and hence also food security. As mentioned above, the key driver in this
model will be population growth, which will be treated in a full probabilistic fashion using the
detailed probabilistic model of Raftery et al [11]. The food security model also requires other

6
https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6
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Figure 4: Graphical illustration of the SSP-RCP scenarios combination ([5])

important quantities, such as for example economic indices (GDP) or natural resources (land
use or water, temperature, precipitation, etc) which will not be treated in a full probabilistic
fashion for lack of sufficient computational resources.

2.2.1 Estimating the need for food

The need for food is inelastic, in the sense that humans need a minimum and a maximum daily
intake of calories for subsistence. The calories intake requirements vary per age group, sex, and
lifestyle (e.g. level of activity) varying in a range of 1000 to 3200 calories daily depending on the
above mentioned categories. In Tables 4 and 5 these requirements are shown, as proposed by
the HHS/USDA for the male and female population according to age group and activity level.

Age Not Active Somewhat Active Very Active

2–3 years 1,000–1,200 calories 1,000–1,400 calories 1,000–1,400 calories
4–8 years 1,200–1,400 calories 1,400–1,600 calories 1,600–2,000 calories
9–13 years 1,600–2,000 calories 1,800–2,200 calories 2,000–2,600 calories
14–18 years 2,000–2,400 calories 2,400–2,800 calories 2,800–3,200 calories
19–30 years 2,400–2,600 calories 2,600–2,800 calories 3,000 calories
31–50 years 2,200–2,400 calories 2,400–2,600 calories 2,800–3,000 calories
51 years and older 2,000–2,200 calories 2,200–2,400 calories 2,400–2,800 calories

Table 4: Calories Needed Each Day for Boys and Men (Source: HHS/USDA Dietary Guidelines
for Americans, 2010)

Given the age structure of the male and female population for the various countries we may
then obtain detailed estimates for the food requirement in terms of total daily calories intake
in terms of the quantity

CRc (t) =
∑
a

RfaP
f
a,c(t) +

∑
a

Rma P
m
a,c(t)(2)

where CRc (t) is the total daily recommended calories intake, c and t corresponds to country and

t respectively, a corresponds to the age groups mentioned in Tables 4 and 5, Pma,c(t), P
f
a,c(t) the

total male and female population for the respective age groups and Rma , R
f
a are the requirements

fiven in Tables 4 and 5. This estimate varies, depending on the activity level distribution of the
population, however, one may obtain a lower bound for this quantity using the values for Rma , R

f
a
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Age Not Active Somewhat Active Very Active

2–3 years 1,000 calories 1,000–1,200 calories 1,000–1,400 calories
4–8 years 1,200–1,400 calories 1,400–1,600 calories 1,400–1,800 calories
9–13 years 1,400–1,600 calories 1,600–2,000 calories 1,800–2,200 calories
14–18 years 1,800 calories 2,000 calories 2,400 calories
19–30 years 1,800–2,000 calories 2,000–2,200 calories 2,400 calories
31–50 years 1,800 calories 2,000 calories 2,200 calories
51 years and older 1,600 calories 1,800 calories 2,000–2,200 calories

Table 5: Calories Needed Each Day for Girls and Women (Source: HHS/USDA Dietary Guide-
lines for Americans, 2010)

for non active individuals, an upper bound using these values for the very active individuals
and a mean estimate using the average for the values of R.

The quantity CRc (t) can be used as a proxy for the food demand (either a lower estimate,
or an upper estimate or an average estimate). Clearly, in certain countries this may deviate
from the actual total food demand (again measured in in total calories per day) on account of
malnutrition issues related to poverty or unequal income distribution, etc. However, as actual
data for total food demand are not easy to find, we use CRc (t) as a reasonable proxy for food
demand.

The probabilistic population model (see Section 2.1.1) provides accurate probabilistic pre-
dictions for the population pyramid, i.e., for the quantities Pa,f,c(t), Pa,c,m(t). In particular,
using the hierarchical Bayesian model of Raftery et al [10, 11]) we may obtain M different
possible realizations of the population pyramid trajectories{

P
(j)
a,c,f (t), t = T0, . . . , T

}
,
{
P (j)
a,c,m(t), t = T0, . . . , T

}
, j = 1, . . . ,M,

for the evolution of the female and male population per age group over the time period [T0, T ].
As already stated the uncertainty effects are properly accounted for in these trajectories and in

accordance to past data. Taking a slice of, e..g., {P (j)
a,c,f (t), t = T0, . . . , T}, 1, . . . ,M at a fixed

t′ ∈ [T0, T ] will provide a sample {P (j)
a,c,f (t′), j = 1, . . . ,M} of M possible observations of the

random variable Pa,c,f (t′) which can be used to obtain useful information concerning its distri-
bution (i.e. moments, quantiles, etc). In fact, the general trajectories can be classified according
to various criteria that characterize the SSP scenarios (see Section 2.1.2) so as to obtain sub-
sets of the trajectories which are compatible with the various SSP scenarios, and hence obtain
trajectories per scenario. Using the trajectories for each scenario we may obtain conditional
means or quantiles for the conditional distribution of the quantities Pa,c,f (t′), Pa,c,m(t′) per SSP
scenario. This procedure allows us to have a detailed probabilistic scenario based description
of the possible evolution of future population related quantities per SSP scenario.

Having obtained the detailed trajectories and probabilistic scenarios for the population,
using the estimate (2) for the total food demand, we may generate similar probabilistic scenarios
for CRc (t) and generate similar probabilistic projections for future food demand, based on the
detailed modelling of the population structure. To this aim we have to use the trajectories

{P (j)
a,c,f (t), t = T0, . . . , T}, {P (j)

a,c,m(t), t = T0, . . . , T}, j = 1, . . . ,M , for the evolution of the
female and male population per age group over the time period [T0, T ] already obtained, to

generate similar trajectories {CR,(j)c (t), t = T0, . . . , T}, j = 1, . . . ,M , which will subsequently
be used to generate samples for projections of CRc on various future dates t′ ∈ [T0, T ] and
from those as described above generate probabilistic information on this important quantity.
Clearly, when this quantity is needed in the context of SSP scenarios the relevant trajectories
for the population quantities corresponding to these scenarios must be used in the generation
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of trajectories in (2) for the total food demand.

2.2.2 Total food supply modeling

Modeling and predicting the total food supply (in terms of calories per day) is also an important
issue. For instance if the total food supply cannot cover CRc (t) for a particular country at a
particular time, then major issues related to food sufficiency arise. Predicting possible future
food shortages is of paramount importance to policy makers as it allows for proactive measures
to be taken for example in restructuring food production, land use, etc or planning for sufficient
imports.

Socioeconomic conditions and natural resources are expected to play a crucial role in total
food supply modeling. To better incorporate these features in our model, we break the total food
supply into two distinct contributions, domestic produced supply SDc and imported supply SIc .
Domestic supply corresponds to the total quantity of food (in calories) produced within country
c, which crucially depends on natural resources in country c, such as land and water, as well as
labour in the food production sector (agriculture or livestock). On the other hand, imported
food supply SIc for country c depends more on socioeconomic factors such as for example GDP
or the population level. The total food supply is the sum of these two contributions.

Historical data for total food supply can be found in FAO database7. Our working hypothesis
is that total food supply must depend on the population structure (which essentially forms food
demand) as well as on economic quantities. Relevant economic quantities can be land use
data, the percentage of labor force employed in the food production sector, etc. However, often
such detailed data may not be available for all countries of interest, and particularly for those
for those in the developing world (non-OECD countries). Moreover, even if such data were
available, predicting future values of these data in various scenarios and in a form compatible
with the probabilistic population projections, may be difficult or computationally impossible
at least with the current state of the art of economic modeling and computational resources
respectively.

To this end we opt for a minimal model, for the prediction of the total food supply per
country, based on its major driver which is population, and for which we have a detailed
probabilistic model which can be used for probabilistic predictions on future dates, and an
aggregated economic quantity, which we choose to be the per capita GDP, Ic. Our modeling
assumption is that total food supply Sc can be expressed as

(3)

(3a) Sc(t) = γ0(S
D
c )γ1(t)Iγ2c (t), (total food supply)

(3b) SDc (t) = β0 e
β1tAβ2c (t)Lβ3c (t)W β4

c (t)T β5c (t), (domestic production)

(3c) Wc(t) = α0e
α1tAα2

c (t)Prα3
c (t)Tα4(t), (water stress),

where

• Sc(t) is the total food supply of country c and time t,

• SDc (t) is the domestic production of food of country c and time t,

• Wc(t) is the level of water stress of country c at time t, i.e. the freshwater withdrawal in
percentage of the available freshwater resources (according to the SDG Indicator 6.4.28),

– Ic(t) is the GDP of country c at time t defined as I = GDP per capita×Population,

– Ac is the area of cropland of country c at time t,

– Lc(t) is the labour force occupied in the agricultural sector of country c at time t,

7
http://www.fao.org/

8
https://www.fao.org/publications/card/en/c/CA8358EN/
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– Tc(t) is the (average) temperature in country c at time t,

– Prc(t) is the (average) precipitation in country c at time t,

and αi, βi and γi are constants to be determined from past data. These unknown parameters
can be estimated using typical least squares estimation procedures, upon taking logarithms for
the model (3). We emphasize that these parameters are country dependent but we omit the
subscript c, so as not to clutter the notation.

The following comments are in order concerning model (3): Model (3) is a three stage
model, which models total food supply in terms of socioeconomic quantities (e.g. income,
labour etc), natural resources (e.g. water stress, cropland etc) and environmental variables (e.g.
temperature, precipitation). Population enters model (3) through various routes; it clearly
affects the labour force as well as the income. Natural resources as well as environmental
resources affect the domestic food production given by model (3b). Finally, the total food
supply allows for both domestic or imported food supply, and this depends on the level of
domestic supply as well as on economic quantities - GDP - which may play an important role
on the ability of the country to acquire imported goods. As already mentioned, the nature of
the data available requires a minimal aggregate model, containing explanatory variables which
include socioeconomic, natural resources and environmental variables, and the proposed model
seems to be well suited in this respect - as will soon be verified in the next section. Moreover,
it contains quantities which are scenario dependent hence, it will allow us to assess the effect
of various scenarios on the quantities of interest which are related to food security. Finally, the
estimation of the model will be done in 3 stages, we will begin with the estimation of water
stress using (3a), then we proceed to the estimation of domestic production using (3b), and
finally proceed to the estimation of total food supply using (3c).

2.2.3 Scenarios for food security indices

A reasonable choice for a food security index is

Ic(t) :=
Sc(t)− CRc (t)

CRc (t)
.(4)

If Ic(t) admits positive values then no food shortage is expected and country c is food secure. If
on the contrary Ic(t) admits negative values then country c will face food security issues at time
t. Clearly, Ic(t) is a random variable and scenarios concerning its possible future realizations
may reveal important information concerning food security in country c and its dependence on
various socioeconomic factors and policy decisions.

Combining the steps and procedures described in the previous sections we may provide
probabilistic scenarios compatible with the SSP scenarios for the food security index Ic(t) as
follows:

1. Model (3) is tuned using historical data from the period 1980-2019 for country c to obtain
the relevant country dependent parameters αi, βi, γi.

2. The fitted model (3) is then used for predicting the future total food supply Sc(t) using
the probabilistic scenarios (and the relevant trajectories) for the population (see Section
2.1.2 ) along with projections for the future GDP per capita as obtained from the global
macroeconomic model MaGE [4].

3. We use the procedure in Section 2.2.1 to provide future estimates and SSP compatible
scenarios for the food demand CRc (t).

4. Using the trajectories for Sc(t) and CRc (t) obtained in the previous steps we construct
trajectories compatible with the various SSP scenarios for the index Ic(t) and use the
trajectories to provide statistical information for the index in the various scenarios.
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2.3 Risk quantification for food security: Robust estimates across scenarios

The procedure described in Section 2.2.3 provides trajectories of possible future realizations of
the food security index within scenarios, i.e., conditional that a particular SSP scenario has
materialized. While this procedure provides important information it has a major drawback:
One cannot know in advance which of the possible SSP scenarios will materialize. This drawback
has very important policy implications, especially if policy measure related to a long horizon
have to be considered. As different measures will be the required ones over different scenarios,
a robust policy must be designed which will perform reasonably well over all possible scenarios.
This calls for a robust estimation of food security risk, i.e. an estimation of food security risk
which will work across scenarios rather than within scenarios (as the one discussed in Section
2.2.3)

The methodological framework of convex risk measures and their robust representations
(see e.g. [3]) and in particular the recent developments concerning the construction of convex
risk measures or variational utilities that take into account model uncertainty employing the
concept of Fréchet mean in Wasserstein space (introduced in [8] see also [9]) turns out to be the
ideal setting to treat such questions. Employing the standard framework of risk management,
consider a risk L (assumed to be a random variable on a properly selected measurable space)
which depends on another set of (possibly vector valued) random variables Z usually called
the risk factors. Fluctuations in the risk factors affect the fluctuations of the risk through
the mapping Z → L =: Φ(Z), called the risk mapping. A probabilistic model Q concerning
the possible random evolution of the risk factors Z, will induce (through the risk mapping Φ)
a probabilistic model Q′ for the evolution of the risk L. Otherwise stated, scenarios for the
evolution of the risk factors Z will induce scenarios for the risk L. If a single probabilistic model
Q was universally acceptable for Z, this would lead to a single probabilistic model for L, hence,
the best estimate for the risk would simply be EQ′ [L] = EQ[Φ(Z)]. Within the framework
discussed here, if we knew which SSP scenario was to materialize, this will indicate a single
probabilistic model for the risk factors Z and hence the best estimate for the risk L would be
EQ[Φ(Z)] (related to the conditional mean for the particular scenario).

However, what often happens in reality is that we do not know of a universally accepted
probability model Q for the risk factors Z so that there is a whole set of probability models
Q = {Qi, : i = 1, . . . , J}, that may provide information concerning the evolution of the risk
factors Z. This brings us to the realm of Knightian uncertainty, which requires a better way of
providing the best estimate for the risk L. In such cases, robust estimations of the risk L can
be proposed. A proposal which is well accepted by the community is the variational form

ρ(L) := sup
Q∈Q

[EQ[Φ(Z)]− a(Q)],(5)

where ρ(L) called the risk measure of the risk L, considered as an estimation of the risk, and
a : Q → R+ is a (convex) penalty function in the space of probability models, which penalizes
certain probability models as extreme or improbable. The risk measure defined in expression
(5) proposes as an estimation of a risk L, for which one cannot trust a single probability model
Q, the worst case expected risk over all probability models, properly weighted by a penalty
function which penalizes certain probability models as too extreme. The variational nature of
formula (5) gives a robustness flavour to the proposed risk measure, as it no longer depends on
the adoption of a single model for L, but rather provides an appropriately weighted estimate
for L over the whole universe Q of plausible models for L.

There are various possibilities for the choice of the penalty function a, leading to an in-
teresting variety of convex risk measures. A recent development in the field ([8] see also [9])
proposed that the penalty function is related to the variability of the plausible models, quanti-
fied in terms of the Fréchet function of the set of plausible models Q considered as an element
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of the Wasserstein space. This choice, has certain advantages, among which is the possibility of
analytic approximation of the risk measure as well as an interesting interpretation of the result-
ing probability model used for the estimation of ρ(L) as the outcome of an experts agreement
procedure and the quantitative connection between risk and uncertainty measures.

This framework can be used to study the problem of food uncertainty by introducing the
following analogies. Let us fix a time t. We will set the risk variable as L = I(t), defined
as in (4), which is a random variable, depending on a set of risk factors Z(t), which in the
present context correspond to the population group factors Pc,a,m(t), Pc,a,f (t), and possibly
other socioeconomic factors (e.g. GDP). For the sake of concreteness and without loss of
generality we define Z = (Pc,a,mPc,a,f ) for various (fixed) time instants t. The risk mapping
Z → L = Φ(Z) is provided by the composition of the relations described in equations (2), (3)
and (4). Each SSP scenario, Si, corresponds to a probability model Qi for the risk factors Z,
so that we may obtain the set of plausible models (scenarios) Q = {Qi, : i = 1, . . . , J}, where
J is the total number of scenarios. The robust estimation of the food security index I will
correspond to a convex risk measure I = ρ(L) for the relevant risk variable.

The above procedure is very well suited to the problem at hand for various reasons. On
account of the long term nature of the population projections there is a high level of uncer-
tainty (in the Knightian sense) involved in them, hence a robust way of estimating important
quantities such as the total future food demand in various socioeconomic scenarios is needed;
a methodology that must be based on the probabilistic nature of the demographic projections
rather than point estimates of the required quantities. The methodology of convex risk mea-
sures, on account of their robust representation over a set of possible probability laws, provides
a very good solution to such issues.

Having adopted the fundamental conceptual framework of treating each scenario as a differ-
ent probabilistic model (probability measure) for the risk factors Z (mainly population factors
in this study) we may now answer the question of robust estimation of the quantity of interest
L = Ic(t), for fixed t, using a convex risk measure ρ(L) of the form (5). The choice of penalty
function is important. Since there is need to differentiate between various scenarios (understood
as probability measures) the penalty function must be composed of quantities that effectively
differentiate between probability measures, as for instance a metric in the space of probability
measure. Here we follow up on the suggestion in Papayiannis et al [8] and Petrakou et al [9]
and choose

a(Q) =
θ

2

J∑
i=1

wid
2(Q,Qi),(6)

where Qi, i = 1, . . . , J are the probability measures for the risk factors Z corresponding to each
of the scenarios, wi, i = 1, · · · , J are (credibility) weights associated to each of the scenarios
(these can be subjective and associated to expert opinion or objective i.e. derived from evidence
from the data and possible updated through a learning scheme), d(·, ·) is a metric in the space
of probability measures and θ > 0 is a parameter modeling uncertainty aversion. A suitable
choice for d is the Wasserstein metric,

d2(Q,Qi) = min
Z∼Q, Z′∼Qi

E[(Z − Z ′)2](7)

arising from optimal transportation, which is directly related to the misspecification error of
the random variable L is a different probability model for Z is chosen in the place of the true
model. Morover, the choice (5), with (6) and (7), allows for efficient numerical calculation of
the risk measure I = ρ(L) for a wide class of probability measures for the risk factors Z. In
particular, in the case of large values of θ, one may approximate I by

I = ρ(L) = EQ∗ [Φ(Z)],
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where Q∗ is the barycentric probability measure over all the scenarios, accordingly weighted
with the weights wi, i = 1, . . . , J defined by

Q∗ = arg min
Q∈P

J∑
i=1

wid
2(Q,Qi),(8)

where the minimization is performed over the space P of probability measures, metrized by
the Wasserstein metric (7). The calculation of the barycenter Q∗ if feasible within the class
of location-scale distributions with a matrix iteration algorithm which is reasonably easy to
implement. The risk measure I as stated above provides a robust estimate for the food insecurity
index, across scenarios, in the limit of deep uncertainty. This is the main approximation we will
be using in this work. Further approximations are possible using the ∆- approximation of the
risk mapping Z→ Φ(Z) (see [8]).

The algorithmic approach in estimating the food insecurity index can be thus summarized
as follows:

1. Fix a time t

2. Define the risk factors Z = (Pc,a,f , Pc,a,m) and using the procedure in Section 2.1.2 obtain
probabilistic scenarios for Z and determine the corresponding probability models Qi, i =
1, . . . , J .

3. By estimating the model (3) and using the expression (2) obtain the risk mapping Z 7→
L =: Φ(Z) for L = Sc(t)−CR

c (t)
CR

c (t)
.

4. Obtain the barycentric scenario Q∗.

5. Using Monte-Carlo simulation estimate I = EQ∗ [Φ(Z)].

3 Food security risk assessment for Egypt and Ethiopia under
the SSP-RCP scenarios

3.1 Modeling assumptions, data availability and model fitting

We follow the modeling approach presented in Section 2.2 for describing minimum required food
consumption (Section 2.2.1) and total food supply (Section 2.2.2) in order to provide estimates
for the food security through the food security index is described in Section 2.2.3. For the food
consumption component it suffices to use the probabilistic estimates concerning the population
evolution for Egypt and Ethiopia, since the population is the only factor. On the other hand,
food supply is described in terms of the three-stage nested model (3) with layers water-stress
evolution, domestic food production and total food supply.

Effect Coefficient Egypt Ethiopia

Intercept α0 4.374 6.845
Year α1 -0.007 -0.005
Cropland usage α2 1.139 3.991
Precipitation α3 -0.041 -0.396
Temperature α4 0.288 0.429

R-squared adjusted 0.315 0.959

Table 6: Water stress models estimated coefficients for Egypt and Ethiopia

On the lowest layer, water stress depends on Year, Cropland usage, Precipitation and Tem-
perature. The required data for the model fitting procedure for Egypt and Ethiopia were
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provided by the publicly open database from FAO. The estimated models parameters are illus-
trated on Table 6. A negative relation appears between water stress and precipitation which
seems to be more intense in Ethiopia. Egypt faces seriously water scarcity issues while annual
precipitation levels are about ten times lower than Ethiopia’s. As a result is quite meaningful
for Ethiopia to be more affected by an increase to the precipitation levels (by reducing more
significant the related water stress indicator) than Egypt. Note that latest water stress figures
appear to be higher than 110% while Ethiopia’s is about to 40%. Cropland usage is also taken
into account through the ratio of the land equipped for crops which is actually used to the
maximum land area that can be used. The rationale besides using the ratio instead of the land
area is to provide limits to our model regarding the natural resources usage. In this direction,
for Egypt and Ethiopia we provided a maximum land area that can be used as cropland until
2050 in order to introduce this physical constraint on the model concerning water stress.

Effect Coefficient Egypt Ethiopia

Intercept β0 4.815 -9.716
Year β1 0.008 0.024
Cropland usage β2 0.765 1.902
Labour agriculture β3 0.374 1.380
Water Stress β4 -0.236 -0.598
Temperature β5 -0.345 2.584

R-squared adjusted 0.958 0.983

Table 7: Domestic production models estimated coefficients for Egypt and Ethiopia

On the second layer, domestic food production is assumed to be affected by Year, Cropland
usage, Labour force occupied in agriculture, water stress and temperature. Estimated model
parameters (Table 7) seem to indicate similar qualitative effects of the factor variables to domes-
tic food production. Possible increase in water stress affects negatively the production quantity
while temperature increase affects differently the two domestic production models. Egypt’s
domestic production is affected negatively by an increase in the temperature while Ethiopia is
affected positively, probably due to different climate and terrain morphology conditions between
the two countries.

Effect Coefficient Egypt Ethiopia

Intercept γ0 9.608 8.682
Domestic Production γ1 0.247 0.604
GDP (total) γ2 0.262 0.201

R-squared adjusted 0.967 0.994

Table 8: Total food supply models estimated coefficients for Egypt and Ethiopia

Total food supply model estimates are illustrated in Table 8 for both countries. Both for
Egypt and Ethiopia total food supply depends positively on domestic food production and total
GDP (which contains the population effect internally).

3.2 Food security risk estimation under SSP-RCPs

After the successful modeling task of both food consumption and food supply we can derive
estimates for the time period 2020-2050 for Egypt and Ethiopia under each SSP-RCP scenario
as described in Table 3. Food consumption depends only on population, while food supply
relies on population, labour force occupied in agriculture, GDP, percentage of available land
area for crops used, temperature and precipitation. Population projections under each SSP are
directly available through the probabilistic model discussed in Section 2.1.2 while labour force
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amounts are estimated by combining MaGE model participation rates and proper scaling. GDP
projections are also provided by MaGE model (non-probabilistic) for each SSP scenario. The
environmental quantities temperature and precipitation (in annual basis) are provided for each
one of the scenarios in Table 3 from the Climate Change Knowledge Portal online database9.
The percentage of the available cropland used is estimated through each country’s trend in last
decade which is restricted by the upper threshold that has been set for each country providing
in this manner physical restrictions. In this way, land ratio is provided in the same manner
for all scenarios (however it is an easy modification if one desires to provide different scenarios)
but the water stress projections, since depend also on temperature and precipitation levels, are
different on each SSP-RCP scenario.

Scenario 2020 2025 2030 2035 2040 2045 2050
Egypt (EGY)

SSP1-1.9 1.06 1.08 1.10 1.12 1.13 1.14 1.17
SSP1-2.6 1.06 1.08 1.11 1.12 1.13 1.14 1.17
SSP2-4.5 1.05 1.05 1.05 1.05 1.04 1.04 1.04
SSP3-7.0 1.03 0.99 0.95 0.91 0.87 0.83 0.80
SSP4-6.0 1.08 1.09 1.10 1.10 1.10 1.10 1.11
SSP5-8.5 1.09 1.12 1.16 1.19 1.22 1.25 1.30

Ethiopia (ETH)
SSP1-1.9 0.72 0.93 1.16 1.38 1.68 1.94 2.21
SSP1-2.6 0.70 0.91 1.12 1.37 1.64 1.94 2.29
SSP2-4.5 0.67 0.88 1.08 1.32 1.57 1.84 2.16
SSP3-7.0 0.68 0.85 1.00 1.22 1.46 1.69 1.96
SSP4-6.0 0.71 0.89 1.12 1.36 1.62 1.96 2.29
SSP5-8.5 0.70 0.94 1.20 1.47 1.82 2.17 2.54

Table 9: Food security index for Egypt and Ethiopia for the time period 2020-2050 for each
SSP-RCP scenario

Figure 5: Graphical illustration of the food security index for Egypt (left) and Ethiopia (right)
for the time period 2020-2050 under each scenario.

Combining all the above projections we derive our estimations concerning the food security
for both countries under each scenario, in terms of the food security index introduced in Section
2.2.3. The results are illustrated in Table 9 and Figure 5. It is evident that neither Egypt
or Ethiopia faces serious risk concerning food security for the next thirty years for all SSP-
RCP scenarios. However, the food security index evolution presents greater homogeneity for
Ethiopia, since all curves are very close indicating an increasing trend. Egypt’s index, seems

9
https://climateknowledgeportal.worldbank.org/

17

https://climateknowledgeportal.worldbank.org/


to be close to 1, with the majority of scenarios indicating a slightly increasing trend. SSP5-8.5
scenario indicates the most rapid increase to food security while SSP3-7.0 scenario indicates
rapid decline to the food security index, however its value is quite high at the end of the time
horizon (2050).

3.3 Food security robust risk estimates across SSP-RCPs

Although it is useful to obtain the food security index estimate for each SSP scenario, this
risk evaluation is characterized by the main drawback that it is not robust to the uncertainty
concerning to which scenario materializes. Since the policy maker needs to take into account
all possible scenarios in order to make a robust decision, we employ the approach discussed
in Section 2.3. In terms of a toy example, we provide three different perspectives of decision
makers: (a) one who has complete ignorance of the situation, so weights all possible outcomes
equally, (b) the optimistic one, who places higher probability to scenarios more favourable for
the economy and the environment and (c) the pessimistic one, who allocates higher probability
to scenarios that are less favourable for the economy and the environment. These perspectives
are illustrated in Table 10.

Expert’s Opinion SSP1-1.9 SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP4-6.0 SSP5-8.5
A. Ignorance 1/6 1/6 1/6 1/6 1/6 1/6
B. Optimistic 1/4 1/5 1/5 1/10 1/5 1/20
C. Pessimistic 1/20 1/10 1/5 1/5 1/5 1/4

Table 10: Realization probabilities of each SSP-RCP scenario according to different perspectives

Practically, several econometric models can be used based on data from the economy, indus-
try, demography, etc. of a region in order to estimate the probability of following a certain SSP
direction, or even on expert’s opinion. The knowledge of these probabilities allows for a robust
risk estimation. For the case of food risk security the probabilities depicted in the above table
are used as the weighting strategies that are used to estimate the aggregate probability model
as determined in (8).

Perspective 2020 2025 2030 2035 2040 2045 2050
Egypt (EGY)

Ignorance 1.062 1.067 1.079 1.079 1.080 1.085 1.098
Optimistic 1.062 1.068 1.080 1.081 1.082 1.088 1.102
Pessimistic 1.063 1.067 1.076 1.076 1.075 1.079 1.090

Ethiopia (ETH)
Ignorance 0.698 0.899 1.112 1.354 1.631 1.923 2.240
Optimistic 0.700 0.899 1.113 1.351 1.622 1.911 2.221
Pessimistic 0.695 0.895 1.108 1.353 1.633 1.931 2.255

Table 11: Food security index for Egypt and Ethiopia for the time period 2020-2050 under
different perspectives

In Table 11 and Figure 6 are illustrated the robust estimates per case. For the case of
Egypt, although all estimates are similar there is a distinction between them where the optimist
perspective drives the curve at the highest level while the pessimist the curve at the lowest
level. The distinction in Ethiopia is not that clear since all SSP-RCP are quite homogeneous
and the time horizon is probably too short to provide clear differences for this case. However,
the robustness of this approach is evident from the fact that even in case where high level of
heterogeneity exist on the scenario set, the final risk estimate is quite similar independently on
the weighting strategy used.
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Figure 6: Graphical illustration of the across scenario estimations of the food security index for
Egypt (left) and Ethiopia (right) for the time period 2020-2050.

4 Conclusions

In this paper we propose a general methodology for producing probabilistic socio-economic
scenarios compatible with the SSP framework. The probabilistic scenarios represent the effects
of the inherent uncertainty more efficiently than points estimates and are therefore better suited
for projecting important socio-economic quantities into the future. As a possible application
of this methodology we consider the issue of food security, we provide a plausible index for
its assessment and propose a framework for providing quantitative evaluations per scenario,
and future projections. While projections along scenarios is important, in practice there is
uncertainty as to which scenario materializes. To address this question, we also propose a
framework for providing projections across scenarios using the concept of convex risk measures
and their robust representation in the presence of model uncertainty. Our approach is illustrated
by an application on two major countries in the upper Nile region, Egypt and Ethiopia.
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