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1 Introduction.

The implications of increased natural resource scarcity and its e¤ect on economic growth

have been discussed since the 18th century. Malthus (1798) and Ricardo (1821) held that

agricultural land scarcity implied strict limits on population growth and the development

of living standards. Harold Hotelling o¤ered his well-known counterargument in his

seminal article of 1931: Competitive �rms would manage exhaustible resource stocks

to maximize present-value pro�ts; competitive extraction paths would therefore match

those chosen by a social planner seeking to maximize intertemporal social surplus; and

subject to the caveat of social and private discount rates equality; equivalence between

competitive outcome and the work of a rational social planner would be achieved. The

Hotelling rule provides the fundamental no-arbitrage condition that every competitive

or e¢ cient resource utilization path has to meet. In its basic form it indicates that along

such a path the price of an exhaustible resource has to grow with a rate that equals the

interest rate.

Hotelling�s theory was not empirically tested until the second half of the 20th century.

Slade and Thille (1997) categorized the existing empirical tests as (a) price behaviour,

(b) shadow price, and (c) Hotelling valuation tests. Extant empirical tests showed mixed

support. Barnett and Morse examined trends in the prices and unit costs of extractive

goods (including agricultural, mineral, and forest products) in the United States. Their

�ndings suggested that natural resources were becoming less scarce, not scarcer, in an

economic sense. Smith (1979) employed an econometric analysis of annual (1900-1973)

price data of four aggregate resource groups and concluded that the trend in mineral

prices was negative with the rate of decline decreasing over time in absolute magnitude.

These results raised the question if the basic Hotelling model is su¢ cient to explain the

real world and motivated economists to expand it by adopting more realistic assumptions

and �t the behaviour of real data.
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Among others, Solow and Wan (1976) by assuming increasing extraction costs and

Pindyck (1978) by adopting unlimited potential reserves or the presence of uncertainty

(1980), demonstrated that Hotelling�s model is able to give expectations for falling re-

source prices. Slade (1982) allowed for the presence of technological progress which

reduces the production cost and therefore the price paths for nonrenewable natural re-

sources can be U-shaped. Slade hypothesized that the declining, �at and increasing price

trends implicit in U-shaped price paths, come at di¤erent points in the life cycle of the

exhaustive resource. Berck and Roberts (1996) suggested three cases where the prices

can be expected to fall or stagnant, namely "the depletion and progress case, the great

abundance case and the environmental constraint case". Their empirical �ndings suggest

that it is more adequate to consider that resource prices exhibit trend over short time

of periods, while this trending behaviour is not re�ected in the large samples. In a more

recent paper Slade and Thille (1997) acknowledge the fact that Slade�s model (1982)

did not receive much support by the subsequent data: " Since that time however, prices

have been increasingly volatile with large run-ups followed by equally large declines but

there is little evidence of sustained trends" (1997, pp. 688). In view of this evidence,

they developed another theoretical model (di¤erent than Slade 1982) which is able to

produce substantial periods of falling prices.

More recent studies also deal with the temporal properties of nonrenewable resource

prices testing whether prices exhibit deterministic or stochastic trends. Slade (1988),

Berck and Roberts (1996) and Ahrens and Sharma (1997) �nd evidence that many

of natural resource commodity prices have a stochastic trend. However, in a more

recent paper, Lee, List and Strazicich (2006) reject stochastic trend behavior under the

alternative of a quadratic trend with two breaks.

This paper contributes to the literature reviewed above, by examining whether nat-

ural resources prices exhibit oscillatory behavior, that is, periods of falling prices followed

by periods of increasing prices, which may again be followed by periods of falling prices.
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If we show that the natural resources price model exhibits oscillatory trends, then the

polynomial trend function suggested in the literature, is not the relevant one. It is

worth mentioning that existing Hotelling based models can support the existence of the

oscillatory structure by modifying initial assumptions. For example, consider the tech-

nological change that occurred in the beginning of the twentieth century. This change

may have caused the real prices to fall until they reach the point at which the e¤ects of

this change can no longer sustain a relatively low price. From this point onwards, the

real price starts increasing thus producing the �rst U-shaped part in the overall picture

of the behaviour of the real price. Then at some later point, for example after the World

War II, a new technological change occurs (or a new discovery is made) which forces the

real price to start falling again. At this point a second U-shaped pattern starts forming

which will be eventually completed when the second technological wave gets exhausted.

This means that instead of a single U-shaped pattern in our long series of real prices, we

might be able to identify more than one U-shaped patterns, the number of which may

be determined by means of statistical criteria. This scenario is related to the criticism

that Mueller and Gorin (1985) applied to the single U-shaped pattern of Slade (1982),

according to which the technological progress does not evolve smoothly over time but

occurs in discrete jumps. Moreover, these sequential cycles may occur either around a

constant mean or a linear or quadratic trend. In the �rst case, the scarcity property

is fully compensated by the technological progress, whereas in the second case (of an

upward sloping trend), the ability of (the discrete jumps of) technological progress to

alleviate the scarcity feature of the real price is decreasing over time.

In particular, in this paper we analyze the prices of the main fuel and metal re-

sources that have been considered in the literature reviewed above, that is, the prices

of aluminum, copper, iron, lead, nickel, silver, tin, zinc, bituminous coal, petroleum and

natural gas. Then by using a a set of model selection criteria we �nd that in most cases a

trigonometric trend model, which supports oscillatory trends, outperforms Slade�s (1982)
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quadratic trend model, as well as a more general one, that nests both the trigonomet-

ric and quadratic models. These results provide empirical support for the observation

made by Smith (1979) that the estimated polynomial coe¢ cients are unstable over time.

The oscillatory cycles occur at a very low frequency within the sample. This behaviour

is manifested as a U-shaped trend in the data whose curvature, however, is sinusoidal

rather than quadratic.

Our results have implications for the validity of the natural resources scarcity hy-

pothesis, as well as long-run natural resource optimal pricing and conservation policies.

In particular, our results suggest that we should expect that in the long-run, the natural

resource real prices will not exhibit a monotonic trend, linear or quadratic, but instead

will oscillate around their mean. This result should be internalized in natural resources

pricing and conservation policies.

2 Oscillatory Trends in Natural Resources Prices

Let yt denote the real price of the natural resource commodity i. We assume that yt is

equal to the sum of a deterministic, g(t; �) and a stochastic component ut;

yt = g(t; �) + ut: (1)

The deterministic component is a parametric function of time, t, with � denoting the pa-

rameter(s) in g; whereas the stochastic component, ut; is a sequence of random variables

that may exhibit temporal dependence and heterogeneity. In this set up, the applied

researcher has to deal with the following two issues, referred to as speci�cation and

estimation problems. The speci�cation problem concerns the choice of the function g.

The estimation problem addresses the issue of conducting asymptotic inferences on �

(estimation and hypothesis testing) in an optimal way. In particular, in this stage, the

applied researcher has to choose speci�c testing procedures for hypothesis testing on �
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that retain their optimal properties in the presence of various departures (some of which

may be severe) of ut from the iid benchmark. For example, ut might display a very high

degree of persistence together with unconditional and/or conditional heteroscedasticity.

Next, the speci�cation and estimation issues are analyzed in detail.

2.1 Trend Speci�cation

Following Slade (1982), the empirical literature has speci�ed g(t; �) as a quadratic poly-

nomial of t; that is

g(t; �) = c0 + c1t+ c2t
2: (2)

In the context of this speci�cation, the following two competing hypotheses have been

tested:

Case I: c1 > 0 and c2 � 0: In this case, yt increases continuously with time in either

linear or quadratic fashion.

Case II: c1 < 0 and c2 > 0: In this case, yt initially decreases and then increases with

time, following a U-shaped pattern.

Both the aforementioned cases are interpreted as evidence in favor of the scarcity

hypothesis concerning the natural resource commodities. The second case allows for a

period during which the real commodity price is falling whereas the �rst case predicts a

continuously increasing real price consistent with Hotelling-style models.

However, as mentioned in the Introduction, the polynomial model (2) restricts severely

the set of patterns that the trend in the real prices might follow. In particular, this

model does not allow the real price to exhibit oscillatory behaviour. These oscillations

are likely to arise if the U-shaped pattern, that is periods over which the real price is

falling followed by periods of increasing price, occurs repeatedly over time instead of

once.

An interesting case that may arise in practice is the case in which the length of the
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oscillatory cycles is very long. In such a case, there might be only one U-shaped pattern

even in a long data series. However, the curvature of this pattern will be di¤erent than

the quadratic one implied by (2). Indeed, a single U-shaped pattern with quadratic

curvature has totally di¤erent implications about the long-run behaviour of the real

price than a U-shaped pattern with trigonometric curvature. In the former case, the

polynomial origin of the pattern implies that after the initial fall, the real price will

increase inde�nitely at a quadratic rate. On the contrary, if the observed U-shaped

pattern is just the two-thirds of a sinusoidal cycle that is being formed, then the real

price is expected to start falling in the near future before it starts rising again.

The preceding discussion suggests that the trend speci�cation (2) should be aug-

mented in a way that allows the real price to exhibit more than one full U-shaped cycles.

To this end, we suggest the following speci�cation:

g(t; �) = c0 + c1t+ c2t
2 + c3

�
sin

�
t

d

�
+ 1

�
+ c4t

�
sin

�
t

d

�
+ 1

�
; d > 0. (3)

The two extra terms, (sin( td) + 1) and t(sin(
t
d) + 1) in (3) capture the potentially

oscillating behaviour of the real price. The parameter, d; controls for the number of the

sinusoidal cycles that are likely to be present in a sample of T observations. For example,

for T=100, the values of d equal to 7.5, 10, 15 and 30 corresponds to approximately 2.1,

1.6, 1.06 and 0.5 cycles, respectively. It is worth noting that the term c3(sin(
t
d) + 1)

with c3 < 0, and d = 30 produces a U-shaped pattern in a series of 100 observations

whose curvature, however, is di¤erent than the quadratic curvature of (2) with c1 < 0

and c2 > 0: The second term, t(sin( td) + 1) is included in (3) to allow the amplitude of

the oscillations to be time varying. The above speci�cation nests various special cases

among which the following three appear to be the most interesting ones:

Case 1: The General Model, in which all the ci; i = 0; 1; 2; 3; 4 coe¢ cients are di¤erent

from zero. In this case, the trend function contains both polynomial and oscillatory com-
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ponents, while the oscillations occur around a quadratic trend. The long-run behaviour

of the deterministic part of yt is governed by c2: More speci�cally, if c2 > 0; the scarcity

hypothesis is supported regardless of the signs and values of the remaining parameters.

Case 2: The Polynomial Model, in which c3 = c4 = 0: This is the standard case already

analyzed in the literature, which is identical to (2). Again a positive estimate of c2 is

interpreted as favorable evidence for the scarcity hypothesis.

Case 3: The Oscillatory Model, in which c1 = c2 = 0: This case can be further de-

composed into two additional subcases, according to whether the coe¢ cient c4 is equal

to zero. Speci�cally, if both c3 and c4 are di¤erent from zero, then g(t; �) exhibits

trending-like behaviour (despite the fact that c1 = 0) due to the changing amplitude of

the oscillations over time. We refer to this case as Oscillatory-I model. In the context

of this model, acceptance or rejection of the scarcity hypothesis depends on whether c4

is positive or negative, respectively. The second case, which is the only case in which

the trending behaviour of the real price is purely oscillatory (with no polynomial or

polynomial-like elements) occurs when c1 = c2 = c4 = 0 and c3 6= 0: In such a case,

which we refer to as Oscillatory-II model, the amplitude of the oscillations remains con-

stant over time. Moreover, as already mentioned for values of d; which are relatively

large with respect to the sample size, and c3 < 0; the Oscillatory-II model produces

a single U-shaped pattern in the available data, whose curvature however, is di¤erent

than the one implied by the Polynomial model. This U-shaped pattern observed in the

available data is only the �rst part of a more general sinusoidal pattern that has started

to be formed. In spite of the fact that we have detected a U-shaped pattern within our

sample, we are entitled to expect the real price to experience a long period of decrease

in the future. This in turn implies that the Oscillatory-II model clearly violates the

scarcity hypothesis, no matter what the value of c3 is.
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2.2 Implications of Trends Misspeci�cation

In this subsection we investigate the e¤ects of omitting the oscillatory terms, (sin( td)+1)

and t(sin( td)+1) from the estimated trend equation on the inferences on the coe¢ cients

c1 and c2 of the polynomial terms t and t2, respectively. In other words, under the

assumption that the correct trend speci�cation is given by (3), we investigate the relia-

bility of inferences on c1 and c2 that are produced when the researcher has erroneously

speci�ed the trend function (2). As will be shown below the inferences on c1 and c2 are

severely distorted even under the assumption that ut is an iid process.

To this end we have conducted a small Monte Carlo study as follows: The simulated

data are produced according to (1) with g(t; �) being given by (3) and ut � iid N(0; �2u).

As far as the parameter d is concerned, we consider four alternative values, namely

d = 7:5; 10; 15 and 30. For each value of d we use the corresponding values obtained by

estimating the parameters of (3) for aluminum, as presented in Table 1. The simulated

series are then produced by setting the autoregressive parameter, �, equal to zero.

(TABLE 1 AROUND HERE)

Next, for each simulated series we estimate the model that employs the trend function

c00 + c
0
1t+ c

0
2t
2 instead of the correct one given by (3), thus being a misspeci�ed model.

Table 2 reports the rejection rates of the null hypotheses c01 = c1 and c
0
2 = c2 with c1 and

c2 as in Table 1. Moreover, we report the empirical size for testing the null hypothesis

that ut is a serially uncorrelated process, that is, for testing � = 0 in the context of an

AR(1) model for the error term, ut = �ut�1+ �t: The number of replications is equal to

5000 and the size, T , of the sample is set equal to 100 and 200.

(TABLE 2 AROUND HERE)
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As expected, severe size distortions are present for all sample sizes under consid-

eration. Moreover, the empirical size of the t-test for testing the hypothesis � = 0 is

increasing with the sample size, reaching the value of 100% for a sample size of T=200.

This means that the omitted oscillatory terms from the estimated trend model cause the

researcher to erroneously conclude that yt exhibits a substantial degree of persistence,

whereas in fact yt is serially uncorrelated. In fact, the test misinterprets the determinis-

tic oscillation that characterizes the residuals of the estimated model (which is the result

of the omitted terms) as stochastic cycles which are �captured�by estimates of �, which

appear to be statistically di¤erent from zero.

2.3 Identi�cation of the Trend Function

The preceding analysis has shown that the omission of the oscillatory terms may produce

misleading inferences concerning the coe¢ cients of the polynomial terms in the trend

function. In this subsection, we investigate the extent to which the information criteria

suggested by Akaike (1973), Schwarz (1978) and Hannan and Quinn (1979), denoted

by AIC, SIC and HQ respectively, are capable of detecting the correct model within

a set, M, of competitive models which consists of the General, the Polynomial, the

Oscillatory-I and the Oscillatory-II models de�ned above.

One feature that distinguishes AIC from SIC or HQ concerns the question of whether

the true model is actually included in M. If it is, the SIC and HQ consistently select

the true model, that is, the selection rate of the true model approaches 100% as the

sample size increases. On the other hand, if the true model is not included inM, then

AIC tends to select the best approximating model to the true one. Put it di¤erently,

AIC, as opposed to SIC and HQ, was not designed to consistently estimate the true

model. Inconsistency of AIC, however, is not always treated as an unpleasant feature

of the selection procedure, especially in cases where the true model is not expected to

belong to M. According to Shibata (1983), �Inconsistency does not imply a defect of
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the selection procedure, but rather the inevitable concomitant of balancing under�tting

and over�tting risks�. In the case under study, if oscillations of any form are present in

the trend function (even if they are of di¤erent parametric form than the one speci�ed

in (3)) then AIC is expected to display a tendency towards selecting a model which

contains oscillatory terms (that is one among the General, the Oscillatory-I and the

Oscillatory-II models) over the polynomial model at a higher frequency than SIC or HQ.

On the contrary, if such oscillations are absent and the trend function displays solely

polynomial-type behaviour then SIC and HQ are expected to select the true polynomial

model (2) at a higher frequency than AIC.

To investigate these issues, we conduct a Monte Carlo study as follows: Concerning

the trend function, we examine four alternative scenarios: (i) g(t; �) follows the General

model, (ii) g(t; �) follows the Polynomial model (c3 = c4 = 0), (iii) g(t; �) follows the

Oscillatory-I model (c1 = c2 = 0), and (iv) g(t; �) follows the Oscillatory-II model

(c1 = c2 = c4 = 0). For each scenario, we examine the percentages by which the AIC, SIC

and HQ select the correct model between the four models mentioned above. The number

of replications is equal to 5000 and the sample size, T , is set 100 and 200. The models

are estimated by Generalised Least Squares (GLS), in which the error term is assumed to

follow an AR(1) process, ut = �ut�1+vt. In this setting the researcher is assumed to have

full information on the true parametric structure of the error. Additional experiments,

in which the order, p, of the AR(p) speci�cation in GLS is di¤erent than the true lag

order of the autoregressive representation of ut, have also been conducted, with results

similar to those of the �full information� case. Concerning the parameters, �, of the

trend functions, we explored many alternative parameter settings, covering the majority

of cases that present either theoretical or empirical interest. For brevity, we report the

results for the case in which the parameters of the data generating process equal to these

of Table 1. The results, reported in Table 3 may be summarized as follows:
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(TABLE 3 AROUND HERE)

(i) When the series is generated by the General model and T=100, all criteria seem

to be biased towards the Polynomial model. This bias is signi�cantly higher for SIC,

reaching a selection of the Polynomial model for 85% of the simulated series when d=10.

AIC exhibits the best performance in selecting the true General model for all values of d,

followed by HQ. However, when d=7.5 or d=10, both AIC and HQ select the Polynomial

model for more than 50% of the simulated series, while the same holds for SIC for all

the values of d. When the sample size increases to T=200, in which case there are more

than one cycles in the data even for d=30, all three criteria select the true General model

with frequency practically equal to 100%.

(ii) In the case that the true model is the Polynomial, SIC is the best performing

criterion followed by HQ and AIC. SIC seems to work well even when the sample is small,

with a correct model selection for at least 92% of the simulated series for any value of d.

Even AIC, which is the worst performing criterion, selects the correct model at a rate of

at least 73%. When T=200, the rate of correct model selection is practically 100% for

SIC and at least 93% for HQ. However, AIC remains biased towards the General model,

which is selected with a rate of around 20%, while the correct, Polynomial model, is

selected at a rate of around 80%. As expected, in this case, the performance of all three

criteria is invariant to the value of d.

(iii) When the true model is the Oscillatory-I and T=100, the performances of all

three criteria are similar, with rates of selecting the correct model of about 50-55%

when d=7.5 and d=10, at most 23% when d=15 and at least 70% when d=30. It is

worth mentioning that when d=15, all criteria select the Oscillatory-II model at a rate

of more than 50%. When T=200, and d=7.5, 10 and 30, SIC emerges again as the

best performing criterion with almost 100% rates of correct model selection, while HQ

follows with corresponding rates of at least 93%. When T=200 and d=15, the rate
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of correct model selection drops to 63% for SIC and 75% for HQ, these criteria being

biased towards the Oscillatory-II model. AIC exhibits rates of correct model selection

that range from 72-81%, while it remains biased towards the General model.

(iv) When the series are generated by the Oscillatory-II model and T=100, the rates

of correct model selection range between 62% and 66% for AIC, 89% and 93% for SIC,

and 78% and 82% for HQ. When T=200, a 5-10% improvement is observed for AIC and

HQ, while SIC selects the correct model at a rate of at least 96% for all values of d.

(v) Very interesting conclusions are obtained by aggregating the results in two main

categories, the �rst involving the models that have a polynomial trend (General and

Polynomial) and the second consisting by the models that do not have a polynomial

trend. Then we observe that when the true model is the General or the Polynomial,

all three criteria identify the existence of a polynomial trend at rates of more than 88%

even when T=100. In particular, AIC exhibits the best performance, identifying the

existence of a polynomial trend in at least 96% of the cases when d=7.5 or 10, and with

a 100% success when d=15 or d=30. When T=200, all three criteria exhibit practically

a 100% success in identifying the polynomial trend.

(vi) When the true data generating process does not involve a polynomial trend

(Oscillatory-I and Oscillatory-II models), things are not so clear cut. Although in all

cases the three criteria do not select models that have a polynomial trend at rates of at

least 57%, SIC and HQ exhibit some bias towards the Polynomial model when T=100,

while when T=200, AIC performs worst among the three criteria, selecting models that

do not have a polynomial trend approximately 80% of the trials.

Combining these remarks we may conclude to the following three �rules of thumb�

concerning model selection using AIC, SIC and HQ, between the competing models

under consideration for the empirically relevant case of T=100:

(a) When all criteria select Oscillatory-I or -II models then it is highly probable that

the true generating process of the series has an oscillatory trend and does not have a
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polynomial trend.

(b) The same holds (probably with a slightly lower con�dence) when SIC and HQ

select Oscillatory-I or -II models and AIC selects the General model.

(c) When all criteria select the General model, then it is highly probable that the

true generating process of the series has both polynomial and oscillatory trends.

These rules of thumb do not depend on the value of d and, although they do not

cover all possible combinations, they concern the cases for which conclusions may be

drawn with a relatively high conviction.

3 Empirical Results

We focus on the prices of the main fuel and mineral resources (see also Slade, 1982,

Berck and Roberts, 1996, and Ahrens and Sharma, 1997, among others). Historical real

prices (at constant 1998 U.S. dollars) for aluminum, copper, iron, lead, nickel, silver,

tin and zinc were obtained from U.S. Geological Survey for the period 1900�2010, while

historical real prices for bituminous coal, petroleum and natural gas (at constant 2005

U.S. dollars) were collected from Energy Information Administration for the periods

1949�2010, 1900�2010 and 1922�2010, respectively. As far as measurement units are

concerned, we have used $/ton for aluminum, copper, iron, lead, nickel, tin, zinc and

bituminous coal, $/kgr for silver, $/barrel for petroleum and $/(1000 cubic feet) for

natural gas.

First, we present the results that are based on the three information criteria under

consideration, namely AIC, SIC and HQ. The competing models are the ones de�ned

above, namely the General, Polynomial, Oscillatory-I and Oscillatory-II models. All of

the four models are estimated by GLS, for each of the eleven commodities. The error

term, ut, is assumed to follow either an AR(1) or an AR(2) or an ARMA(1,1) process.

The results from these three alternative speci�cations are largely the same, and therefore
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we discuss the results only for the AR(1) case.

Before we present our results, a few remarks on the selected method for accounting

for the serial correlation of the error term are in order: In particular, instead of the

parametric GLS corrections, we could alternatively employ nonparametric corrections,

such as the ones suggested by Newey and West (1987). The employment of these meth-

ods requires the applied researcher to make several choices concerning the kernel (e.g.

Bartlet, Parzen or Quadratic Spectral) and the truncation lag or bandwidth parameter,

ST . To this end, Andrews (1991) demonstrated that the Quadratic Spectral kernel is

the best with respect to an asymptotic truncated mean square error criterion in the class

of kernels that necessarily generate positive semi-de�nite estimators of the covariance

matrix in �nite samples. The bandwidth parameter, ST , may be selected by data de-

pendent methods, such as the parametric methods suggested by Andrews (1991), or the

non-parametric ones suggested by Newey and West (1994). Furthermore, Andrews and

Monahan (1992) found that prewhitening of ut is likely to improve the performance of

the nonparametric estimators in �nite samples.

However, in the empirical problem under study we have observed that the error

term ut exhibits a very high degree of persistence. In such a case, the nonparametric

corrections are likely to produce misleading inferences on the trend coe¢ cients, even

when the sample size is quite large. In his Monte Carlo study, Vogelsang (1998) found

that when ut is a near-to-unit root process, the nonparametric corrections produce Wald

tests that su¤er from severe size distortions. As the largest root, �, approaches unity, the

empirical sizes become very large and deteriorate with the sample size, since the unit-

root asymptotics become dominant. On the other hand, the parametric GLS corrections

exhibit much better properties, producing test statistics with empirical sizes very close

to their corresponding nominal ones. Moreover, when � is close to one, GLS was found

to exhibit very good power properties (see also Canjels and Watson, 1997).

The GLS-based results, tabulated in Table 4, may be summarized as follows:

15



(i) For 7 of the eleven commodities, namely, for copper, iron, lead, silver, tin, zinc and

natural gas, all criteria select either Oscillatory-I or Oscillatory-II models. Therefore,

the conditions required by rule of thumb (a) are satis�ed. This implies that evidence

suggests existence of oscillatory trends and absence of polynomial trends in the real

prices of these commodities.

(ii) For nickel, AIC selects the General model, while both HQ and SIC select the

Oscillatory-II model. These are the conditions required by rule of thumb (b), which

implies existence of an oscillatory trend and absence of a polynomial trend in nickel�s

real price as well.

(iii) For coal, all criteria select the General model, that is, the conditions required by

rule of thumb (c) are satis�ed. This, in turn, implies that the real price of coal exhibits

both polynomial and oscillatory trends. Moreover, the choice of d=7.5 in the selected

model corresponds to a pattern with multiple U-shapes.

(iv) As far as aluminum is concerned, AIC selects the General model, while SIC and

HQ select the Polynomial model. In this case the results of the Monte Carlo simulations

(Table 3) do not provide very strong conviction about whether the real price of aluminum

has a polynomial trend or not, although they o¤er some evidence that a polynomial trend

exists.

(v) Finally, AIC and HQ select the polynomial model for the real price of petroleum,

while SIC selects the Oscillatory-II model with d=30. Examining carefully the results of

the Monte Carlo simulations in Table 3, we observe that SIC selects the speci�c model

only when the true model is indeed the Oscillatory-II. On the other hand, there is a small

but not negligible probability that AIC and HQ select the Polynomial model, while the

series is generated by an Oscillatory-II model with d=30. Therefore, this combination

of selected models can be interpreted as an indication of oscillatory trend (and not a

polynomial one) in the real price of petroleum.

(vi) According to the previous remarks and the results of Table 4, the evidence
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supports that the real prices of copper, lead, silver, tin, nickel, petroleum and natural

gas are better described by the Oscillatory-II model. In other words, the amplitudes of

their oscillatory trends remain constant throughout our sample.

To sum up: The empirical evidence does not support the scarcity hypothesis for

9 out of the 11 natural resources under study, namely, for copper, iron, lead, silver,

tin, zinc, natural gas, nickel and petroleum, since for these commodities the empirical

evidence does not support a polynomial (either linear or quadratic) trend in their real

prices. On the other hand, evidence supports the existence of both polynomial and

oscillatory trends in the real price of coal. Finally, the analysis provides some evidence

that the real price of aluminum follows a polynomial trend without rejecting, however,

the simultaneous existence of an oscillatory trend.

(TABLE 4 AROUND HERE)

4 Conclusions

This paper revisits the literature on the long-run trend of natural resources real prices.

Simple price models that support oscillatory trend behavior are introduced and tested

against the standard quadratic (polynomial) trend price model supported by the relevant

literature, via the model selection criteria of Akaike (AIC), Scharz (SIC) and Hannan

and Quinn (HQ).

In order to assess the performance of the model selection criteria, a Monte Carlo

study is conducted involving models with either a polynomial or an oscillatory trend, as

well as a more general model that nests both oscillatory and polynomial trend models.

The results of the Monte Carlo simulations reveal cases where the combination of the

selections made by AIC, SIC and HQ, supports with relatively high conviction the ex-

istence of oscillatory trends only. When, however, the three criteria select the general
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model, the results of the Monte Carlo study support the existence of both polynomial

and oscillatory trends.

The aforementioned models are then estimated using the series of real prices of eleven

major natural resource commodities. For each commodity, the models selected by AIC,

SIC and HQ are obtained. For nine commodity price series, namely, for copper, iron,

lead, silver, tin, zinc, natural gas, petroleum and nickel, the combinations of the selected

models fall into the category where the results of the Monte Carlo study support only

oscillatory and not polynomial trends. On the other hand, both a polynomial and an

oscillatory trend are identi�ed for the real price of coal. As far as aluminum is concerned,

the selected models do not fall into a high conviction category, although there is some

evidence that its real price follows a trend that has at least a polynomial component.

Given the very simple structure of the oscillatory models introduced in this study,

even the more general model that nests all the others is quite simple. However, it is

worth noting that for the majority of the commodity prices under consideration, the

oscillatory model was selected against the more general one. The evidence against the

existence of a polynomial component in the trend of the natural resources real prices

has strong implications for the debate on increasing, or not, natural resources scarcity,

and as a consequence, on developing policy interventions for optimal long-run natural

resource pricing and conservation.
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Appendix: Tables
Table 1. Estimated Parameters of the General model for Aluminum (d = 7:5, 10, 15

and 30).
d

Estimated Parameters 7.5 10 15 30
c0 11.353 15.675 16.733 18.676
c1 -0.246 -0.362 -0.366 -0.577
c2 0.002 0.002 0.002 0.003
c3 1.479 -0.912 -0.989 -2.077
c4 -0.026 0.025 -0.009 0.090
� 0.627 0.626 0.590 0.590
�2u 1.347 1.348 1.331 1.330
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Table 2. Misspeci�cation E¤ects from Omitting Oscillatory Components (5%
Empirical Sizes)

T = 100 T = 200
H0: c01 = c1 c02 = c2 � = 0 c01 = c1 c02 = c2 � = 0

d
7.5 86.52 36.88 9.48 45.86 0 100
10 48.3 4.58 8.38 30.44 0 100
15 29.42 11.38 47.78 0.02 0.02 100
30 100 77.34 50.72 0 0 100
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Table 3. Performance of Information Criteria: Percent Selections of the Competitive
Models (%, rounded to the nearest integer)

A. True models have polynomial terms (General, Polynomial)
T AIC SIC HQ

d 7.5 10 15 30 7.5 10 15 30 7.5 10 15 30
True=Gen. 43 41 74 72 8 10 32 31 22 23 56 54

100 Pol. 53 57 26 28 80 85 67 69 70 73 44 46
OsI 4 2 0 0 12 5 1 0 8 4 0 0
OsII 0 0 0 0 0 0 0 0 0 0 0 0

True=Gen. 100 100 100 100 98 99 98 100 100 100 100 100
200 Pol. .0 0 0 0 2 1 2 0 0 0 0 0

OsI 0 0 0 0 0 0 0 0 0 0 0 0
OsII 0 0 0 0 0 0 0 0 0 0 0 0
Gen. 24 23 25 24 3 3 3 3 10 10 11 11

100 True=Pol. 73 74 75 76 92 92 97 97 86 86 89 89
OsI 3 3 0 0 4 5 0 0 4 4 0 0
OsII 0 0 0 0 1 0 0 0 0 0 0 0
Gen. 20 20 19 20 1 1 1 1 6 7 6 6

200 True=Pol. 80 80 81 80 99 99 99 99 94 93 94 94
OsI 0 0 0 0 0 0 0 0 0 0 0 0
OsII 0 0 0 0 0 0 0 0 0 0 0 0

B. True models do not have any polynomial terms (Oscillatory-I and -II)
T AIC SIC HQ

d 7.5 10 15 30 7.5 10 15 30 7.5 10 15 30
Gen. 14 16 16 18 1 2 1 2 6 6 6 8

100 Pol. 27 27 5 12 25 26 2 14 27 29 4 13
True=OsI 53 54 23 70 50 56 11 84 55 58 18 79
OsII 6 3 56 0 24 16 86 0 12 7 72 0
Gen. 19 20 19 19 1 1 1 1 7 7 6 6

200 Pol. 0 0 0 0 0 0 0 0 0 0 0 0
True=OsI 81 80 72 81 99 99 63 99 93 93 75 94
OsII 0 0 9 0 0 0 36 0 0 0 19 0
Gen. 17 14 12 15 1 1 1 1 6 4 4 5

100 Pol. 2 10 12 11 1 5 5 4 2 8 9 7
Os.I 15 14 14 9 5 5 4 3 10 10 8 6

True=OsII 66 62 62 65 93 89 90 92 82 78 79 82
Gen. 13 12 12 12 0 0 0 0 3 3 2 2

200 Pol. 0 3 2 0 0 1 1 0 0 2 2 0
Os.I 15 14 14 15 3 3 3 3 9 7 8 9

True=OsII 72 71 72 73 97 96 96 97 88 88 88 89
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Table 4. Natural Resources Prices: Model Selection and Estimation (p-values below)

Metal Criteria Model c0 c1 c2 c3 c4 � d

ALUMINUM AIC Gen. 18.676 -0.577 0.003 -2.077 0.090 0.590 30
0.004 0.197 0.389 0.779 0.065 0.000

HQ, SIC Pol. 13.451 -0.280 0.002 0.661
0.000 0.000 0.000 0.000

COAL AIC, HQ, Gen. 0.584 -0.012 0.000 -0.054 0.000 0.839 7.5
SIC 0.000 0.000 0.000 0.024 0.279 0.000

COPPER AIC, HQ, OsII 2.761 0.847 0.801 7.5
SIC 0.000 0.063 0.000

NATURAL GAS AIC, HQ, OsII 0.065 -0.030 0.721 30
SIC 0.000 0.000 0.000

IRON AIC, HQ, OsI 0.827 -0.418 0.009 0.808 10
SIC 0.000 0.000 0.000 0.000

LEAD AIC, HQ, OsII 1.245 0.194 0.777 7.5
SIC 0.000 0.164 0.000

NICKEL AIC Gen. 4.884 -2.240 0.019 21.440 0.260 0.637 30
0.697 0.013 0.019 0.140 0.009 0.000

HQ, SIC OsII 15.912 -3.784 0.760 30
0.000 0.067 0.000

PETROLEUM AIC, HQ, Pol. 0.192 -0.005 0.000 0.804
0.079 0.216 0.031 0.000

SIC OsII 0.621 -0.266 0.860 30
0.000 0.002 0.000

SILVER AIC, HQ, OsII 162.510 90.690 0.719 10
SIC 0.006 0.043 0.000

TIN AIC, HQ, OsII 18.977 -4.404 0.851 15
SIC 0.000 0.056 0.000

ZINC AIC, SIC OsI 1.459 0.482 -0.005 0.598 7.5
0.000 0.012 0.017 0.000

HQ OsII 1.440 0.214 0.663 10
0.000 0.220 0.000
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