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Abstract

In this paper we derive the bias approximations of the Maximum Likelihood (ML) and
Quasi-Maximum Likelihood (QML) Estimators of the EGARCH(1,1) parameters and we
check our theoretical results through simulations. With the approximate bias expressions
up to O (%), we are then able to correct the bias of all estimators. To this end, a Monte
Carlo exercise is conducted and the results are presented and discussed. We conclude that,
for given sets of parameters values, the bias correction works satisfactory for all parameters.
The results for the bias expressions can be used in order to formulate the approximate
Edgeworth distribution of the estimators.
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1 Introduction

The last years there has been a substantial interest in deriving the asymptotic properties of
econometric estimators in time series models. Although there is an important and growing
literature that deals with the asymptotics of the Generalized Autoregressive Conditional Het-
eroskedastic (GARCH) models, either in terms of consistency and asymptotic normality of the
estimators or in terms of the finite-sample theory, the asymptotic properties of the estimators
in the Exponential GARCH (EGARCH) process of Nelson (1991) have not been fully explored.
Comparing to the GARCH process, the advantages of the EGARCH model are well-known, with
the main one being the fact that the model captures the negative dynamic asymmetries noticed
in many financial series, i.e. the so-called leverage effects.

The asymptotic aspects of the conditionally heteroskedastic models have been discussed
under many different considerations, in order to analyze the statistical properties of these esti-
mators. Since the important work of Engle (1982) and that of Bollerslev (1986), who introduced
the Autoregressive Conditional Heteroskedasticity (ARCH) and Generalized ARCH models, re-
spectively, a huge amount of literature on the asymptotics has appeared in short time. Weiss
(1986) proved Consistency and Asymptotic Normality (CAN) of the maximum likelihood es-
timators in ARCH models, assuming normal distribution of the errors and imposing a rather
restrictive condition that the data have bounded fourth moments, excluding in that way from
the proof many other interesting conditionally heteroskedastic models. Quite parallel, Lee and
Hansen (1994) and Lumsdaine (1996) relaxed the condition which Weiss imposed and they
looked at the consequences of the possible failure of the normality assumption on the errors,
providing conditions under which CAN exist in the GARCH(1, 1) specification (for multivariate
frameworks see e.g. Jeantheau, 1998; Comte and Lieberman, 2003).

The finite sample properties of the QML estimators in the first order GARCH model are
investigated through an asymptotic expansion of the Edgeworth type, as Linton (1997) devel-
oped! in which he also provided the higher-order bias of the estimators. Furthermore, Iglesias
and Linton (2007) derive the second-order asymptotic theory of the quasi-maximum likelihood
estimator in stationary and nonstationary GARCH models, when constaints are imposed and

they correct the first- and second-order bias of the estimator. Nowadays, many researchers work

!The validity of the Edgeworth expansions in the GARCH model is established in the paper of Corradi and
Iglesias (2008).



on the asymptotic behaviour of these estimators, with unceasing interest.

Until the influential work of Nelson (1991), the conditional heteroskedastic models that had
been developed could not explain the asymmetry effects, indicating that alternative models
might be suitable for financial applications. Turning our attention to asymmetric GARCH
models, and more specifically to the EGARCH model which has become a popular model in
applied work, very little is known about its statistical properties. Although we are endowed
with the moment structure investigated by He, Terasvirta and Malmsten (2002), the limiting
properties of the maximum likelihood estimators in the EGARCH models do not exist in the
literature. The interest in consistency and asymptotic normality results of EGARCH has been
growing and the problem of the theoretical properties not yet been explored await for an answer;
see, for example, Straumann and Mikosch (2006)2. The finite sample properties of the maximum
likelihood and quasi-maximum likelihood estimators of the EGARCH(1, 1) process using Monte
Carlo methods have been examined in the paper of Deb (1996)3. He used, however, response
surface methodology in order to examine the finite sample bias and other properties in interest,
by summarizing the results of a wide array of experiments.

In this paper we derive the bias approximations of the Maximum Likelihood (ML) and Quasi-
Maximum Likelihood (QML) Estimators of the EGARCH(1, 1) parameters and we check our
theoretical results through simulations. With the approximate bias expressions, we are then able
to correct the bias of all estimators. To this end, a Monte Carlo exercise is conducted and the
results are presented and discussed. We provide two types of bias correction mechanisms in order
to decide for the bias reduction in practice for the popular model of Nelson, the EGARCH. It is
the first time that analytically the higher order biases appear in this literature for a nonlinear
model like the EGARCH one and these results can now be used to be incorporated into the
relative analysis of other similar specifications, see e.g. Iglesias and Linton (2007). We conclude
that, for given sets of parameters values, the bias correction works satisfactory for all parameters.
The results for the bias expressions can be used in order to formulate the approximate Edgeworth
distribution of the estimators.

The organisation of the paper is as follows: Section 2 presents the model and estimators.

’In a recent paper, Zaffaroni (2009) estimates the EGARCH parameters with Whittle methods and the as-
ymptotic distribution theory of these estimators is established.

3Perez and Zaffaroni (2008) compare the finite sample properties of the MLE and Whittle estimators, in terms
of bias and efficiency, in the EGARCH model and its long-memory version.



Section 3 deals with the main results of our analysis. First, analytic derivatives and their
expected values are presented. Second, conditions for stationarity of the log-variance derivatives
are investigated. In the sequel, the theoretical bias approximations of the Maximum Likelihood
and Quasi Maximum Likelihood Estimators are calculated and the simulation results for the
bias correction of the estimators are presented. Finally, Section 4 concludes. All proofs, rather
lengthy, are collected in the Appendix. Let us now turn our attention to the definition of the

EGARCH(1,1) model and the estimators.

2 The Model and Estimators

Let us consider the following model, where the observed data {yt}thl are generated by the
EGARCH(1,1) process, see Nelson (1991), in which the conditional variance, h;, depends on

both the size and the sign of the lagged residuals:

yr = p+ ug, t=1,..T, where (1)
ur = Zt ht, Zt 11dD (O, 1)
In(hy)) = a+0z_1+79(z-1)+ Bln(hi—1), where (2)

g(z) = |zl —Elzl.

The process {u;} is a real-valued discrete time stochastic process (the error process) and h; is a
positive with probability one A;_j-measurable function (the conditional variance), where A;_1
is the sigma-algebra generated by the past values of z;, i.e. {z;_1,21—2,2i—3,...}. The function
g (z) is a well-defined function of z;. The process h; is not observed and thus is constructed
via recursion using the estimating values of the parameters and a proper initial value for the
conditional variance. The only distributional assumption made about the innovations z;s is that
they are independently and identically distributed (i¢d) with zero mean and unit variance. We
do not impose any symmetric distributional property, however the proofs automatically become
very tedious. The conditional variance is constrained to be non-negative by the assumption
that the logarithm of h; is a function of past z;s. Comparing to the relative analysis, Nelson’s

paper was the first which models the conditional variance as a function of variables which are



not solely squares of the observations.
Note from (2) that In(h;) constitutes a causal AR(1) process with mean «/ (1 — ) and
error sequence [0z;—1 + 7 (|zi—1| — E'|z¢—1])]. The unique stationary solution to (2), provided

that || < 1, is given by its almost sure (a.s.) representation:

In(h) = a(l=p)"+> B Oz1-k+79 (z-1-1) =
k=0

In(hy) > (a—~Elz)1—-8)""  as.

The conditional variance responds asymmetrically to rises and falls in stock price, which
is believed to be important for example in modelling the behaviour of stock returns. It is
an important stylized fact for many assets. The coefficients (60 + ) and (6 — ) (if zx > 0 and
2zt < 0, respectively) show the asymmetry in response to positive and negative y;. The parameter
0 is referred to as the leverage parameter, which shows the effect of the sign of 3. The term
v [|zt| — E|zt|] represents a magnitude effect. Formulae for the higher order moments of u; are
given in Nelson (1991). The parameter o can be made a function of time () to accommodate
the effect of any non-trading periods of forecastable effects.

The unconditional mean and variance of g is:

E(yt) = n,
and
Var () = e (75 [ 2 oo [5' 020 29 o]

which, under normality of the errors, becomes the following result:

a—y/2\ > 20 ()2 ‘ 2i 52 ,
Var (y;) = exp 1_7\!; H [exp (B(;)> ) (BZ’Y*) + exp (B J ) ) (515)] ,

. 2
=0

where v* =~y 460, 0 = v—60 and ® (k) is the value of the cumulative standard Normal evaluated
. k 2
at k,ie @ (k)= ["_ % exp (—%) dx.
Proof. The proof of the unconditional variance is given in the Appendix. B
To estimate the parameters of the model in (1) and (2), we employ the quasi-maximum like-

lihood estimation. Maximum likelihood is the procedure which is most often used in estimating



the parameters in time series models, but for most applications it is very difficult to justify the
conditional normality assumption. Therefore, the log-likelihood function may be misspecified.
However, we can still obtain estimates by maximizing a Gaussian quasi-log-likelihood func-
tion and under the auxiliary assumption of an iid distribution for the standardized innovations
z;s. The estimators which are derived by this maximization problem are the so-called Quasi
Maximum Likelihood Estimators (QMLESs). The fact that we maximize a quasi-log-likelihood
is justified by the evidence that distributions of asset returns are often thick tailed and as a
consequence the normality assumption is violated.

An important and really interesting feature of our model is that the assumption of the block
diagonality of the information matrix no longer holds. This is also the case for the ARCH-M
model and the asymmetric model of the Augmented ARCH (see Bera and Higgins, 1993, p.
349; also Bollerslev, Engle and Nelson, 1994, p. 2981). This implies that the off-diagonal blocks
involving partial derivatives with respect to both mean and variance parameters are not null
matrices, while this is the case in other GARCH-type models. Below we present analytic proofs
of this argument in the context of the EGARCH(1, 1) model and these results disaccord with
Malmsten (2004), even if the distribution of the innovations is symmetric, which implies that
Ez3 =0.

In the EGARCH(1, 1) model, there is no explicit expression of the probability density of
the vector (yi,...,yr) since the distribution of (hy,...,h7)" is not known. To overcome this
difficulty, we consider an approximate conditional log-likelihood instead. Some assumptions are
also required for the initial values of the conditional variance h;, which should be drawn from
the stationary distribution, and the squared standardized residuals z?. Assuming that zg = 0
and In (hg) = ﬁ, we obtain a good approximation to the conditional Gaussian log-likelihood,

as follows:
= (- )’
E(M7a797577‘207h0) = —*111 271- —72111 h‘t 2711/:
T
T 1

Notice that h; and z; are both functions of w and p, where w = (a, 9,6,7)/, i.e. the vector of

unknown log-variance parameters, so that both are functions of = (w/ , ,u)/, which represents



the vector of all unknown parameters. The first order conditions are recursive and consequently
do not have explicit solutions.

The likelihood function is derived as though the errors are conditionally normal and is
still maximized at the true parameters. Having specified the log-likelihood function, the quasi

maximum likelihood estimator is then defined as
1 X
P = argmax ; (). (4)
The parameter space is of the form
©=Rx]0,1) x D,

where

D={(6,7)€R*|0cR,y>d]}.

Let us proceed with the main results of our analysis, beginning with the analytic derivatives

of the log-likelihood function and their expected values.

3 The Main Results

3.1 Analytic derivatives and their expected values

In this section we present analytic derivatives® of the log-likelihood function and their expected
values, which are needed in the sequel to evaluate the asymptotic bias of the QMLEs and to
calculate the cumulants of the Edgeworth distribution. It is of great importance to mention
that there are no such analytic results in the related literature of the finite sample theory, and
it is especially this feature that makes this analysis to differ from the previous one, that of
Linton (1997), who studied the case of the GARCH(1, 1) model. Let us first proceed with the
derivatives of the log-likelihood function and their analytic representation.

Following henceforth the notation employed in Linton (1997), i.e. hyo = 8115(Oht) and so on,

!Fiorentini, Calzolari and Panattoni (1996) argue that the computation of analytic derivatives of the log-
likelihood is essential, as the computational benefit of their use is really substantial for estimation purposes.



the derivatives of the log-likelihood function with respect to all the parameters are:

i
N

T
1 Zt
Lyp = 9 Z (Zt2 - 1) Pty — <h \/}Thtu + Zt h2 ) )

=1
T T
1
-3 E A (htuu ht 5 E Zt2 (3ht;uht;u,u - ht3;u)

o Vi t=1
while for 4,4,k € {«a, 0,7, 3} the derivatives are
1 I
,Ci == 5 Z (Zt2 - 1) ht;i7
t=1
s i
Lij = 3 (2 = 1) iy — 5 > g,
t=1 t=1
1 < 1 <
Lign = 3 > (2 = 1) bk — 3 > 27 (Bhuihek — ;).
t=1 t=1

The cross derivatives are given by the following expressions:

T
ﬁm = %Z( _1 hti Zzthtzht,u Z htu

T
1
Lipp = ) Z ( - 1 Pt — 2 Z ht;i,u - ht;iht;u)

#
Il
—

t=1
1 < AN
Tl (th;uht;w - ht;ih?;u + hegihipp) + Z h*ht;iv
t=1 t=1 "t
1 I
»Cij,u = B Z ( ht 3,5 Z ht;l}j - ht;iht;j)
t=1

T
1
) E Zt (ht il — Psihaihe + hegi b, + ht;iht;j,u) .
t=1

Note that the log-likelihood derivatives are expressions of the log-variance derivatives, hy.., where
the latter are given in the Appendix. The expected values of the log-likelihood derivatives are

also given in the Appendix.



The cross-products of the log-likelihood derivatives are:

fori,j € {a,0,7, 3},

1 2 1o 2 1 272
LiLi; = 5 Z (Zt - 1) hsi ) Z (Zt - 1) P — 9 Zzt i | »
t=1 t=1 t=1
1 & 1 <& 1 & L
t
ﬁiﬁju = D) Z (Zt2 - 1) b (2 Z (Zt2 - 1) ht;jw D) Z Zf?ht;jht;u - Z \/}Tht;i> )
t=1 t=1 t=1 t=1 V'
Lilyy = 1ZT: (Zt2 - 1) b [1 ZT: (Zt2 - 1) Pty — Z <1 + 2iht;u + 12}2}12#)] )
23 2 o \u Vi 2
1o, Lz 1 2 1<~ o0
LuLij = 9 Z (Zt - 1) Pty + Z . 9 Z (Zt - 1) hisi g — ) Z zihi |
t=1 t=1 V' t=1 t=1
T T 1 T_ 2_1 Ry 1 T_ 2hh
L.Lj, = (; Z (27 — 1) hey + Z z;) 32— (2 — 1) ;J,u ] 3 2oi=1 2 Mgl ’
=1 = Vi —> \/Ttl—tht;i
T T i 1T (.2
1 2t 3 =1 (2 = 1) by
LyLyw = ( (th —1) hy + )
2 tzl ' tzl ut L Zthl (hit + 2\;727}“;# + %zz‘?hz‘?;,u>

The expectations of the cross-products are given in the Appendix.

Let us turn our attention to the conditions for stationarity of the log-variance derivatives.

3.2 Conditions for stationarity of the log-variance derivatives

In this section we investigate under which conditions there is a second-order stationary solution
to the log-variance derivatives, needed for the existence and the evaluation of the log-likelihood
derivatives, and hence in order to calculate the bias expressions of the QMLEs. The existence,
stationarity and ergodicity of the second order derivatives of the conditional variance are neces-
sary so that the Taylor expansion of the first order derivatives of the log-likelihood is validated.

We consider the following example:

1 1 1 1
htahtiaa = 1 (021 + 7 |2e-1]) hi 10 + 1 (0zt—1 + v |z-1]) (ﬂ - iezt—l — 57 ‘Zt—1|> hi1a
1 1
+ (6 - 5921&71 - 57 ’zt1|> ht—1;0,a
1 1 ?
+ (6 —50a-1-57 !z“l) hi-t;altt-150,0- (5)

In order to calculate the expected value of the above expression, we first assume that £ (h%;a) B (hf’; a)



and E (ht,q) exist. Next, define:

1
A(z1) = 1 (Ozi—1 + v |z1-1]) h%—l;a

1
+

1 1
@14y foal) (8= 30501 = gkl )

4
+ (ﬂ — 7021; 1— *’Y | 24— 1’) ht—1;0,0;

and

2
B%(z1) = (8- 1HZH - lv 21| ) -
9 9

Then,

ht;aht;aa = A (Zt—l) + B? (Zt—l) ht—l;aht—l;ma =
oo k-1

= A(z-1)+ Z H B? (z1-1-1) A (21-1-¢) -
k=1 i=0
The infinite sum converges almost surely. To see this, let:
n k—1
Sn=A(z-1) + Z H B? (zt—1-i) A(ze-1-) -

k=1 i=0

Then we have:

n k—1
E(Sy) = E[A(z-0)]+Y E|]] B*(z-1-0) | E[A(z-1-4)] =
k=1 1=0
= F [A (Zt—l)] Z {E [B2 (Zt—l—z')] }k] .
k=0

Thus, E (limy, o0 Sp) = E[A (2-1)] {1 — E[B2(2-1-4)]} ' < o0, providing that E [A (z_1)] <
oo. In order to ensure the existence of a stationary solution to the (5), we should impose the

condition that

|E [B® (z1-1-4)]| < 1.

In a similar manner, the rest stationarity conditions of all log-variance derivatives and the

products of them follow.



Proposition 1 Given
a) [Bo — 5m0E |2]] < 1
b) 85 + 105 + 178 — %0BoE |2l + 37000 E (2 |2])| < 1

and

. B+ 28005 + 38078 — £00 (65 +313) E (2°) — 38510E |2
+3B00070E (2]2]) — 370 (¥3 + 303) E |2

then

the second-order stationarity of all log-variance derivatives follows.

Proof. The proof comes immediately from the results in the Appendices C and G. B

Let us now proceed with the bias approximations of the QMLES.

3.3 Bias Approximations

In this section we develop the bias approximations for the ML and QML estimators in the
EGARCH(1,1)°. One of the main advantages of developing the bias expressions is to use them as
a bias correction mechanism. This is one of the practical applications of the bias approximations.
Moreover, these results help to analyse the consequences of introducing restrictions in the log-
variance parameters. With these expressions, one can compute the Edgeworth approximate
distribution. It is also important to explore the theoretical properties of the estimators so that
the statistical inference is possible.

We use a McCullagh (1986) result for the standardized estimator having a stochastic ex-
pansion, see in p.209, and taking expectations we end up with the asymptotic bias of the QML
estimator. Our next step is to check our bias approximations through simulations. Note that
McCullagh’s expansion has already been applied in the literature to retrieve the bias in many
nonlinear models, such as Linton (1997). When dealing with nonlinear models, it is very com-
mon to have the bias expressions in terms of expectations and applying these expressions for
bias correction. At this point, it is important to state briefly the main differences between our
analysis and that of Linton. First of all, we generalize the finite-sample analysis of heteroskedas-
tic time series models considering a non-symmetric distribution of the errors. Furthermore, we

show that the block-diagonality of the information matrix does not hold in our case, which

®Iglesias and Phillips (2002) developed theoretical bias approximations for the MLEs of the parameters in an
ARCH(1) model.
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implies that there are new terms in the bias expressions of the estimators. This means that we

cannot use the results that appear in the literature from the analysis of the GARCH model.

Assumption 3.3.1 We assume that the errors have bounded J* moments, for some J > 6,
and we denote by k3 and k4 their third and fourth order cumulants, where the latter is

given by:
ke =F (24 — 3) .

Under the above assumptions, we are now able to present our Theorem which is useful for

the evaluation of the bias approximations of all estimators and also to construct the Edgeworth

expansions in this setting.

Theorem 3.3.1 Given that z; ~ iidD (0,1) and non-symmetric, and for i,j, k € {u, o, 0,~,5}
unless the parameter  is used seperately to underline the difference, the following moments

of the log-likelihood derivatives converge to finit limits as T — oo:

cij = 7B (Lij) = —37ij,
Cijk = %E (Lijk) —% (Tijk + Tikj + Tiki — Tijk)
cije = 1B (LijLe) = —1 [Tii-,j = (ke +2) (Tijh = Tigk)| 5

E(Lipp) =7 — % (Tip + 2T iy — Tpusipe)

o
5
=
S
Ni=

Cppp = %E (Lopp) = _% (37'11/17# - Ti) + 37y,

475 — (K4 + 2) (Tipp — Tipp)

)
2z zh h h
T T 27'2-7“ + 2k3 (2TW — Tw>

Cipp = %E (Liply) = _%

Cipg = 7B (Linly) = =5 {— (K4 +2) (Tipg — Tig) + Trgip + Q'fsfi@} :

E(Lupli) = — {_ (a4 2) (Tppi = Tippn) + Toguu + 4"037%} ;

Nl
AN

Cupyi =

— (K4 +2) (Tijp = Tigp) + 7o + 2750

Cijp = 7E (LijLy) = =5
+2k3 (27’% - TZ)

11



87 — (K +2) (T — Ty

+ 27’2h + 2K3 (37’ TZH)

=

Cpp,pp = %E (Luply) = — L
T i

where 7i = 734y B (he) , 7ij = 7 X1 B (hesiheg) s Tijoe = 7 -1 B (heiijhe)
and Tijk = % Zthl E (ht;ihe;jhig)-

=_ 15T 1 = _ 137 1z .
Also, T =7 4 F (ht)7 and T =7y, F (hthtﬂ)v

while T} 5 = TZ ZE [(22 = 1) hophyibeg) , 75 = £33 F (Zs\/%ht;iht;» ;

s<1
=7 Zt 1 ( htihe, u) and T}, = TZT E (\/%ht;i7u>.

Proof. Given in the Appendix. W

The basic approach to finding the bias approximations requires that we find expressions for
the ¢, ciji and cj ;. Let us first condider the case when the mean parameter is supposed to
be equal to zero and not estimated. With techniques of McCullagh (1986), the standardized
estimators, derived from choosing 6 to solve £; (w,u) = 0, for i € {«, 8,~, 5}, have the following

stochastic expansions®:

N g 1o iim o 1
\/T{goi —pit~—cZj+ ﬁ {c”c ZixZy —cc cm”cjankZm/Q} + Op T ) (6)

where

Zj = T71/2£j

and

p =T {Lj — E(Ljp)}

are evaluated at the true parameters and are jointly asymptotically normal. Raising pairs of
indices signifies components from the matrix inversion.

Taking expectations of the right-hand side in (6), we get:

R 1 g
E VTV {2 (n) - ¢}| ~ ﬁvicmcm {cjk + cju (ke +2) /4%,

5We make use of the summation convention, that is: ¢¥Z; = E c¢”Zj, in which repeated indices in an

expression are to be summed over.

12



where v is the 5 x 1 parameter vector. If k4 = 0, QM L equals M L and then the above formula

equals the one of Cox and Snell (1968), i.e.:

~ 1 1
E [\/TU' {P(p) — @}] ~ ﬁvicjckl {Cjk,z + 2Cjkl} .

Let us now consider the other case, when the mean parameter is unknown and estimated.

Hence, if we incorporate the effects of estimating p, the stochastic expansions take the following

form:

\/T{@i (1) — @i} — ﬁ{@z‘ (1) — i} =

1 g g
ﬁ {c”cklekZl — c”cklcm"cj ankZm/2} ,
where now 4,7, k,l € {a,0,v,5,n}. Taking expectations of the right-hand side, we find the

asymptotic bias of the estimators in this case.

In terms of the mean squared error, from (6) we have up to Op (%)
2 g
E VTU' {3 (1) — ¢} ~ —vic? (k4 +2) /2, (7)

which is the asymptotic variance. If we let the remainder to be of O (T*3/ 2), then the mean
squared error is again evaluated by (7), with the difference now that there would be added
terms of O (T*I). Of course, as T' — o0, the mean squared error approaches the asymptotic
variance. In what follows, we present the simulation results and discuss the bias correction of

all estimators.

3.4 Simulations

In this section we make a simulation exercise in order to check the adequacy of our theoretical
results and be able to proceed with the bias correction of the estimators. We draw a random
sample of T' = {750, 1500, 3000, 5000, 10000, 25000, 50000} observations and 500 observations
for initialization, under the assumption of normality. We make 50000 replications for sample
sizes up to 10000 and 300000 replications for 25000 and more observations, in order to decrease
the Monte Carlo error. The mean parameter is supposed to be equal to zero and hence is

not estimated, so the parameter vector is («,3,7v,6)’. We check the performance of the bias

13



correction mechanism for different sets of parameter values and we will present the results for
three sets, i.e. (0.1,0.9,0.7,—0.4), (—0.1,0.9,0.6,—0.2) and (0.5,0.5,0.8,—0.5). The first two
sets include values for the parameters that are close to what is observed from the financial data.
We multiply the bias by 7' and not /7, i.e. E (T (% — ¢)), as in this way we keep a constant
term in the bias expressions that is important to distinguish what happens when we increase
the sample size, as the next terms in the expressions will tend to zero, as T" — oc.

The bias correction mechanism is constructed under the specification of two methods. The
first one, called first-step correction, is the classical one, in which we estimate the model and we
retrieve the estimated parameters. Next, we compute the bias expressions by using the estimates
and we are then able to correct the bias of the estimators with the corresponding values of the
bias, i.e.

B =5 — wbias ().
T
Notice that there is nothing to prevent the case of ¢ being outside the admissible area (see also
Linton, 1997 as well as Iglesias and Linton, 2007). In such a case we throw away the random
sample and draw a new one.
The second method that we employ, called full-step correction, is a method proposed by

Arvanitis and Demos (2010), in which we solve an optimization problem of the form
1 2
min {@ — o — —=bias (gp)} .
© T

In this respect, this method is a multi-step maximization procedure, using numerical derivatives.
This justifies the name of the first method, which is the first step of the multi-step optimization
problem. In this way, the second method incorporates the constraints that are imposed on the
coefficients and as a consequence the corrected estimate of the EGARCH parameter cannot lie
outside the admissible region, i.e. the corrected beta will be less than one in absolute value.
Figures 1 and 2 represent the bias correction performance under the normality assumption.
For the first set of parameter values (Figure 1) we see that the bias correction works in all cases
and the corrected bias of the MLEs tend to zero, as the sample size increases. For Figure 2, the
bias correction represents some intervals in which it behaves well, especially for small sample
sizes. The case of the beta coeflicient is the most ideal in the sense that the bias of the MLE is

stabilized in the constant term of its expression, as 1" increases.
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When dropping the normality assumption, we run the simulations under the hypothesis of
mixture of normals for standardized random variables (see Figure 3 and Figure 4). In fact, the
errors are drawn from a normal distribution with mean 0.01 and variance 9, with probability
0.1, and with probability 0.9 they are drawn from a normal distribution with mean —0.001
and variance 0.111. In this way, the theoretical mean and variance of the distribution are 0
and 1, respectively. Notice that with these hyperparameter values the theoretical skewness and
kurtosis of the random errors are 0.0266 and 24.334 respectively, approximately matching the
sample counterparts of most financial data.

Figures 3 and 4 represent two sets of parameter values, in which we have selected different
values of the beta coefficient, i.e. low (0.5) and high (0.9). Figure 1 (under normality) and
Figure 4 (under mixture of normals) are constructed under the same set of parameter values
and it is interesting to compare between the two cases. As in the case of normality, we see
that in Figure 4 the bias correction of the estimators works in most cases and the results are
satisfactory. In Figure 3, the corrected bias is again under the bias of the MLEs, indicating that

the theoretical results correct the bias, under the assumptions made.

Figure 1: First- and full-step bias-correction
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all graphs)
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Figure 2: First- and full-step bias-correction
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Figure 3: First- and full-step bias-correction
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Figure 4: First- and full-step bias-correction
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4 Conclusions

In this paper we study the asymptotic properties of the MLEs and QMLEs in the EGARCH(1, 1)
model of Nelson (1991). In the current context, we present analytic derivatives both of the log-
likelihood and the log-variance functions and also their expected values. We further develop
theoretical bias approximations for the estimators of the model parameters and we find condi-
tions for the second-order stationarity of the log-variance derivatives. The theoretical results in
this paper can be used to bias-correct the QMLESs in practice directly. In small or moderate-
sized samples, a bias correction could be appreciable and it is helpful to have a rough estimate
of its size.

The next steps in our research are to compute the approximate skewness of the estimators
and hence the Edgeworth-type distributions. An interesting topic would be the investigation of
necessary and sufficient conditions for the existence and validity of the Edgeworth approxima-

tions in this context. These issues are an ongoing research.
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5 Appendix

A. Proof of the unconditional variance

We write the variance equation as follows:

In(hy) = a* +0 Z Blag1-i+7 Z B (|zt-1-i| — E|ze-1-4]) ,

i=0 i=0
where o* = ﬁ Taking the expectation of the exponential of In (h;) we have:
Eexp(Inh) = eXp (a*) Eexp [Z?io (eﬁizt—l—i + 98" (|ze-1-4| — E ’Zt—l—i’))] =

= exp (@ EHexp 08" 21— + 48" (|21—1i] — Elz—1i)] =

z 0

= exp (a HEexp 0B 21— + 1B (|z1-1-i| — B |21-1-4])]
0

Now, .

> . .

[[Eexp [08°2-1-i + 48" (l2t-1-il — E|z1-4])] =

i=0

[e.9]

= HGXP (—vE |z1—1-4| B) Eexp [08°ze—1—i + vB" |ze—1-i]] =

o
= exp <—'Y1ET|;‘> HEeXp [eﬁithfi + 78 ‘thlfi”
i=0

K1 = Qﬂl
7B’

K2

Eexp [Q,Biz + 78" 2] Eexp [/ilz + ko |z]] = = [ exp (k12 + K2 |2 — 522) dz =

: )

( )
— \/%fgoo ex (—% (—2 (k1 — ko) 2z + 22 £ (k1 — m2)2)) dz

( (K1 + K2) 2 + 22 :|:(I€1+H2)2)>d

1

2
= O exp (=4 (2 = (1 — k2))?) dz
oD (=5 (2 = (k1 + 52))°)
- ggr@ exp (—u?) dutexp ((E452) L [0 exp (— L) du =
1 — k2) + exp (S50 (1 @ (= (k1 + 1)) =
— (K1 = K2)) + exp (M> © (k1 + Kp) =
G 0 (5 (v 0) +exp (S ) @ (6 (7 +0))

£

=
[\ ‘

X

n

e

N N

M\H
3
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7 2 7 2 . .
where I' = ,82(++0)7 A = 52(%7 A=p"(v+6) and B = "(y—0), and ®(+) is the
cumulative distribution function of the standard normal distribution.

Therefore,

00 5%(’}/—9)2 ;
— exp | —5—— () 13 7_0
Besxp (qlnhy) = p<vEH) (P52 @ (5 (+ - )

1-6 i—0 \ +exp (L(W;")Z) P (B (v+0))
— exp (1) [ (exp (A) @ (- B) + oxp (T) @ (4)
i=0
- b,
where U = %%M.I

B. Ezxpected values of the log-likelihood derivatives
The expected values of all first order derivatives are equal to zero.

Second order derivatives:

For i,j € {a,0,v, 5},

T
E(Lij) = —§E(ht;iht;j),
T
E(Euj) = _§E(ht;uht;j)7
1 T
E(L,,) = -TE <ht> =SB (hy) -

Third order derivatives:
For i € {a,0,v,8},
T
E (L) = —§E (Bhesihaii — hf’;i) ,

fOI' /L S {047‘9:%5}aj S {a797’y:/8):u’}7
T 2
E(Liij) = —5F (htsjhuii — hiiheg + 2heiheis)
for Z?j e {a70777ﬁ}7k E {a707fy7/37/'1/}7

T
E(Lijk) = —§E (ht;jhei e 4 hekhei g + heibeg e — hegheibe, )
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fOI"iG {0407’)/)5}7]- € {,LL},

hy

T 1
E(Lijj) = —5F (htn'ht;j,j + 2hg;jhi g — hay (ht;j)2> +TE <ht;i> ,

for j € {n},

In this Appendix we make a list of the results that are needed for the bias approximations.

Please note that the last Appendix should be studied first in order to be familiarized with the

symbols used.

First, provided that |8 4+ 20 + 172 — yBE |2| + 30vE (2 |2[)| < 1, the expected values of

T 1
E(Ljj5) = —5F (3hujhujj — hiy) + TE <3htht;j> -

all second order derivatives are:

10.

11.

12.

13.

- E(Lpg) =

E (L/J"v) =

- E(Lpo) =
- E ([ﬂu) =
E (ﬁw) = -

E (Eev) =

T 1+2(B—37E|2|) E;a
2 1—(62—1—%02—&—%72—76E\z|+%6'yE(z\z|))

T E(ln(ht—l))+(/3—%’YE|Z|)LE;D¢+(/B_%’YE|Z|)E;B
2 1-(B2+502+ 172 —BE|2|+ 3 0vE(2]2)))

T —3[EGl)+y(1-E?|2]) | Bia
2 1-(B*+36°+ 172 —1BE|2|+370E(z|2)))

T —3[0+7E(z[2)] E;a
2 1-(B2+50°+ 17> —BE|z|+3510E(z|2]))

~(O-+7EDE( 7 ) +(B-31Elz]) By t0(8— Bz A~ BELE_y B
1—(82+162+ 172 —VBE|2[+370E(2|2]))

v

T E(In%(hs1))+2(B—37l2c-1|)LE;s
2 1-(B%+ 10+ 172 —BE|z|+3510E(z|2]))

T (ﬁ*%'YEM)LEW*%[GE(Z|Z|)+'Y(1*E2|Z‘)]E;5
2 1-(B+30°+ 172 -1BE|2|+370E(zl2)))

T —30+vE (2B +(8—5vE|z|) LBy

2 1-(B2+50°+ 572 —BE|z|+370E(z(2)))

(O4EDLE_ ) +100/EIZ|-8)~ A EIE_y oo (3 1yBI=I)LE,,
1—(,82—&—%624-i'yz—'y,BE|z\+%79E(z|z\))

_T
2

T 1-E?|2|
2 1-(B2+ 502+ 17> —VBE|2|+310E(2|2]))

T E(z|z])
2 1-(B*+36°+ 172 —1BE|2|+370E(z|2)))

VL B( ) 30BN+ (1-E2 (=) | By (08— Elz) +1BEDE_ ) Ery
2 1

— (824102 + 172 —BE|2|+370E(2]2]))

1

r
2 1—(B3+30°+ 572 —BE|2|+310E(z2)))
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~ 5O+ E(=12) b))~ Bl| B( 7 ) HE(VBl2|-B) By ELE_y By

__T
14 B (L) = =3 1—(83+410°+ 172 —BE|z[+ 370E(2|2]))

(92+72+279E1)E ( \/hltj> —2(0(B—vE|z|)+YBEIE _ i E,,

.n
1—(B%+562+ 172 —BE|2|+3+0E(z|2]))

15. E(Lyu) = —TE (h%) _

Nl

Second, the expected values of the third order derivatives are:

1. E(Laaa) = —5E (3 (htyahtan) — hiy)

2. E(Laap) = —2E (htghiasa — Biohis + 2hiahia,s)

3. F (['aow) = _%E (htwht;ma - h?;ahtw + th;aht;aﬁ)

4. E(Lano) = —ZE (hyohtsaa — hiohuo + 2hiahian)

5. B (ﬁuaa) = _%E (ht;a,aht;u +2 (ht;aht;u7a> - h%;aht;u)

6. B (Lss0) = —5F (huahips + 2hushispa — hsahls)

7. E(Lapy) = _%E (htghtsay + htyhta,s + hiahesy — heghiahy)

8. E(Laps) = =5 E (htphtiao + htahipo + hiohia s — braheshte)

9. E (['uﬁa) = _%E (ht;aht;ﬁﬂu + heg.ahiy + heghipa — ht;aht;ﬁht;u)
10. E (['uﬁa) = _%E (ht;aht;ﬁ,u + higahiy + highipa — ht;aht;ﬁht;u)
11. E(Layy) = =5 E (htyahtyy g + 2heyhisan — heahis)
12. E(Loyg) = — S E (hiphsary + by g + htahiy o — brahiybip)
13. B (an) = _%E (ht;aht;%u — hahey by + Dy ol + htwht;a,u)
14. B (Lag) = =3B (hisahing + 2huohisas — hisahZy)
15. E (Lagu) = — 2 E (htsahio, — hisabuohiy + hio.ohin + hiohto)
16. E (['Oéuu) = _%E (ht;aht;%u + th;uht;a,u - ht;a (ht;u)Z) +TE (h%ht;a)
17. B (Lags) = — 5B (3hushus,s — EAY )

18. B (Lspy) = _%E (2ht;ﬁht;%ﬂ + heyhipp — h?;,ahtw)
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19. B (Lag) = ~ 5B (2hushio,s + hiohuip,s — hheo)

20. B (Lppu) = —5% (2E (ht;phtpp) + B (heppht) — E (h?;ﬁht;u>>

21. E(Lpyy) = _%E (ht;ﬁht;%v + 2l hipy — ht;ﬁh%;w)

22. B (Lpyo) = =5 E (hiohupy + hiyhepo + hyshisy o — heghiyheo)

23. E(Lpyu) = _%E (htsphiy i = Tl sy + Ty gl + By hisg )

24. E(Lpgg) = — 5 E (ht;ﬁht;e,e + 2hiohep0 — ht;/ﬂi@)

25. E(Lpop) = — 2 E (higheou — hegheohey + hio ghiy + heohes)

26. E (Euw) = *%E (ht;ﬁht;u,u + 2hephpp — hayp (ht;u)2> +TE (h%ht;6>

27. E(Lyyy) = —%E (3 (Rt htsy ) = (h?;’y))

28. E(Lyy0) = — 5 E (huohusyy + 2hinhiyo — hi heo)

29. E(Lyyu) = —5E (2huyhusypn — hE by + hagy sy

30. B (Lao) = ~ 5B (hishuoo + 2hohi o — hinhZy)

31 E (LWM) = _%E (htwht;(m — hiyheohey + P by + ht;eht;%u)

32 B (L) = =3B (bt hty + 2hephiyn = hinh2,) + TE (i)

33. E (Lopy) = —LE (2ht;9ht;9,u — B2 ghuy + ht;g,ght;u)

34. E (Lop) = —LE (huphiyup + 2heuhig, — highl,) + TE (h%ht;g)

35. B (Lys) = ~ 5B (Bhyuhigs — W) + TE (3 b ) . W
C. Ezxpected values of the log-variance derivatives
In the current Appendix, we present some of the results for the expected values of the log-
variance derivatives and more specifically those that are needed for the evaluation of some of
the expected values of the third order log-likelihood derivatives of the previous Appendix, that
is:

Assuming first |62 + 502 + 372 —BE |z| + 310E (= |2])] < 1 and

8%+ 366% — 30°E28 — 3y (B2E|2| - BOE (z|2)) + 162 |21 ) + 342 (8 — J0E2%) — 19°B 2P| <

1, we have:
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. E(h,) =

E (ht;aht;a,a)

IVBl2| B2+ (3 BBl - 192 - 102~ 07 B(22]))

E( 3 +(8—37El2]) Eia.a

1—(B2+ 10>+ 172 —1BE|z[+370E(2|2]))

1+3(ﬂ—l'yE| I) a+3(ﬁ2+1924—l’YQ—’YBE|Z\+%79E(Z\Z|))E(;a)2

t;a

. E(hyghiyan) =

. E (ht;aht;a,ﬁ) =

E (htwht;avoé)

E (ht;9 ht;a,a)

E (h%;aht;e) =

E (ht;aht;aﬂ)

E (ht;ahip.8)

E (ht;ﬁht;a,ﬁ) =
E (ht;ﬁht;aﬁ) =
E (ht;ﬁht;a,e) =

E (ht;aht;ﬁ,ﬁ) =

E (ht;(?ht;a,ﬂ)

E (ht;aht;%v) -

E (ht;aht;'yﬁ)

K (ht;aht;e,e) =
E (ht;Ght;oz,G) =

E (hi,ghip,p) =

1-[83+2 802 10° 23— 3+(B2E|2|—BOE(2|2]) + 102 E|2[° )+

472(57

L0E=*)~ 10 BIAT]

IVB[2|LE 2+ (874 502+ 192 B E|2|+ 290E(2121)) B, o 2 5+ (B~ 37 El2] ) LE

Eia+(B—37EIz|) B, 2+ 5VEI2| By s+ (1 BYE|2l— §

1—(B2+ 10>+ 172 —1BE|z[+370E(2|2]))

72—%02—ié)vE(z\zD)E(;aﬂ;5+(5—%7E|Z‘)E

TOEGI)+(1-El2)IE( 42 3 0B (1) +v(1- El2)] Bia,at (3 8vEl2l - §7°

1 (87 207+ T2 BE[|+ T10E(zI=)

—%GQ—iG'yE(z\zD)E

G2y

L0ty E(2|2) By, 2~ SO0V E (1)) By o+ (3 BYEI

_1.2_1p2
57 30

—(B+10°+ 572 —VBE|2|+ 310E([2]))

—iQVE(Z‘zD)E(;a)?;e

—[04+7E(2|2])] Ba+(370E| 21> 08+ 1 (0 +7% ) B2~ By
2 4

E(z|z2]))

—(B2+56%+ 372 —BE|2|+1v0E(z2|2]))

B2 +2(8+502+ 172

~VBE|2|+140E(2]2]) ) E,as0

—[B+2862—10°E23—3+(B2E|2|—BOE(2|2))+ 102 B|2[*) + 312 (8- 10 E2%) — 113 B2 ]

LY E|2| oo+ (B— $7E|21) B0+ 047 B (12D B 2+ (3 B1E 2|~ 372 §6° = 207 E(212])) By 2,

—(B+10°+ 172 —VBE|2|+ 310E(zl2]))

TVE|2|B g2 +2F;6+ (8- 57El2)) Bis, 5+2(8— 37EI2l) Byt (3 8712011 - §77— §0°— 109 E(22])) B o 2

—(B2+10%+ 1421 BE[2[+110E(2[2]))

LE;a‘f'(ﬁ_%7E|z|)E;a;B+%7E|Z‘LE;a;B+(iﬁwzt—l|_é72_%92_%QWE(Z‘ZD)EW(;B)Q+<’B_%7E|Z‘)LE;Q’5
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1—(B%+ 102+ 172 —yBE|2|+310E(2[2]))

10E(zz)~37) Eia i+ 1 (B1El2l = 372~ 10> —01E(zl2)) Braspis

1VEIZ|LE a0 +(B—37E|2|) LE;a,0+ 3 (0+7E(212]) Biass+3 (BYEl 2~

1—(ﬁ2+%624—%72—'y,BE|Z|+%WHE(Z|ZD)

A2 =262 —40E(2|2])) B8,

1—(B2+562+ 572 —BE|2|+3v0E(z|2]))

IVE 12| Bipo+(8—57E2l) Eypo+(8—37Elz]) Biasot § (O+7E(2|2)) Biasp+ 5 (B7El2| — 37

*%92*79E(Z‘Z|))E;a;5;0

LO+HVE(12) By — 3 O+ E(2121) B, o+ (B 3712 Buaso+ (3 BV E2| - 262 — 142

1=(B%+ 307+ 172 —1BE|2[+370E(2|2]))

—$19E(2|2))) Eaip0

—(B+30°+ 372 —1BE|2|+ 310 E(2[2]))

i”/E‘Z|E(;»y)2+(5—%7E|2‘)E;'y,'y_(5E|z|_%7_%9E(Z|Z‘))E4aw+%(B7E‘Z|_%72

2 0B (121)) B o 2

1—(B2+ 102+ 172 —1BE|2[+370E(2|2]))

_%(5E\Z|_%GE(Z|Z|)_%’Y>E;Q;9+%(9+7E(Z‘Z|))E;a;'y+%(57E|Z|_%72_%GZ_VQE(ZM))E;Q;W;@

— (B 107+ T2 BE|z|+ L10E(2]2]))

IVBI2|E g 2+ (8= $El2)) Bo,o+ § (0+7E(=]2D) Braso+ 3 (BVEI2| = 37— §62 —10E(2[2]) ) E o )2

—(B2+10%+ 372 —1BE|z+370E(z(2]))

— 5Bt § (O17E(2120)) Byaio =5 (047 B(z[2D) Bua 0§ (41 EZ121) Braso+ § (B1E|2|= 377 §0° 0B (2120) B, )2

—(B2+30°+ 572 —VBE|2|+510E(2l2]))

TVEIZ|LE 52 +2LE, g+ (B—57E|2| ) LE 5,5+ 2(B— 57E|21) E( 52+ 3 (87 B2l = 37"~ 56° —10B(2l2) E )

1= (B 307+ 12 —B L=+ 110B el

L343(8—37E|2|) L’ Eg+3(82+ 36+ 7% —vBE|2|+ 370 B (2]2]) ) LE , 52

E (hgﬁ> =

1-[B*+3 862 — 103 E23—34(B2 E|2|—BOE(2|2])+ 1 02 El2|* )+ 342
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1(O+VE(2|21)) B 5)2— 5 0+ E(2|2]) E;p 6+ (BWE\ZI—%WQ—%92—70E(z\z|))E(;ﬂ)2;9+2(6—%vElz\)E;a;e
1—(B%+560%+ 172 —VBE|2|+3v0E(z|2]))

21 B (hiphtp,5) =

iVEIZ|ILE g2 +(8—57E|2|)LE 0,0+ 5 (0+7E(2|2))) E;p0+ 1 (BvE|2|— 372 = 36 —10E(2|2))) E 592
1—(B24+ 162+ 172 —VBE|z[+370E(2|2]))

22. E (ht,ghio0) =

E|z\3—3E\z|+2E3|z\)+3[(%92+%72)(E\z|3—E\z|)—vﬁ(l—E2|z|)—59E(z|z\)+%70(Ez3—E|z\E(z|z\))]E(W)2
1-[°+3862— 1 0° E23— 3~(B2 E|2|-BOE(2|2])+ 102 E|2|* )+ 342 (B— 10 E23) — S 73 E| 2|

23. E(h},) = (

L0+ BGID)E 2~ 0+ BGID) B+ (BBl 22— 3021012 By 2,
1—(82+ 107+ 172 —1BE|z[+370E(2|2]))

24. £ (ht;(?ht;%v) =

Y041 BGI)E 2+ (BBl v~ 362 10EGID)E 2,y
1— (824 10>+ 172 —1BE|z[+370E(2|2]))

25. E (heyhiy ) =

Ezi”—2E|Z|E(z|z\)+[9(5713|z|3—ﬁ)+§(92ﬂ?)Ez?’—ﬁayE(z\zD]E(W)2
1—[53—1—%,6’62—éQSEz?’—%7(,6’2E|z|—BQE(z\z|)+i92E\z|3)+%72 (5—%9Ez3>—%73E\z|3]

26. E (hi hee) =

i[6E(z|z|)+7(1—E2\z|>]E(;9)2—% [9E(z|z\)+7(1—E2\z|)]E;g7g+i(B'yE|z\—%'\/2—%92—79E(z|z\))Ew(;9)2
1— (82430 + 372 —1BE|z|+3v0E(2|2]))

27. E (hyyhige) =

1 (BE|zl~ J0B(2|z)~ 37) B2+ 3 (BYBlel— 342~ 20*A0E(=12))E, o2

28. B (huohu0) = 1-(82+162+ 17— BE|z|+ LA0E(lz))

.8 (i) - G B e
; - 380>~ 407 Ez3—3~(BBlz|—-BOE(2|2])+ 1 0° B|z[° )+ 372 (8- 30E23) — 372 Bl
The whole results are available on demand from the corresponding author.
D. Ezxpected values of cross products of the log-likelihood derivatives
In this Appendix, we present the expected values of cross-products of the log-likelihood deriva-
tives. To conserve space, we present only some indicative. That is,

1. B (LaLaa) = =3 [N E (22 — 1) heahiahia] — (k1 +2) Y01 E (hiahian — hig)

L s<t
Z ZE [(Zg - 1) hS;uht;aht;u] - (“4 + 2) Z?:l E (ht;aht;a,u - ht;uhtz;a)

2. #E(LoaLop)=—% | < ., o
+203 01 E (Feha)

PP [(23 - 1) hs;ah%;u] — (ks +2) 25:1 b (ht;aht;u,u - ht;ah%;u)

3. FE(LaLlyy) = —7 | =<t .
ks Y B (ol

. . > tZE [(Zg - 1) hS;uh?;a] — (ks +2) Z?:l b (ht;uht;a,a - ht;uhtz;a)
4 AE(LuLos) =1 | <
+22 ZE (zSJ%h%;a) + 2H3 Zrtrzl E (ﬁh?;a - \/%ht;a,a)

s<t J
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YO E [(23 - 1) hs;nht;aht;u] — (ks +2) Zle E (ht;uht;mu - ht;ahiu)

s<t

d. %E (E,uﬁa,u) = _% +2Z ZE zs—=hy, ahtu + 2K3 Zt 1 %ht;aht;u - tht;a,u
\/> Vht Vht

s<t
+4 Zt:l E (h%ht;a)

Z<;E [(Zg - 1) hS;Mh%;u] - (’%4 + 2) E?:l E (ht;#ht;ﬂ:ﬂ - h?;u)

6. 4B (Luli) = —5 | 120 SOF (st ) + 268 Sy B (b, — i)

s<t
+83, E <h%ht;u>

At this point, we should note that these results differ from those in the paper of Linton [15],
due to the fact that we assume non-symmetric distribution of the errors and also none of these
expressions are zero, since the block-diagonality of the information matrix in our case that we
study the EGARCH(1, 1) model does not hold.

Analytic proof of the first result is given as follows:

1< 1< 1<
ﬁaﬁaa — 52( _1 hta<22 _1 htaa_*z tZ(ht;a)2>

2
t=1 t=1 t=1
1 T T T T
- ZZ(zt—l)thZ( 1) haa = 7 3 (38 = 1) hia Y 2Phi,
t=1 t=1 t=1 t=1
1o 2 1 o d
= 12 (=) heahsao+ 7D (5 =) hea D (52 =1) hsoa
t=1 t=1 s=t+1
1 T t—1
+1 Z (Zt - 1) ht;a Z (23 - 1) hs,oz,a
t=1 s=1
1 T 1 T T 1 T t—1
-7 Z (27 — 1) 223, Z (27 — 1) hysa Z 22h2, — 1 Z (zt2 —1) hto szhfa
t=1 t=1 s=t+1 t=1 s=1
Hence
T 2 1
E(LoLan) = (“‘f) [E (htyahtan) — E (hdy)] — ZEZ > (22— 1) 220} g hea
s<t
where

hio =1+ (B — 3021 — 37 |2-1]) ht—1;0 and hio=1+2(8— 2021 — 37 |z-1]) hi—t,a +

2
(5 - %ta—l - %’Y ’Zt—l\) h?—l;a‘
Let
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hitka = 14(8 = 502001 — 37 |2e1k1]) hegr-10 and b7y = 142 (8 = 3020181 — 57 [204k-1]) Pork-1.0t

(8 = 8021001 — 37 |zsn1]) P2 iy
Hence,
E [(z,? —1) hf%;aht;a} -
_E [(th —1) [hm +2(8 = L0201 — 2y |2rekc1]) heskoriahia + (B — 202001 — 2 |2ren]) h§+k_1;aht;aﬂ _
= (B—=37E|2]) B (28 = 1) hisi-t0hua+ 87+ 1 (07 +72) = BYE 2] + 500E (2 |2])] E (27 — 1) b p_ 1.0 Ptia
k=1 B((F 1) Byyahee] = B[ (2~ 1) [ho +2(8— 302 — by lzad) B+ (8~ 302 — by []) o] | =
=28 [ (22 1) (8- 302 — 37 12)] Bhdo + B | (2 — 1) (8 - 302 — §v124])°] BB

Hence,

1 1 =2
B~ 1) Biwatie] "2 = (8- 57E141) (0852 4+ (B ~ BRI)] (8- 508 11)  End,

1 1
+ [/32 + 1 (02 + 72) — ByE |z| + QQVE (z |z|)} E (th — 1) h?—i—k—l;aht;a'

Set: A = — (B — %7E|z|) [0Ez3 +y (E|z|3 - F \z|)} Eh%a and C = (% + i (92 +’72) -
By |2] + Y6 (=2]).
We have that: E [(th — 1) h%+k;aht§a:| =y (6 — %WE |,z|)k72 +CE (zt2 — 1) ht2+k71;aht;a‘
By repeating substitution, E [(zt2 - 1) h152+k;aht;a] = [(B —37E |z])k_2 +C (8- 3E |z|)k_3 + ..+ C’k_ﬂ
+C*E (2 — 1) hiy oo

This formula can be written as:

2 k>1 , CF1—(8—1yE|z])""
E|:( B )ht+kaht§a:| = A C_(/B_;YEM)

Consequently,
CF-1— (8- 1yEl))"
O e
+CF L 2B (2~ 1) (8- 302 — dy|al)] BRZo + B (23 = 1) (8- 302 — 3y |=])*] B,
where

2E [(22 = 1) (B — 30z — 37v|2])] Ehi,+E [(z? —1) (B— 302 — 3~ \ztl)ﬂ Eh}, =

1
+ C*1E (22 — 1) hi, 1. ohta.

k>1

A

l 92+ 2 E 4_1 _ QE 3
S T Tt B e Lot O
+p5v (E|Z| - E|Z! ) 19y (E (3 2]) — E (z]2]))
Hence we have E ZtT D Sy ( — 1) 22h2,h BTy T2 1) N2 e =
T—t (B-1yE)2))" = 1
Z Zk lA _(B_E’YELZD +C A

i (02 + 72) (Ez4 — 1) — BOEZ3

where == (0829 (2 (eF) = EV)) EMat| 1 1) 4 (8. ) Be12D)

Eh},.

28



T ~t-1 A T—1~T—t rk—
Hence, B35, 5>, (23 — 1) Ztthz;ahs;a = (CW + A> =1 2ot CF7

A T—-1T-t 1 k-1
_C*(ﬁ*%’YE\ZD t=1 k=1 (6 - §7E ’z’) =

. _ A T A T .
...(keeping only terms of order T)= (C(ﬁé'yElz) + A) T-C = (3= 1yB=)) 1- (3L El]) pro

vided that |C| < 1 and |8 — vE |2|| < 1. Hence

T t-1

A 1 1 A
E 22— 1) 22h2 hee = T +A —
;;( ) 2thiahs (C—(ﬁ—évEIZI)l—C 1-C C—(B=gyEl2)1-(8
A

A
=T aa-p-hem) -

+0(1)

where A = — (8= 39E|2)) [0B22 + 4 (B2 - B|2|)| ER3, and € = B2+ § (62 +17) -
BYE|2| + L0yE (z]2]), A = — (9Ez3 +y (E (\2\3) —E |z|>> ERZ,

(0 +7?) (Bz* —1) — BOEZ?
+By (E 2| - E yz|3) + 107 (B (3 ]2]) — E(2]2))
E. Proof of the Theorem

+ Eh},. m

The proof comes immediately from the results of Appendiz B and Appendiz D. R

F. The log-variance derivatives
In this Appendix we present the expressions of the log-variance derivatives, in a form useful to

explore their properties.

1 1
ht;a =1 + ﬁ - 7021‘,71 - 37 |Zt71| htfl;a
2 2
1 1 1 1
hi;o,0 = <492t1 + 17 |Zt1) h?_l;a + (6 - 5927&71 —37 |Zt1|> hi—1:0,a
1 1 1 1
hi.a.3 = ht—1;0 + Zeztﬂ + 17 |ze—1] ) hi—1;0h—1,8+ | B — 59%71 — 37 |zt—1] | ht—1;0,3
1 1 1 1 1
oy = —3 |ze—1| ht—1;0+ 1921571 + 17 |ze—1| ) ht—1;0he—1.4+ | B — 59%71 -3 |2e—1] ) hi—1;0,4

1 1 1 1 1
hio0 = _§Zt71htfl;a + <492t1 + 17 |Zt1\) hi—1;0hi—1,0 + (5 - 592’#1 —37 |Zt1!> ht—1.0.6
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1
hi—1

1 1
+ (5 - 5‘92&71 - 57 |Zt1|> ht—tsa.u

1 1
htop = 3 0+~ (2z—1>0) — I (2t—1<0)]) hi—1,a + 1 (Ozi—1 + v |2t-1]) hi—1;0hi—1;

1 1
h,p = In (ht—1) + </3 - 5'927&—1 - 57 |Zt—1|> hi—1,5

1 1 1 1
hip.8 = <492t—1 +17 !Zt—1|> hi 1,5+ 2016 + (5 — 50z-1— 357 |Zt—1!) hi—1;5,

1

1 1
1 (0zi—1 + v |zt=1]) ht—1,8ht—1,4+ (ﬁ — 59%4 — 37 |Zt1) hi—1,8~

1
ht;Bm = htfl;vfg |21 ht—l;ﬂ+

1 1 1 1
hi,go = ht—1;9_§zt71ht—1;6+1 (0zi—1 + v |2t-1]) he—1,8he—1,0+ (5 - 5921571 — 37 |Zt1|> hi—1.8,6

1 1 1
g = he-ru+ 5 (0 + 7L (2-120) = I (z-1<0)]) —==e—1; + | (021 + 7 [ze-1]) he-1;8he-150

Vi1

1 1
+ </8 - 5‘9275—1 37 |Zt—1|> hi—1;8.5

1 1
by = g (21-1) + <ﬁ - 59215—1 — 37 \Zt—1|> hi—1,y

1 1 1
bty y = — |21 hi—1y + 1 (Ozt—1 + v |2t-1]) h?fl;v + <5 - iezt—l - Q’Y |Zt—1|> ht—1;y~

1 1 1 1 1
hiy o = ) | 21| ht—l;e_izt—lht—lw‘f‘z (Ozi—1 + v |2t-1]) he—1,7he—1;0+ (5 - 592’1&—1 — 37 |Zt—1\) hi—1.,0
1 1 1
bty = = (z—120) = I (zt—1<0)] ——=—=+ 5 (0 + 7 [ (2t-1>0) — I (2t-1<0)]) ——=—=h1-1;4
by 2 hi—1

1 1 1 1
) |ze—1] hi—1:p + 1 (Ozi—1 + v |zt=1]) he—1,yhi—1; + <5 - 59215—1 — Q’Y |Zt—1|> P17,

1 1
hig = 21 + (ﬂ - 5021;—1 — 5’7 \Zt—1|> hi—1.0

1 1 1
higo = —zt—1hi—1.0 + 1 (0z-1 + 7| 2t-1]) hi_1.9 + (ﬁ - 59%—1 — 357 \Zt—1|) hi—1.0.0
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1
Dy, = -

1 1 1
+ (Oze—1 + v lzt-1]) he—1,0ht -1 + (5 - 59%71 — 37 |Zt1\> hi-1,0.5

1 1 1
+ - O+ (2e-120) — I (2t-1<0)]) ——=—=ht—10 — 52t-1ht—1,4
2 T 2

1

Vhi—1

hiyy = — (0 + v (zi—1>0) — I (z1—1<0)])

1 1
+ (5 - 592&—1 - 57 ‘Zt—1|> hi—1.

1 1
P = (0 + [ (z-1 2 0) = I (21 <0)]) Tht—l;u + 5 Oz1 +7]2e-1) hi 1
t—1

1 1
+ <5 — §0zt_1 — 5’7 !Zt—l) ht—l;uvu

G. FEzpected values of the first € second order log-variance derivatives
We assume |8 — vE |z|| < 1.

First order derivatives:

. 1
1. E(hyo) = 1B+ L7E(2])
2. Ehep) = igigmma-s)
3. E(hiy) =0
4. B (hyp) =0
9E7%
5 Ehiy) = —1—-ymm)

Second order derivatives:

5. B () = ALt
4. E (hyap) = %
5. B (hiau) = 3O+7EDE 4 Bt 37Ble|Boss

1-(B—17Elz])
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3VEIZ|E g2 +2E

6. E(htppg) = =(5- 1B

1 Blhyay) = Bt

8. B (hipa) = Tzt

0. B (hep) = E;u+;(9+'ylE;I()5__§j;:)}l'yEz|E;Bm
10 B (hyy, ) =~ 2

1—(B—1vE|z|)

11. E (hyzyg) = 0

*EIE_%+%(9+’YEI)E_%E;W*%EME;M*%’YEMEW;M

12. E (hgpyp) = A
13. E (hy;,0) = m
1 B gy = L Pt
IO Sl e

H. Symbols

The next symbols are used in the paper and more specifically in the expressions of the

expected values of all the derivatives.

E(In?(h)) = L* E(In(hy))®=L% etc.

E(hip) = Ep  E(hta) = Ea E (ht;ﬁ)z =Eg2 E (ht;u)3 =L ete.

E(n(ht)hty) = LE, E(In(h)hye)=LE, E(hsln(h))=LEg etc

B (hup (i) = L2Es E(n(h)h2y) = LE(y

E(exp(klnhy) hyg) = EyEps E(exp(klnh)hi) = ExEq
E (exp (klnhg) hyyy) = EpE,, etc.

E(exp (klnhe) hi,) = BuB,» E(exp(klnhy)hi,) = BB ,p ele.
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B (ht?ﬁ (ht?“)z) = Eig (52

E (htfl;/o’ht—l;u) = Eg, E (ht;ﬁht;a) =FEpa FE (ht;ﬁhtw) = Epiy

W

E (exp [In (hy)] hughey) = ExEipy ete

E(hipp)=Epu E(htpu) = Epu  ete

E(ht;#ht;#,#) = E;u;u,#

E(In(ht) epp) = LEgg

E(exp(kInhy) heyp) = EgEy

E (ht;ﬁht;ﬂﬂ) = E;B;ﬁﬁ

E (exp (kInh) In (he) hyyy) = ExLE,,

E (ht;ﬂht;u,u) = E;B;mu E (ht;uht;u,ﬁ) = E;u;u,ﬁ

E(exp (klnhy) hypp) = ExE,p
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