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Abstract

The precautionary principle (PP) applied to environmental policy stipulates that, in the pres-

ence of physical uncertainty, society must take take robust preventive action to guard against

worst-case outcomes. It follows that the higher the degree of uncertainty, the more aggressive

this preventive action should be. This normative maxim is explored in the case of a stylized dy-

namic model of pollution control under Knightian uncertainty. At time 0 a decisionmaker makes

a one-time investment in damage-control technology and subsequently decides on a desirable

dynamic emissions policy. Adopting the robust control framework of Hansen and Sargent [10],

we investigate optimal damage-control and mitigation policies. We show that optimal invest-

ment in damage control is always increasing in the degree of uncertainty, thus confirming the

conventional PP wisdom. Optimal mitigation decisions, however, need not always comport with

the PP and we provide analytical conditions that sway the relationship one way or the other.

This result is interesting when contrasted to a model with fixed damage-control technology, in

which it can be easily shown that a PP vis-a-vis mitigation unambiguously holds. We conduct

a set of numerical experiments to determine the sensitivity of our results to specific functional

forms of damage-control cost. We find that when the cost of damage-control technology is low

enough, damage-control investment and mitigation may act as substitutes and a PP with respect

to the latter can be unambiguously irrational.
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1 Introduction

A common thread running through much of environmental economics is a reliance on expected utility

as a means of performing cost-benefit analysis and, more broadly, as a normative criterion. Expected

utility theory has solid theoretical underpinnings, going back to the groundbreaking work of von

Neumann and Morgenstern [17] and Savage [21], and leads to tractable optimization problems.

However, in the case of environmental economics, its attractive qualities often come at a steep

price, primarily due to two basic factors: (a) the high structural uncertainty over the physics of

environmental phenomena which makes the assignment of precise probabilistic model structure

untenable, and (b) the high sensitivity of model outputs to seemingly ad hoc modeling assumptions

(for instance, the functional form of the chosen damage function and the value of the social discount

rate) on which often little consensus exists. As a result, separate models may arrive at dramatically

different policy recommendations, generating heated debate and much confusion over the magnitude

and timing of desirable policy.1

Weitzman [26] has forcefully made the above point in the context of climate-change economics.

Echoing the previous discussion, his main thesis is that the deep structural uncertainty surrounding

the science of climate change creates substantial problems for the application of classical cost-

benefit analysis. His assessment rests on the incontestable premise that climate scientists are far

from reaching consensus on the physical effects of unprecedented concentrations of GHGs in the

atmosphere. In particular, state-of-the-art climate science cannot rule out the occurrence of extreme

catastrophic events with nontrivial probability. In addition, Weitzman [27], as well as others (Sterner

and Persson [23]) argue that the results of established economic models (such as Nordhaus’ RICE

and DICE models [18]) are too sensitive to the precise way in which damages are mathematically

defined, which constitutes yet another modeling convention that cannot, at present, be scientifically

validated to an adequate degree of confidence. The main implication of this line of research is

that, in the presence of such extreme uncertainty, it is far from clear how one should model the

economic implications of climate change policy. Indeed, Weitzman himself admits to no grand

theoretical panacea for this impasse and merely concedes that his analysis calls, in a qualitative

sense, for extremely cautious policy-making. While the academic community has been reluctant to

embrace the totality of his analysis (Nordhaus [19]; Karp [13]), Weitzman’s work goes a long way

in illuminating the potential pitfalls of discounting the likelihood of extreme climatic events and

cavalierly insisting on a particular modeling framework.

Weitzman’s criticism notwithstanding, environmental policy needs to be predicated on a coher-

ent, if simplified, account of its economic implications. We focus our attention on the problem of

deep and structural uncertainty that is defined by an inability to posit precise probabilistic structure

to physical processes. This is close to the concept of uncertainty as introduced by Knight [15] to

represent a situation where there is ignorance, or not enough information, to assign probabilities to

1William Nordhaus’ DICE model [18] and the Stern Report [22] are prominent examples of this deep divergence.
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events. Knight argued that this deeper kind uncertainty is quite common in economic decision mak-

ing, and thus deserving of systematic study. Knightian uncertainty is contrasted to risk (measurable

or probabilistic uncertainty) where probabilities can be assigned to events and are summarized by

a subjective probability measure or a single Bayesian prior.

Inspired by the the work of Knight [15] and consequently Ellsberg [4], economic theorists

have questioned the classical expected utility framework and attempted to formally model pref-

erences in environments in which probabilistic beliefs are not of sufficiently high quality to generate

prior distributions. Klibanoff et al. [14] developed an axiomatic framework, the so-called “smooth

ambiguity” model, in which different degrees of aversion for uncertainty are explicitly parame-

terized in agents’ preferences. In their model an act f is preferred to an act g if and only if

Epφ(Eπu ◦ f) > Epφ(Eπu ◦ f), where u is a von Neumann Morgenstern utility function, φ an

increasing function, and p is a subjective second order probability over a set Π of probability mea-

sures π that the decisionmaker is willing to consider (E denotes the expectation operator). When

φ is concave the decisionmaker is said to be ambiguity averse. This theoretical framework has

been recently applied to environmental economics, particularly in issues related to climate change

(Traeger [24]; Gollier and Gierlinger [8]; Millner et al. [16]). However, despite its notable role in

the recent literature, the smooth ambiguity model seems to have more of a positive instead of a

normative focus, and questions about how to calibrate agents’ ambiguity aversion seem difficult to

address. An additional, potential, shortcoming of the general approach is that it relies on knowl-

edge of second-order probabilities (the distribution p) when, in some instances, such knowledge

may not be possible or justified. Moreover, in the context of applied work, the smooth ambiguity

model seems to pose nontrivial tractability challenges [16] so that only the utility of very simple,

exogenously given, policies can be computed.

Our Focus: Robust Control. In a seminal contribution, Gilboa and Schmeidler [7] developed

the axiomatic foundations of max-min expected utility, a substitute of classical expected utility for

economic environments featuring unknown risk. They argued that when the underlying uncertainty

of an economic system is not well understood, it is sensible, and axiomatically coherent, to opti-

mize over the worst-case outcome (i.e. the worst-case prior) that may conceivably occur. Doing

so guards against possible devastating losses in any possible state of the world and thus adds an

element of robustness to the decision-making process.2 Motivated by the very real possibility of

model misspecification in macroeconomics, Hansen and Sargent [10] and Hansen et al. [11] extend

Gilboa and Schmeidler’s insight to continuous-time dynamic optimization problems, introducing

the concept of robust control to economic environments. They show how standard dynamic pro-

gramming techniques can be modified to yield robust solutions to problems in which the underlying

2A simple way to think of this idea is the following: If a company is building an airplane, its primary aim is to

make sure the plane never malfunctions, no matter what (realistic) weather conditions it may face. This concern for

robustness trumps the possible suboptimality of the plane’s functions (speed, efficiency, to name a few) for what are

considered to be “average” conditions.
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stochastic nature of the model is not perfectly known. In their work, the degree to which a model is

misspecified is a model input, so that decision makers can test the sensitivity of a proposed solution

with respect to the model’s presumed uncertainty. Eschewing complex formal characterizations of

their results similar to Klibanoff et al. [14], the focus of their robustness project is as much practical

as it is theoretical, if not more.

Finally, we should note that Chen and Epstein [2] and Epstein and Schneider [5] developed

a parallel approach to Hansen and Sargent’s robust control, which they refer to as the Recursive

Multiple Priors (RMP) model. Similarly inspired by Gilboa and Schmeidler, this framework differs

in subtle ways to robust control, primarily with regard to the set of restricted priors, and their

evolution over time. An additional substantive difference is that while robust control provides

a method of computing a max-min solution, recursive multiple priors seem to function primarily

as a means of comparing the minimum utility of given policies.3 A recent application of RMP in

environmental economics can be found in Asano [1], who studies the optimal timing of environmental

policy under ambiguity. Asano’s analysis deals with stock pollutants and verifies the existence of

a precuationary principle (PP), in which an increase in ambiguity implies an earlier adoption of

policy.

Our contribution. In recent years the Hansen-Sargent framework has slowly begun to make its

way into environmental economics. Gonzales [9] applied robust control to the regulation of a stock

pollutant under multiplicative uncertainty (first introduced by Hoel and Karp [12]). Roseta-Palma

and Xepapadeas [20] studied water management under ambiguity, while Vardas and Xepapadeas [25]

did the same in the context of biodiversity management. Both these contributions focused on

determining the “cost of precaution,” that is, the decrease in utility that model misspecification

leads to.

The present work can be viewed as a continuation of this nascent literature in the context of

pollution control. Our paper expands the standard linear-quadratic model of Dockner and Van

Long [3] to allow for (a) model misspecification and (b) the possibility of investment in damage-

control technology that alleviates the effects of stock pollutant accumulation. In the context of

climate change, examples of this kind of damage-control investment can be found in (a) the con-

struction of large-scale civil engineering projects (b) substantial R & D in geoengineering and (c)

the construction of new urban environments to accommodate potential forced migration. We as-

sume the presence of a benevolent government (or, conversely, a group of cooperating countries in a

global pollution control problem) which makes a one-time investment in damage-control technology

at time 0, and subsequently decides on a desirable dynamic emissions policy. Adopting the Hansen-

Sargent robust control framework, we introduce Knightian uncertainty into the model and study

the effect of model misspecification on optimal mitigation and damage-control decisions. Unlike

the aforementioned contributions, we are able to completely characterize the worst-case pollution

3For more details the reader is referred to section 5 in Epstein and Schneider [5] and section 9 in Hansen et al. [11].
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accumulation process and attach a physically meaningful parameter (entropy bound) on the degree

of model misspecification.

Our primary focus is normative. Ex-ante, one would expect a certain kind of precautionary

principle (PP) to hold whereby, the greater the degree of uncertainty, the more the government would

choose to both mitigate and invest in damage control. Indeed, since higher uncertainty translates

to the possibility of higher damages from pollutant accumulation, such a finding would be, more or

less, congruent to our intuition.

But intuitive reasoning can often be (partially) wrong. We show that optimal investment in

damage control technology is always increasing in the degree of uncertainty, thus confirming the

conventional PP wisdom. Optimal mitigation decisions, however, need not always comport with

the PP and we provide analytical conditions that sway the relationship one way or the other. This

result is interesting when contrasted to a model without the possibility for damage control, in which

it can be easily shown that the PP unambiguously holds. Focusing on a tractable family of damage-

control cost functions, we conduct a set of numerical experiments to determine the sensitivity of our

results to specific functional forms. We find that when the cost of damage control is low enough,

damage-control investment and mitigation may act as substitutes and a PP with respect to the

latter can be unambiguously irrational.

Paper outline. The structure of the paper is as follows. Section 2 introduces the robust control

model, while Section 3 analyzes its solution for the case in which damage-control technology is fixed.

Section 4 introduces the possibility of damage-control investment and studies the applicability of a

PP with respect to both mitigation and damage control. Section 5 illustrates our theoretical results

with a numerical exercise that considers a set of different damage-control cost functions. Section 6

provides concluding remarks.

2 Robust Pollution Control

2.1 Introducing model misspecification and damage control technology

We employ the standard linear quadratic model of international pollution control analyzed by

Dockner and van Long [3]. Output is a function of emissions Q = F (E) , where F (·) is strictly

concave with F (0) = 0. Emissions contribute to the stock of a global pollutant P (t) . The evolution

of the pollution stock is described by the usual linear differential equation,

Ṗ (t) = E −mP (t) , P (0) = P0, (1)

where m > 0 reflects the environment’s self cleaning capacity. Utility, assuming constant population

normalized to one, is u (F (E))−D (P ) where D(P ) is a damage function and

u(F (E)) = −1

2
E2 +AE. (2)
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We modify the standard quadratic damage function D (P ) = sP 2, s > 0 by allowing the possibility

of investment in damage control. That is, at time 0, the government chooses a level of damage-

control technology z ∈ [0, 1] that alters the damage function in the following way

D(P, z) = z · sP 2. (3)

Thus, a lower level of z implies a higher investment in damage-control technology. The cost of

making an investment z is modeled by a strictly decreasing and convex function φ(z) : [0, 1] 7→ <+

that satisfies

φ(1) = 0, lim
z→0

φ(z) =∞, lim
z→0

φ′(z) = −∞.

Possible candidates for φ(z) include 1/zk − 1, for k > 0.

Risk is introduced to the standard model so that the stock of the pollutant accumulates ac-

cording to the diffusion process

dP (t) = (E −mP (t)) dt+ σdB(t), (4)

where {B(t) : t ≥ 0} is a Brownian motion on an underlying probabibility space (Ω,F , G) . Thus,

in a world without uncertainty, the government’s objective is to maximize welfare or

max
E

E

∫ ∞
0

e−ρt
[
AE − E2

2
− szP 2

]
dt

subject to: (4), P (0) = P0. (5)

Optimization problem (5) is referred to as the benchmark model.

If there were no fear of model misspecification solving the benchmark problem (5) would be

sufficient. As this is not the case, following Hansen and Sargent [10], model misspecification can be

reflected by a family of stochastic perturbations to the Brownian motion so that the probabilistic

structure implied by SDE (4) is distorted and the probability measure G is replaced by another Q.

The perturbed model is obtained by performing a change of measure and replacing B(t) in Eq. (4)

by

B̂(t) +

∫ t

0
v(s)ds, (6)

where {B̂(t) : t ≥ 0} is a Brownian motion and {v(t) : t ≥ 0} is a measurable drift distortion such

that v(t) = v(P (s) : s ≤ t). Thus, changes to the distribution of B(t) are parameterized as drift

distortions to a fixed Brownian motion {B̂(t) : t ≥ 0}. The distortions will be zero when v ≡ 0 and

the two measures G and Q coincide. Thus pollution dynamics under model misspecification can be

written as:

dP (t) = (E −mP (t) + σv(t)) dt+ σdB(t). (7)

As discussed in Hansen and Sargent [10], the discrepancy between the two measures G and Q is

measured through their relative entropy

R(Q) =

∫ ∞
0

e−ρt
1

2
EQ[v(t)2]dt, (8)
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where E denotes the expectation operator. To express the idea that even when the model is

misspecified the benchmark model remains a “good” approximation, the misspecification error is

constrained so that we only consider distorted probability measures Q such that

R(Q) =

∫ ∞
0

e−ρt
1

2
EQ[v(t)2]dt ≤ η <∞, (9)

where e−ρt is the appropriate discount factor. By modifying the value of η in (9) the decisionmaker

can control the degree of model misspecification he is willing to consider. In particular, if the

decisionmaker can use physical principles and time series analysis to formulate bounds on the

relative entropy of plausible probabilistic deviations from his benchmark model, these bounds can

be used to calibrate the parameter η.

2.2 Robust control

Under model misspecification benchmark pollution dynamics (4) are replaced by (7). Two robust

control problems can be associated with the solution to the misspecified problem: (a) a constraint

robust control problem which explicitly models a bound on relative entropy, and (b) a multiplier

robust control problem which incorporates a Lagrange multiplier to a relative entropy constraint.

Formally, the multiplier robust control problem is defined as

V (P0; θ, z) = max
E

min
v

E

∫ ∞
0

e−ρt
[
AE − E2

2
− szP 2 +

θv2

2

]
dt

subject to: (7), P (0) = P0, (10)

while the constraint robust control problem is given by

V (P0; η, z) = max
E

min
v

E

∫ ∞
0

e−ρt
[
AE − E2

2
− szP 2

]
dt

subject to: (7), (9), P (0) = P0. (11)

In both extremization problems, the distorting process vt is such that allowable measures Q

have finite entropy. In the constraint problem (11), the parameter η is the maximum expected

missepcification error that the decision-maker is willing to consider. In the multiplier problem (10),

the parameter θ can be interpreted as a Lagrangean multiplier associated with entropy constraint

R(Q) ≤ η. Our choice of θ lies in an interval (θ,+∞], where the lower bound θ is a breakdown

point beyond which it is fruitless to seek more robustness. This is because the minimizing agent is

sufficiently unconstrained so that he can push the criterion function to −∞ despite the best response

of the maximizing agent. Thus when θ < θ, robust control rules cannot be attained. On the other

hand when θ →∞ or, equivalently η = 0, there are no concerns about model misspecification and

the decision-maker may safely consider just the benchmark model.

The relationship between the two robust control problems is subtle. For instance, a particular

θ can be associated with no, or even multiple, η’s, while a particular η can map to multiple θ’s.4

4For details the reader is referred to Sections 5 and 7 in Hansen et al. [11].
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In what follows, we will focus on the multiplier problem (10). We do so because it is the more

analytically tractable problem of the problem of the two (Fleming and Souganidis [6]). However,

it is worth noting that, in contrast to previous contributions, our subsequent analysis is capable of

providing a connecting thread to the more intuitive, and physically meaningful, constraint formu-

lation. This is because we are able to explicitly characterize the worst-case perturbed probability

measure Q∗ of a given multiplier problem, to which we then apply Proposition 2 in Hansen and

Sargent [10], which establishes the following:

Proposition 1 (Prop. 2, Hansen and Sargent [10]) Suppose V is strictly decreasing in η, θ∗ ∈
(θ,+∞], and that there exists a solution E∗ and v∗ (corresponding to measure Q∗) to the multiplier

problem (10). Then, that E∗ also solves the constraint problem (11) for η = η∗ = R(Q∗).

3 Robust pollution control with fixed damage control technology

3.1 Problem solution

We initially focus on solving the multiplier problem (10) for a given level of damage control tech-

nology z ∈ [0, 1]. The Bellman-Isaacs condition (see Fleming and Souganidis [6]) is given by the

following equation:

ρV = max
E

min
v

{
AE − E2

2
− szP 2 +

θv2

2
+ VP (E −mP + σv) +

σ2

2
VPP

}
(12)

Minimizing first with respect to v, we obtain

v∗ = −σVP
θ
,

so that Eq. (12) becomes

ρV = max
E

{
AE − E2

2
− szP 2 + VP (E −mP ) +

σ2

2
VPP −

σ2

2θ
(VP )2

}
.

(13)

Maximizing with respect to E, we have

E∗ = A+ VP

so that the differential equation we need to solve is the following

ρV = A(A+ VP )− (A+ VP )2

2
− szP 2 + VP (A+ VP −mP ) +

σ2

2
VPP −

σ2

2θ
(VP )2.

(14)
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One can show that the value function satisfying (14) admits the following simple quadratic form5

V (P ; θ, z) = α1(θ, z)P
2 + α2(θ, z)P + α3(θ, z), (15)

where

α1(θ, z) =
2m+ ρ−

√
(2m+ ρ)2 + 8sz(1− σ2

θ )

4(1− σ2

θ )
≤ 0 (16)

α2(θ, z) =
2Aα1(θ, z)

2α1(θ, z)(
σ2

θ − 1) + ρ+m
≤ 0 (17)

α3(θ, z) =
1

ρ

[
A2 + α2(θ, z)A−

(A+ α2(θ, z))
2

2
+ α2(A+ α2(θ, z)) + σ2α1(θ, z)−

σ2

2θ
α2(θ, z)

2
]

=
1

ρ

[
A2

2
+ σ2α1(θ, z) + α2(θ, z)A+

α2(θ, z)
2

2
(1− σ2

θ
)

]
(18)

Max-min optimal emissions E∗ satisfy

E∗(P, θ, z) = A+ VP = A+ α2(θ, z) + 2α1(θ, z)P, (19)

and the worst-case misspecification v∗ is given by

v∗(P, θ, z) = −σVP
θ

= −σ
θ

(2α1(θ, z)P + α2(θ, z)). (20)

Before we proceed, we note certain properties regarding the curvature of the maxmin value function

V (P0, θ, z) = α1(θ, z)P
2
0 + α2(θ, z)P0 + α3(θ, z) that will be useful later on.

Lemma 1 The maxmin value function V (P ; θ, z) is

(a) Strictly increasing and concave in θ.

(b) Strictly decreasing and convex in z. Moreover, the partial derivative Vz is increasing in θ.

Proof. Part (a) can be establishished either through cumbersome differentiation, or by referring

to Section 5.2 of Hansen et al. [11] and noting that, in our case, Assumption 5.5 holds.

We now turn to part (b). Differentiating α1(θ, z) with respect to z, yields

∂

∂z
α1(θ, z) =

−s√
(2m+ ρ)2 + 8sz(1− σ2

θ )
< 0 (21)

which is clearly increasing in θ and z. Doing the same for α2(θ, z) we obtain

∂

∂z
α2(θ, z) =

2A(ρ+m) ∂∂zα1(θ, z)(
2α1(θ, z)(

σ2

θ − 1) + ρ+m

)2 =
2A(ρ+m) ∂∂zα1(θ, z)(

ρ
2 + 1

2

√
(2m+ ρ)2 + 8sz(1− σ2

θ )

)2 < 0, (22)

5To get rid of uninteresting mathematical complications, we only consider θ > σ2.
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which is, therefore, also increasing in θ and z. Turning to α3(θ, z)

∂

∂z
α3(θ, z) =

σ2

ρ

∂

∂z
α1(θ, z) +

∂
∂zα2(θ, z)

ρ

[
A+ α2(θ, z)(1−

σ2

θ
)

]
=

1

ρ

[
σ2

∂

∂z
α1(θ, z) +

∂

∂z
α2(θ, z)

2A(m+ ρ)

ρ+
√

(2m+ ρ)2 + 8sz(1− σ2

θ )

]
< 0, (23)

so we see that this too is negative and increasing in θ and z.

Eqs.(21) (22),and (23) further suggest that ∂
∂zV (θ, z, P0) does not diverge at z = 0 so that

lim
z→0

∂

∂z
V (θ, z, P0) > −∞. (24)

It is easy to see that α1(θ, z) and α2(θ, z) are negative and increasing in θ. Thus, Eq. (19) directly

suggests the presence of a precautionary principle in emission mitigation: the more uncertainty exists

over pollution dynamics, the more one chooses to mitigate emissions at a given pollution level P .

It is equally straightforward to notice that α1(θ, z) and α2(θ, z) are decreasing in z. Thus, given

a fixed level of misspecification θ, the less we invest in damage control technology, the more we

mitigate emissions. These results are not at all surprising.

3.2 Characterizing the worst-case pollution accumulation process

Eq. (20) specifies the worst-case misspecification of our model, given θ. Substituting it into our

robust pollution dynamics (7) yields

dP (t) =

(
E−σ

2

θ
α2(θ, z)︸ ︷︷ ︸

Effect 1

−
[
m+

2σ2

θ
α1(θ, z)︸ ︷︷ ︸

Effect 2

]
P (t)

)
dt+ σdB(t) (25)

Eq. (25) points to two pernicious effects of model misspecification. First, there now exists a constant

positive drift term (Effect 1) equal to

−σ
2

θ
α2(θ, z) > 0.

Second, the environment’s self-cleaning capacity has been reduced (Effect 2) by an amount

2σ2

θ
α1(θ, z) < 0.

As we saw earlier, the government reacts to this worst-case scenario by adopting an emissions

strategy E∗ given by Eq. (19). Thus, at optimality, the worst-case pollution process, call it P ∗, is

governed by the following stochastic differential equation

dP ∗(t) = (E∗ −mP ∗(t) + σ · v∗(t))dt+ σdB(t), (26)

10



which, given Eqs. (20) and (19), reduces to

dP ∗(t) = −
[
2α1(θ, z)(1−

σ2

θ
)−m

](
A+ α2(θ, z)(1− σ2

θ )

−[2α1(θ, z)(1− σ2

θ )−m]
− P ∗(t)

)
dt+ σdB(t)

(27)

where we note that

−
[
2α1(θ, z)(1−

σ2

θ
)−m

]
=

√
(2m+ ρ)2 + 8sz(1− σ2

θ )− ρ
2

A+ α2(θ, z)(1−
σ2

θ
) =

2A(m+ ρ)

ρ+
√

(2m+ ρ)2 + 8sz(1− σ2

θ )

⇒
A+ α2(θ, z)(1− σ2

θ )

−
[
2α1(θ, z)(1− σ2

θ )−m
] =

4A(m+ ρ)

4m2 + 4mρ+ 8sz(1− σ2

θ )

SDE (27) is an instance of the well-known Ornstein-Uhlenbeck process so that we may deduce the

following:

Proposition 2 Stochastic differential equation (27) has a unique solution given by a Gaussian

diffusion process {P ∗(θ, z, t) : t ≥ 0} where

(a) P ∗(θ, z, t) has expectation

E[P ∗(θ, z, t)] = P̂0e
[2α1(θ,z)(1−σ2

θ
)−m]t +

4A(m+ ρ)

4m2 + 4mρ+ 8sz(1− σ2

θ )

[
1− e[2α1(θ,z)(1−σ2

θ
)−m]t

]
,

and variance

Var[P̂ ∗(θ, z, t)] =
σ2√

(2m+ ρ)2 + 8sz(1− σ2

θ )− ρ

[
1− e2[2α1(θ,z)(1−σ2

θ
)−m]t

]2
.

(b) {P ∗(θ, z, t) : t ≥ 0} has a stationary distribution that is N

(
4A(m+ρ)

4m2+4mρ+8sz(1−σ2

θ
)
, σ2√

(2m+ρ)2+8sz(1−σ2

θ
)−ρ

)
.

Proposition 2 also agrees with our intuition. In steady state, the expected value and variance of the

worst-case pollution levels are decreasing in θ and z.

Given Proposition 2 and the explicit characterization of the first and second moments of

P ∗(θ, z, t), we may also note that the worst-case entropy of our misspecified model is equal to:

R(Q∗(θ, z)) =

∫ ∞
0

e−ρt
1

2
EQ∗ [v

∗(t)2]dt

=
σ2

2θ2

∫ ∞
0

e−ρt
[
4α2

1(θ, z)

(
(E[P ∗(θ, z, t)])2 + Var[P̂ ∗(θ, z, t)]

)
+4α1(θ, z)α2(θ, z)E[P ∗(θ, z, t)] + α2

2(θ, z)

]
dt. (28)
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Thus, we are able to (via Proposition 1) directly associate an entropy bound η to a given ambiguity

parameter θ, such that the respective multiplier (10) and constraint (11) robust control problems

admit identical solutions.6

4 Solving the optimal investment problem

Suppose that at time 0 a policy maker wants to decide how much to invest in damage-control

technology. In our notation, he or she would like to choose a value of z. Statistical evidence and

climate science suggests a possible model misspecification for the pollution accumulation dynamics

that is captured through an amiguity parameter θ. The policy maker takes this misspefication

seriously and wishes to guard against it, so that a maxmin criterion is adopted over future welfare.

Recall that V (P0, θ, z) denotes the maxmin value of a constraint problem mutiplier θ with technology

adoption z, at initial pollution P0. Thus, at time 0, the policy maker wishes to solve the following

optimization problem

max
z∈[0,1]

V (P0, θ, z)− φ(z) (29)

We now make the following assumption on our model primitives, in order to ensure a “single-

crossing” property on the objective function of (29).

Assumption 1 Parameters s,m, ρ,A, initial pollution levels P0, and cost function φ satisfy

lim
θ→∞

∂

∂z
V (θ, 1, P0) < φ′(1). (30)

Assumption 1 ensures that the optimization problem (29) corresponding to the case of pure risk

(and no uncertainty) has a unique solution. In the rest of the paper we suppose that Assumption 1

holds.

Lemma 2 Consider optimization problem (29). There exists a unique optimal level of damage-

control investment z, call it z∗(θ), that satisfies

∂

∂z
V (P0, θ, z) > φ′(z), for all z ∈ [0, z∗(θ))

∂

∂z
V (P0, θ, z

∗(θ)) = φ′(z∗(θ)),

∂

∂z
V (P0, θ, z) < φ′(z), for all z ∈ (z∗(θ), 1]

Proof. Recall that φ is strictly decreasing and convex, and satisfies φ′(0) = −∞. This fact, in

combination with Lemma 1, Eq. (24), and Assumption 1, establishes the result.

6On a technical note straightforward, if cumbersome, algebra verifies that d
dθ
R(Q∗(θ, z)) < 0.
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Having established this result, we are now ready to investigate the properties of the optimal

solution of (29). We first address optimal investment in damage-control technology and prove that

it, indeed, is consistent to the PP.

Theorem 1 Optimal damage-control investment strictly increases in model uncertainty. In other

words, z∗(θ) is strictly increasing in θ.

Proof. Consider θ2 > θ1 and the associated optimal investment decisions z∗(θ1), z
∗(θ2). Lemma 2

implies that z∗(θ1) uniquely satisfies

∂

∂z
V (θ1, z

∗(θ1), P0) = φ′(z∗(θ1)).

Now, Lemma 1 implies that

∂

∂z
V (θ2, z

∗(θ1), P0) >
∂

∂z
V (θ1, z

∗(θ1), P0) = φ′(z∗(θ1)).

Consequently, Lemma 2 implies that

∂

∂z
V (θ2, z, P0) > φ′(z), for all z ∈ [0, z∗(θ1)),

so that it must be the case that z∗(θ2) > z∗(θ1).

Theorem 1 confirms the PP in the case of damage control investment. We now address this

question in the context of optimal mitigation policies.

Lemma 3 The optimal solution of optimization problem (29) is such that the values of d
dθα1(θ, z

∗(θ))

and d
dθα2(θ, z

∗(θ)) can be positive or negative. In particular

(a)

d

dθ
α1(θ, z

∗(θ)) < 0 ⇔ dz∗

dθ
(θ) >

−∂α1
∂θ (θ, z∗(θ))

∂α1
∂z (θ, z∗(θ))

(b)

d

dθ
α2(θ, z

∗(θ)) < 0 ⇔ dz∗

dθ
(θ) >

−∂α1
∂θ (θ, z∗(θ))− 2α2

1(θ,z
∗(θ))σ2

θ2(ρ+m)

∂α1
∂z (θ, z∗(θ))

Proof. Consider θ and the associated optimal z∗(θ). We begin with part (a) and consider

α1(θ, z
∗(θ)). The result immediately follows from differentiating with respect to θ and recalling

the negative sign of ∂α1
∂z (θ, z):

d

dθ
α1(θ, z

∗(θ)) =
∂α1

∂θ
(θ, z∗(θ)) +

∂α1

∂z
(θ, z∗(θ))

dz∗

dθ
(θ). (31)

13



Moving on to part (b), we first refer to Eq. (17). Straightforward differentiation establishes that

d

dθ
α2(θ, z

∗(θ)) =
2A

(
d
dθα1(θ, z

∗(θ))(ρ+m) +
2α2

1(θ,z
∗(θ))σ2

θ2

)
(

2α1(θ, z∗(θ))(
σ2

θ − 1) + ρ+m

)2 (32)

Part (b) now follows from Eqs. (31) and (32).

Theorem 2 Consider a neighborhood of θ, say [θmin, θmax]. If z∗(θ) satisfies

(a)

dz∗

dθ
(θ) >

−∂α1
∂θ (θ, z∗(θ))− 2α2

1(θ,z
∗(θ))σ2

θ2(ρ+m)

∂α1
∂z (θ, z∗(θ))

, θ ∈ [θmin, θmax], (33)

then emissions (mitigation) are unambiguously decreasing (increasing) in θ in [θmin, θmax];

(b)

dz∗

dθ
(θ) <

−∂α1
∂θ (θ, z∗(θ))

∂α1
∂z (θ, z∗(θ))

, θ ∈ [θmin, θmax], (34)

then emissions (mitigation) are unambiguously increasing (decreasing) in θ in [θmin, θmax];

(c)

−∂α1
∂θ (θ, z∗(θ))

∂α1
∂z (θ, z∗(θ))

<
dz∗

dθ
(θ) <

−∂α1
∂θ (θ, z∗(θ))− 2α2

1(θ,z
∗(θ))σ2

θ2(ρ+m)

∂α1
∂z (θ, z∗(θ))

, θ ∈ [θmin, θmax] (35)

then emissions will be decreasing in θ for θ ∈ [θmin, θmax] if and only if current pollution levels

are high enough.

Proof. Follows immediately from Lemma 3 and the fact that, as Eq. (19) suggests, E∗(θ, z, P ) =

A+ 2α1(θ, z)P + α2(θ, z).

Remarks. From Theorem 1 we know that dz∗

dθ (θ) > 0. Moreover, straightforward, if cumbersome,

algebra establishes that
∂α1

∂θ
(θ, z) ≥ 0,

∂α1

∂θ
(θ, 0) = 0 (36)

and Eq. (21) shows that

∂α1

∂z
(θ, z) < 0,

∂2α1

∂θ∂z
(θ, z) > 0,

∂α1

∂z
(θ, 0) = − s

2m+ ρ
(37)

Therefore, the conditions of Theorem 2 are not generically false so that it is, theoretically, possible

for mitigation to down up as uncertainty goes up. Moreover, Eqs. (16), (36), and (37) imply that

the right-hand-side of Eq. (33) is increasing in z∗(θ) and satisfies

lim
z∗(θ)→0

−∂α1
∂θ (θ, z∗(θ))− 2α2

1(θ,z
∗(θ))σ2

θ2(ρ+m)

∂α1
∂z (θ, z∗(θ))

= 0.
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The above discussion suggests that, in some instances, the precautionary principle may only be

manifest in our choice of damage-control technology, particularly in cases where z∗ is low and

sensitive to changes in θ. Hence, we arrive at the following corollary of Theorem 2.

Corollary 1 The right-hand side of Eq. (33) is increasing in z∗(θ), and vanishes at z∗(θ) = 0.

Hence, fow high enough levels of optimal damage-control investment (i.e., low enough z∗(θ)), emis-

sions will be decreasing in θ, provided the rate of change of z∗(θ) is high enough. In other words,

if optimal levels of damage-control investment are both high enough and sufficiently sensitive to

changes in uncertainty, then we observe a reversal of the PP with regard to mitigation.

The intuition behind this result can be described in the following way: If damage-control investment

is sensitive to θ, then an increase in uncertainty will cause a large increase in damage-control

investment, which in turn will reduce damages from time 0 onwards. If this reduction is sufficiently

large then, since more mitigation is also costly, incentives to mitigate weaken to the extent that

mitigation is actually reduced. In this case we observe that when uncertainty increases, damage-

control investment and mitigation become substitutes rather than complements.

A heuristic algorithm for solving the constraint robust control problem. Clearly, the

above analysis captures model misspecification through a multiplier robust control problem. How-

ever, as we mentioned earlier, an ambiguity parameter θ tends to have no direct physical meaning;

instead, it functions as a Lagrange multiplier of a constraint on relative entropy. By contrast, rela-

tive entropy bounds do have physical meaning as their determination is based on physical principles

and statistical analysis of time series data. Thus, the question naturally arises: Can we derive op-

timal mitigation and damage-control policies under a constraint η on relative entropy? The answer

is most likely yes, through the following heuristic “algorithm”:

1. Suppose that physical science and time series analysis suggests a model misspecification of η∗.

Pick θ > σ2 at random.

2. Solve optimization problem (29) and determine z∗(θ).

3. Use Eq. (28) to calculate η = R(Q∗(θ, z∗(θ))). By Proposition 1 the constraint problem with

an entropy bound η will admit an identical solution as the one we have just computed through

the multiplier problem θ.

4. If η > η∗, pick a bigger θ and repeat steps 2 and 3. Otherwise, pick a smaller θ and do the

same. Repeat until the derived η is close enough to the given η∗.

Why is the above algorithm heuristic? It is because we have not formally proved that

d

dθ
R(Q∗(θ, z∗(θ))) < 0,
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so that step 4 may not necessarily lead to convergence. Addressing the monotonicity ofR(Q∗(θ, z∗(θ)))

with respect to θ in full generality is complicated by the countervailing effects that θ and z have

on entropy. In particular, recall from Theorem 1 that z∗ is increasing in θ. Moreover, note from

Eq. (28) that
∂

∂θ
R < 0,

∂

∂z
R > 0.

Thus, it becomes clear that we cannot immediately deduce that worst-case entropy will be decreasing

in θ. Still, numerical results indicate that an increase in θ significantly outweighs its attendant

increase of z∗ (see Section 5 and Table 1), and we are confident that the above algorithm is a useful

way of embedding entropy bounds in our robust control problem.

5 The effect of damage-control cost φ on precaution

In this section we explore how changes in the cost function φ affect optimal mitigation and damage

control decisions. We focus on the following family of cost functions that is consistent with our

model assumptions

φ(z; k) =
1

zk
− 1, k ≥ 1, (38)

so that φ(z; k1) > φ(z; k2) (unless of course z = 0 or 1) and φ′(z; k1) < φ′(z; k2) whenever k1 > k2.

Hence cost (marginal cost) is increasing (decreasing) in k. We begin with a natural result.

Proposition 3 Fix a level of uncertainty θ and consider a family of optimization problems (29),

parametrized according to Eq. (38).

(a) Optimal values of z∗(θ; k) are increasing in k. In other words, optimal levels of damage-control

investment are decreasing in the cost of damage control technology.

(b) Optimal emissions are decreasing in k. In other words, optimal levels of mitigation are in-

creasing in the cost of damage-control technology.

Proof. Part (a) follows from Lemma 2 and the fact that φ′(z; k1) < φ′(z; k2) whenever k2 > k1.

Part (b) follows from part (a) and Eqs. (16) and (17).

Proposition 3 is not surprising. The more expensive damage-control technology is, the less

we can expect to invest in it. Moreover, this decrease in damage control means that additional

mitigation is necessary, to protect against high pollution concentrations. Proposition 3 holds for

every level of uncertainty θ > σ2.

A numerical example. We now examine the effect of φ on precautionary behavior, as we vary

θ. To make the analysis concrete, we focus on the following problem instance:

P0 = 100, m = ρ = .03, A = 100, s = 1, σ2 = 1.
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Figure 1: z∗(θ;k)
z∗(∞;k) as a function of θ for k = 1, 2, .., 6.

We already know from Theorem 1 that optimal damage-control investement will be increasing

in uncertainty, i.e., that z∗(θ; k) is increasing in θ, for all cost functions (38). Indeed this can be

seen in Figure 1. On the other hand, Figure 2 illustrates Proposition 3 and shows how, given a level

of uncertainty θ, optimal damage-control investment will be decreasing in the cost of technology.

But while our choice of cost function does not affect the precautionary principle vis-a-vis optimal

damage-control investment, the situation is not so simple in the case of mitigation. Indeed, all three

cases of Theorem 2 may occur for different values of k. The case in which k = 1.5 corresponds to

part (a) of Theorem 2 (see Figure 3), k = 2 to part (c) (see Figure 4), and k = 3.5 (see Figure 5)

to part (b).

Taken together, our numerical results indicate that when the cost of damage-control technology

is low enough (i.e., when k is small) we are in a situation in which the precautionary principle with

regard to mitigation unambiguously does not hold. This can be explained by the fact that in such

cases, the government will choose to invest a lot in damage control technology and the intuition of

Corollary 1 will be applicable.

6 Conclusion

The present paper analyzed optimal pollution control policy under Knightian uncertainty by adopt-

ing the robust control framework of Hansen and Sargent [10]. Allowing for a one-time investment in
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Figure 2: z∗(θ; k) as a function of θ for k = 1, 2, .., 6.
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Figure 3: Emissions as a function of P for different θ: (k = 1.5, P0 = 100). This case corresponds

to part (a) of Theorem 2.
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Figure 4: Emissions as a function of P for different θ: (k = 2, P0 = 100). This case corresponds to

part (c) of Theorem 2.
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Figure 5: Emissions as a function of P for different θ: (k = 3.5, P0 = 100). This case corresponds

to part (b) of Theorem 2.
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k θ E[P ∗] Var[P ∗] η

1.5 1.1 3112 15.9 37131

1.5 1.5 2584 14.1 18663

1.5 2 2267 13 9995

1.5 3 1967 11.8 4221

1.5 4 1814 11.2 2312

2 1.1 2592 14.1 456998

2 1.5 1346 9.4 166074

2 2 874 7.2 70910

2 3 551 5.4 24063

2 4 400 4.7 11841

3.5 1.1 720 6.45 8333650

3.5 1.5 119 2.38 614720

3.5 2 62.8 1.7 163497

3.5 3 35.8 1.2 41990

3.5 4 7.93 1.04 18818

Table 1: Steady-state expectation/variance and relative entropy of worst-case pollution levels P ∗,

as a function of k and θ.
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damage-control technology, in addition to gradual emissions mitigation, we studied the applicability

of a precautionary principle with respect to both damage control and mitigation. Our main finding

is that while investment in damage-control technology is always increasing in uncertainty, optimal

mitigation is not. Indeed, if optimal levels of damage-control investment are both high enough and

sufficiently sensitive to changes in uncertainty, then we observe a reversal of the PP with regard

to mitigation. We consider this to be an interesting consequence of the interaction between two

different ways of reducing pollution-related damages.

From a normative standpoint our analysis implies that, depending on the cost of damage-

control technology and the magnitude of uncertainty, it may be preferable to be precautious now

by undertaking large damage-control investment, and not be particularly precautious with respect

to future mitigation policy. Indeed, when this is the case, current damage-control investment and

future mitigation act as substitutes. On the other hand, when damage-control investment is costly,

it can act as a complement to future mitigation and an increase in uncertainty induces precaution

with respect to both policy actions. We think that these results provide new insights into the

question of when and how to be precautious in the design of pollution control policy in the context

of robust decision making.7 Interesting future work along similar lines would extend the basic model

to incorporate dynamic damage-control investment, more intricate pollution dynamics, as well as

lower bounds on emissions that would reflect concerns about irreversibility.
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